micropython/py/compile.c

3166 lines
121 KiB
C

#include <unistd.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "misc.h"
#include "mpconfig.h"
#include "mpqstr.h"
#include "lexer.h"
#include "parse.h"
#include "scope.h"
#include "runtime0.h"
#include "emit.h"
#include "obj.h"
#include "compile.h"
#include "runtime.h"
// TODO need to mangle __attr names
#define MICROPY_EMIT_NATIVE (MICROPY_EMIT_X64 || MICROPY_EMIT_THUMB)
typedef enum {
PN_none = 0,
#define DEF_RULE(rule, comp, kind, arg...) PN_##rule,
#include "grammar.h"
#undef DEF_RULE
PN_maximum_number_of,
} pn_kind_t;
#define EMIT(fun, arg...) (comp->emit_method_table->fun(comp->emit, ##arg))
#define EMIT_INLINE_ASM(fun, arg...) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm, ##arg))
#define EMIT_OPT_NONE (0)
#define EMIT_OPT_BYTE_CODE (1)
#define EMIT_OPT_NATIVE_PYTHON (2)
#define EMIT_OPT_VIPER (3)
#define EMIT_OPT_ASM_THUMB (4)
typedef struct _compiler_t {
bool is_repl;
pass_kind_t pass;
bool had_error; // try to keep compiler clean from nlr
int next_label;
int break_label;
int continue_label;
int except_nest_level;
int n_arg_keyword;
bool have_star_arg;
bool have_dbl_star_arg;
bool have_bare_star;
int param_pass;
int param_pass_num_dict_params;
int param_pass_num_default_params;
scope_t *scope_head;
scope_t *scope_cur;
emit_t *emit; // current emitter
const emit_method_table_t *emit_method_table; // current emit method table
emit_inline_asm_t *emit_inline_asm; // current emitter for inline asm
const emit_inline_asm_method_table_t *emit_inline_asm_method_table; // current emit method table for inline asm
} compiler_t;
mp_parse_node_t fold_constants(mp_parse_node_t pn) {
if (MP_PARSE_NODE_IS_STRUCT(pn)) {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
// fold arguments first
for (int i = 0; i < n; i++) {
pns->nodes[i] = fold_constants(pns->nodes[i]);
}
switch (MP_PARSE_NODE_STRUCT_KIND(pns)) {
case PN_shift_expr:
if (n == 3 && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[0]) && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[2])) {
int arg0 = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
int arg1 = MP_PARSE_NODE_LEAF_ARG(pns->nodes[2]);
if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_DBL_LESS)) {
#if MICROPY_EMIT_CPYTHON
// can overflow; enabled only to compare with CPython
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, arg0 << arg1);
#endif
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_DBL_MORE)) {
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, arg0 >> arg1);
} else {
// shouldn't happen
assert(0);
}
}
break;
case PN_arith_expr:
// overflow checking here relies on SMALL_INT being strictly smaller than machine_int_t
if (n == 3 && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[0]) && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[2])) {
machine_int_t arg0 = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
machine_int_t arg1 = MP_PARSE_NODE_LEAF_ARG(pns->nodes[2]);
machine_int_t res;
if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_PLUS)) {
res = arg0 + arg1;
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_MINUS)) {
res = arg0 - arg1;
} else {
// shouldn't happen
assert(0);
res = 0;
}
if (MP_FIT_SMALL_INT(res)) {
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, res);
}
}
break;
case PN_term:
if (n == 3 && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[0]) && MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[2])) {
int arg0 = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
int arg1 = MP_PARSE_NODE_LEAF_ARG(pns->nodes[2]);
if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_STAR)) {
#if MICROPY_EMIT_CPYTHON
// can overflow; enabled only to compare with CPython
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, arg0 * arg1);
#endif
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_SLASH)) {
; // pass
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_PERCENT)) {
// XXX implement this properly as Python's % operator acts differently to C's
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, arg0 % arg1);
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_DBL_SLASH)) {
// XXX implement this properly as Python's // operator acts differently to C's
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, arg0 / arg1);
} else {
// shouldn't happen
assert(0);
}
}
break;
case PN_factor_2:
if (MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[1])) {
machine_int_t arg = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]);
if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[0], MP_TOKEN_OP_PLUS)) {
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, arg);
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[0], MP_TOKEN_OP_MINUS)) {
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, -arg);
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[0], MP_TOKEN_OP_TILDE)) {
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, ~arg);
} else {
// shouldn't happen
assert(0);
}
}
break;
#if MICROPY_EMIT_CPYTHON
case PN_power:
// can overflow; enabled only to compare with CPython
if (MP_PARSE_NODE_IS_SMALL_INT(pns->nodes[0]) && MP_PARSE_NODE_IS_NULL(pns->nodes[1]) && !MP_PARSE_NODE_IS_NULL(pns->nodes[2])) {
mp_parse_node_struct_t* pns2 = (mp_parse_node_struct_t*)pns->nodes[2];
if (MP_PARSE_NODE_IS_SMALL_INT(pns2->nodes[0])) {
int power = MP_PARSE_NODE_LEAF_ARG(pns2->nodes[0]);
if (power >= 0) {
int ans = 1;
int base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
for (; power > 0; power--) {
ans *= base;
}
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, ans);
}
}
}
break;
#endif
}
}
return pn;
}
void compile_node(compiler_t *comp, mp_parse_node_t pn);
static int comp_next_label(compiler_t *comp) {
return comp->next_label++;
}
static scope_t *scope_new_and_link(compiler_t *comp, scope_kind_t kind, mp_parse_node_t pn, uint emit_options) {
scope_t *scope = scope_new(kind, pn, rt_get_unique_code_id(), emit_options);
scope->parent = comp->scope_cur;
scope->next = NULL;
if (comp->scope_head == NULL) {
comp->scope_head = scope;
} else {
scope_t *s = comp->scope_head;
while (s->next != NULL) {
s = s->next;
}
s->next = scope;
}
return scope;
}
static int list_len(mp_parse_node_t pn, int pn_kind) {
if (MP_PARSE_NODE_IS_NULL(pn)) {
return 0;
} else if (MP_PARSE_NODE_IS_LEAF(pn)) {
return 1;
} else {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
if (MP_PARSE_NODE_STRUCT_KIND(pns) != pn_kind) {
return 1;
} else {
return MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
}
}
}
static void apply_to_single_or_list(compiler_t *comp, mp_parse_node_t pn, int pn_list_kind, void (*f)(compiler_t*, mp_parse_node_t)) {
if (MP_PARSE_NODE_IS_STRUCT(pn) && MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn) == pn_list_kind) {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
for (int i = 0; i < num_nodes; i++) {
f(comp, pns->nodes[i]);
}
} else if (!MP_PARSE_NODE_IS_NULL(pn)) {
f(comp, pn);
}
}
static int list_get(mp_parse_node_t *pn, int pn_kind, mp_parse_node_t **nodes) {
if (MP_PARSE_NODE_IS_NULL(*pn)) {
*nodes = NULL;
return 0;
} else if (MP_PARSE_NODE_IS_LEAF(*pn)) {
*nodes = pn;
return 1;
} else {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)(*pn);
if (MP_PARSE_NODE_STRUCT_KIND(pns) != pn_kind) {
*nodes = pn;
return 1;
} else {
*nodes = pns->nodes;
return MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
}
}
}
void compile_do_nothing(compiler_t *comp, mp_parse_node_struct_t *pns) {
}
void compile_generic_all_nodes(compiler_t *comp, mp_parse_node_struct_t *pns) {
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
for (int i = 0; i < num_nodes; i++) {
compile_node(comp, pns->nodes[i]);
}
}
#if MICROPY_EMIT_CPYTHON
static bool cpython_c_tuple_is_const(mp_parse_node_t pn) {
if (!MP_PARSE_NODE_IS_LEAF(pn)) {
return false;
}
if (MP_PARSE_NODE_IS_ID(pn)) {
return false;
}
return true;
}
static void cpython_c_print_quoted_str(vstr_t *vstr, qstr qstr, bool bytes) {
const char *str = qstr_str(qstr);
int len = strlen(str);
bool has_single_quote = false;
bool has_double_quote = false;
for (int i = 0; i < len; i++) {
if (str[i] == '\'') {
has_single_quote = true;
} else if (str[i] == '"') {
has_double_quote = true;
}
}
if (bytes) {
vstr_printf(vstr, "b");
}
bool quote_single = false;
if (has_single_quote && !has_double_quote) {
vstr_printf(vstr, "\"");
} else {
quote_single = true;
vstr_printf(vstr, "'");
}
for (int i = 0; i < len; i++) {
if (str[i] == '\n') {
vstr_printf(vstr, "\\n");
} else if (str[i] == '\\') {
vstr_printf(vstr, "\\\\");
} else if (str[i] == '\'' && quote_single) {
vstr_printf(vstr, "\\'");
} else {
vstr_printf(vstr, "%c", str[i]);
}
}
if (has_single_quote && !has_double_quote) {
vstr_printf(vstr, "\"");
} else {
vstr_printf(vstr, "'");
}
}
static void cpython_c_tuple_emit_const(compiler_t *comp, mp_parse_node_t pn, vstr_t *vstr) {
assert(MP_PARSE_NODE_IS_LEAF(pn));
int arg = MP_PARSE_NODE_LEAF_ARG(pn);
switch (MP_PARSE_NODE_LEAF_KIND(pn)) {
case MP_PARSE_NODE_ID: assert(0);
case MP_PARSE_NODE_SMALL_INT: vstr_printf(vstr, "%d", arg); break;
case MP_PARSE_NODE_INTEGER: vstr_printf(vstr, "%s", qstr_str(arg)); break;
case MP_PARSE_NODE_DECIMAL: vstr_printf(vstr, "%s", qstr_str(arg)); break;
case MP_PARSE_NODE_STRING: cpython_c_print_quoted_str(vstr, arg, false); break;
case MP_PARSE_NODE_BYTES: cpython_c_print_quoted_str(vstr, arg, true); break;
case MP_PARSE_NODE_TOKEN:
switch (arg) {
case MP_TOKEN_KW_FALSE: vstr_printf(vstr, "False"); break;
case MP_TOKEN_KW_NONE: vstr_printf(vstr, "None"); break;
case MP_TOKEN_KW_TRUE: vstr_printf(vstr, "True"); break;
default: assert(0);
}
break;
default: assert(0);
}
}
static void cpython_c_tuple(compiler_t *comp, mp_parse_node_t pn, mp_parse_node_struct_t *pns_list) {
int n = 0;
if (pns_list != NULL) {
n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_list);
}
int total = n;
bool is_const = true;
if (!MP_PARSE_NODE_IS_NULL(pn)) {
total += 1;
if (!cpython_c_tuple_is_const(pn)) {
is_const = false;
}
}
for (int i = 0; i < n; i++) {
if (!cpython_c_tuple_is_const(pns_list->nodes[i])) {
is_const = false;
break;
}
}
if (total > 0 && is_const) {
bool need_comma = false;
vstr_t *vstr = vstr_new();
vstr_printf(vstr, "(");
if (!MP_PARSE_NODE_IS_NULL(pn)) {
cpython_c_tuple_emit_const(comp, pn, vstr);
need_comma = true;
}
for (int i = 0; i < n; i++) {
if (need_comma) {
vstr_printf(vstr, ", ");
}
cpython_c_tuple_emit_const(comp, pns_list->nodes[i], vstr);
need_comma = true;
}
if (total == 1) {
vstr_printf(vstr, ",)");
} else {
vstr_printf(vstr, ")");
}
EMIT(load_const_verbatim_str, vstr_str(vstr));
vstr_free(vstr);
} else {
if (!MP_PARSE_NODE_IS_NULL(pn)) {
compile_node(comp, pn);
}
for (int i = 0; i < n; i++) {
compile_node(comp, pns_list->nodes[i]);
}
EMIT(build_tuple, total);
}
}
#endif
// funnelling all tuple creations through this function is purely so we can optionally agree with CPython
void c_tuple(compiler_t *comp, mp_parse_node_t pn, mp_parse_node_struct_t *pns_list) {
#if MICROPY_EMIT_CPYTHON
cpython_c_tuple(comp, pn, pns_list);
#else
int total = 0;
if (!MP_PARSE_NODE_IS_NULL(pn)) {
compile_node(comp, pn);
total += 1;
}
if (pns_list != NULL) {
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_list);
for (int i = 0; i < n; i++) {
compile_node(comp, pns_list->nodes[i]);
}
total += n;
}
EMIT(build_tuple, total);
#endif
}
void compile_generic_tuple(compiler_t *comp, mp_parse_node_struct_t *pns) {
// a simple tuple expression
c_tuple(comp, MP_PARSE_NODE_NULL, pns);
}
static bool node_is_const_false(mp_parse_node_t pn) {
return MP_PARSE_NODE_IS_TOKEN_KIND(pn, MP_TOKEN_KW_FALSE);
// untested: || (MP_PARSE_NODE_IS_SMALL_INT(pn) && MP_PARSE_NODE_LEAF_ARG(pn) == 1);
}
static bool node_is_const_true(mp_parse_node_t pn) {
return MP_PARSE_NODE_IS_TOKEN_KIND(pn, MP_TOKEN_KW_TRUE) || (MP_PARSE_NODE_IS_SMALL_INT(pn) && MP_PARSE_NODE_LEAF_ARG(pn) == 1);
}
#if MICROPY_EMIT_CPYTHON
// the is_nested variable is purely to match with CPython, which doesn't fully optimise not's
static void cpython_c_if_cond(compiler_t *comp, mp_parse_node_t pn, bool jump_if, int label, bool is_nested) {
if (node_is_const_false(pn)) {
if (jump_if == false) {
EMIT(jump, label);
}
return;
} else if (node_is_const_true(pn)) {
if (jump_if == true) {
EMIT(jump, label);
}
return;
} else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_or_test) {
if (jump_if == false) {
int label2 = comp_next_label(comp);
for (int i = 0; i < n - 1; i++) {
cpython_c_if_cond(comp, pns->nodes[i], true, label2, true);
}
cpython_c_if_cond(comp, pns->nodes[n - 1], false, label, true);
EMIT(label_assign, label2);
} else {
for (int i = 0; i < n; i++) {
cpython_c_if_cond(comp, pns->nodes[i], true, label, true);
}
}
return;
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_and_test) {
if (jump_if == false) {
for (int i = 0; i < n; i++) {
cpython_c_if_cond(comp, pns->nodes[i], false, label, true);
}
} else {
int label2 = comp_next_label(comp);
for (int i = 0; i < n - 1; i++) {
cpython_c_if_cond(comp, pns->nodes[i], false, label2, true);
}
cpython_c_if_cond(comp, pns->nodes[n - 1], true, label, true);
EMIT(label_assign, label2);
}
return;
} else if (!is_nested && MP_PARSE_NODE_STRUCT_KIND(pns) == PN_not_test_2) {
cpython_c_if_cond(comp, pns->nodes[0], !jump_if, label, true);
return;
}
}
// nothing special, fall back to default compiling for node and jump
compile_node(comp, pn);
if (jump_if == false) {
EMIT(pop_jump_if_false, label);
} else {
EMIT(pop_jump_if_true, label);
}
}
#endif
static void c_if_cond(compiler_t *comp, mp_parse_node_t pn, bool jump_if, int label) {
#if MICROPY_EMIT_CPYTHON
cpython_c_if_cond(comp, pn, jump_if, label, false);
#else
if (node_is_const_false(pn)) {
if (jump_if == false) {
EMIT(jump, label);
}
return;
} else if (node_is_const_true(pn)) {
if (jump_if == true) {
EMIT(jump, label);
}
return;
} else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_or_test) {
if (jump_if == false) {
int label2 = comp_next_label(comp);
for (int i = 0; i < n - 1; i++) {
c_if_cond(comp, pns->nodes[i], true, label2);
}
c_if_cond(comp, pns->nodes[n - 1], false, label);
EMIT(label_assign, label2);
} else {
for (int i = 0; i < n; i++) {
c_if_cond(comp, pns->nodes[i], true, label);
}
}
return;
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_and_test) {
if (jump_if == false) {
for (int i = 0; i < n; i++) {
c_if_cond(comp, pns->nodes[i], false, label);
}
} else {
int label2 = comp_next_label(comp);
for (int i = 0; i < n - 1; i++) {
c_if_cond(comp, pns->nodes[i], false, label2);
}
c_if_cond(comp, pns->nodes[n - 1], true, label);
EMIT(label_assign, label2);
}
return;
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_not_test_2) {
c_if_cond(comp, pns->nodes[0], !jump_if, label);
return;
}
}
// nothing special, fall back to default compiling for node and jump
compile_node(comp, pn);
if (jump_if == false) {
EMIT(pop_jump_if_false, label);
} else {
EMIT(pop_jump_if_true, label);
}
#endif
}
typedef enum { ASSIGN_STORE, ASSIGN_AUG_LOAD, ASSIGN_AUG_STORE } assign_kind_t;
void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t kind);
void c_assign_power(compiler_t *comp, mp_parse_node_struct_t *pns, assign_kind_t assign_kind) {
if (assign_kind != ASSIGN_AUG_STORE) {
compile_node(comp, pns->nodes[0]);
}
if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_power_trailers) {
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
if (assign_kind != ASSIGN_AUG_STORE) {
for (int i = 0; i < n - 1; i++) {
compile_node(comp, pns1->nodes[i]);
}
}
assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1]));
pns1 = (mp_parse_node_struct_t*)pns1->nodes[n - 1];
}
if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_paren) {
printf("SyntaxError: can't assign to function call\n");
return;
} else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) {
if (assign_kind == ASSIGN_AUG_STORE) {
EMIT(rot_three);
EMIT(store_subscr);
} else {
compile_node(comp, pns1->nodes[0]);
if (assign_kind == ASSIGN_AUG_LOAD) {
EMIT(dup_top_two);
EMIT(binary_op, RT_BINARY_OP_SUBSCR);
} else {
EMIT(store_subscr);
}
}
} else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) {
assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
if (assign_kind == ASSIGN_AUG_LOAD) {
EMIT(dup_top);
EMIT(load_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]));
} else {
if (assign_kind == ASSIGN_AUG_STORE) {
EMIT(rot_two);
}
EMIT(store_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]));
}
} else {
// shouldn't happen
assert(0);
}
} else {
// shouldn't happen
assert(0);
}
if (!MP_PARSE_NODE_IS_NULL(pns->nodes[2])) {
// SyntaxError, cannot assign
assert(0);
}
}
void c_assign_tuple(compiler_t *comp, int n, mp_parse_node_t *nodes) {
assert(n >= 0);
int have_star_index = -1;
for (int i = 0; i < n; i++) {
if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[i], PN_star_expr)) {
if (have_star_index < 0) {
EMIT(unpack_ex, i, n - i - 1);
have_star_index = i;
} else {
printf("SyntaxError: two starred expressions in assignment\n");
return;
}
}
}
if (have_star_index < 0) {
EMIT(unpack_sequence, n);
}
for (int i = 0; i < n; i++) {
if (i == have_star_index) {
c_assign(comp, ((mp_parse_node_struct_t*)nodes[i])->nodes[0], ASSIGN_STORE);
} else {
c_assign(comp, nodes[i], ASSIGN_STORE);
}
}
}
// assigns top of stack to pn
void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t assign_kind) {
tail_recursion:
if (MP_PARSE_NODE_IS_NULL(pn)) {
assert(0);
} else if (MP_PARSE_NODE_IS_LEAF(pn)) {
if (MP_PARSE_NODE_IS_ID(pn)) {
int arg = MP_PARSE_NODE_LEAF_ARG(pn);
switch (assign_kind) {
case ASSIGN_STORE:
case ASSIGN_AUG_STORE:
EMIT(store_id, arg);
break;
case ASSIGN_AUG_LOAD:
EMIT(load_id, arg);
break;
}
} else {
printf("SyntaxError: can't assign to literal\n");
return;
}
} else {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
switch (MP_PARSE_NODE_STRUCT_KIND(pns)) {
case PN_power:
// lhs is an index or attribute
c_assign_power(comp, pns, assign_kind);
break;
case PN_testlist_star_expr:
case PN_exprlist:
// lhs is a tuple
if (assign_kind != ASSIGN_STORE) {
goto bad_aug;
}
c_assign_tuple(comp, MP_PARSE_NODE_STRUCT_NUM_NODES(pns), pns->nodes);
break;
case PN_atom_paren:
// lhs is something in parenthesis
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// empty tuple
printf("SyntaxError: can't assign to ()\n");
return;
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) {
pns = (mp_parse_node_struct_t*)pns->nodes[0];
goto testlist_comp;
} else {
// parenthesis around 1 item, is just that item
pn = pns->nodes[0];
goto tail_recursion;
}
break;
case PN_atom_bracket:
// lhs is something in brackets
if (assign_kind != ASSIGN_STORE) {
goto bad_aug;
}
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// empty list, assignment allowed
c_assign_tuple(comp, 0, NULL);
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) {
pns = (mp_parse_node_struct_t*)pns->nodes[0];
goto testlist_comp;
} else {
// brackets around 1 item
c_assign_tuple(comp, 1, &pns->nodes[0]);
}
break;
default:
printf("unknown assign, %u\n", (uint)MP_PARSE_NODE_STRUCT_KIND(pns));
assert(0);
}
return;
testlist_comp:
// lhs is a sequence
if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1];
if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3b) {
// sequence of one item, with trailing comma
assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[0]));
c_assign_tuple(comp, 1, &pns->nodes[0]);
} else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3c) {
// sequence of many items
// TODO call c_assign_tuple instead
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns2);
EMIT(unpack_sequence, 1 + n);
c_assign(comp, pns->nodes[0], ASSIGN_STORE);
for (int i = 0; i < n; i++) {
c_assign(comp, pns2->nodes[i], ASSIGN_STORE);
}
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_comp_for) {
// TODO not implemented
assert(0);
} else {
// sequence with 2 items
goto sequence_with_2_items;
}
} else {
// sequence with 2 items
sequence_with_2_items:
c_assign_tuple(comp, 2, pns->nodes);
}
return;
}
return;
bad_aug:
printf("SyntaxError: illegal expression for augmented assignment\n");
}
// stuff for lambda and comprehensions and generators
void close_over_variables_etc(compiler_t *comp, scope_t *this_scope, int n_dict_params, int n_default_params) {
// make closed over variables, if any
// ensure they are closed over in the order defined in the outer scope (mainly to agree with CPython)
int nfree = 0;
if (comp->scope_cur->kind != SCOPE_MODULE) {
for (int i = 0; i < comp->scope_cur->id_info_len; i++) {
id_info_t *id = &comp->scope_cur->id_info[i];
if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
for (int j = 0; j < this_scope->id_info_len; j++) {
id_info_t *id2 = &this_scope->id_info[j];
if (id2->kind == ID_INFO_KIND_FREE && id->qstr == id2->qstr) {
#if MICROPY_EMIT_CPYTHON
EMIT(load_closure, id->qstr, id->local_num);
#else
// in Micro Python we load closures using LOAD_FAST
EMIT(load_fast, id->qstr, id->local_num);
#endif
nfree += 1;
}
}
}
}
}
if (nfree > 0) {
EMIT(build_tuple, nfree);
}
// make the function/closure
if (nfree == 0) {
EMIT(make_function, this_scope, n_dict_params, n_default_params);
} else {
EMIT(make_closure, this_scope, n_dict_params, n_default_params);
}
}
void compile_funcdef_param(compiler_t *comp, mp_parse_node_t pn) {
if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_typedargslist_name)) {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
if (!MP_PARSE_NODE_IS_NULL(pns->nodes[2])) {
// this parameter has a default value
// in CPython, None (and True, False?) as default parameters are loaded with LOAD_NAME; don't understandy why
if (comp->have_bare_star) {
comp->param_pass_num_dict_params += 1;
if (comp->param_pass == 1) {
EMIT(load_const_id, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]));
compile_node(comp, pns->nodes[2]);
}
} else {
comp->param_pass_num_default_params += 1;
if (comp->param_pass == 2) {
compile_node(comp, pns->nodes[2]);
}
}
}
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_typedargslist_star)) {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// bare star
comp->have_bare_star = true;
}
}
}
// leaves function object on stack
// returns function name
qstr compile_funcdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) {
if (comp->pass == PASS_1) {
// create a new scope for this function
scope_t *s = scope_new_and_link(comp, SCOPE_FUNCTION, (mp_parse_node_t)pns, emit_options);
// store the function scope so the compiling function can use it at each pass
pns->nodes[4] = (mp_parse_node_t)s;
}
// save variables (probably don't need to do this, since we can't have nested definitions..?)
bool old_have_bare_star = comp->have_bare_star;
int old_param_pass = comp->param_pass;
int old_param_pass_num_dict_params = comp->param_pass_num_dict_params;
int old_param_pass_num_default_params = comp->param_pass_num_default_params;
// compile default parameters
comp->have_bare_star = false;
comp->param_pass = 1; // pass 1 does any default parameters after bare star
comp->param_pass_num_dict_params = 0;
comp->param_pass_num_default_params = 0;
apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_funcdef_param);
comp->have_bare_star = false;
comp->param_pass = 2; // pass 2 does any default parameters before bare star
comp->param_pass_num_dict_params = 0;
comp->param_pass_num_default_params = 0;
apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_funcdef_param);
// get the scope for this function
scope_t *fscope = (scope_t*)pns->nodes[4];
// make the function
close_over_variables_etc(comp, fscope, comp->param_pass_num_dict_params, comp->param_pass_num_default_params);
// restore variables
comp->have_bare_star = old_have_bare_star;
comp->param_pass = old_param_pass;
comp->param_pass_num_dict_params = old_param_pass_num_dict_params;
comp->param_pass_num_default_params = old_param_pass_num_default_params;
// return its name (the 'f' in "def f(...):")
return fscope->simple_name;
}
// leaves class object on stack
// returns class name
qstr compile_classdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) {
if (comp->pass == PASS_1) {
// create a new scope for this class
scope_t *s = scope_new_and_link(comp, SCOPE_CLASS, (mp_parse_node_t)pns, emit_options);
// store the class scope so the compiling function can use it at each pass
pns->nodes[3] = (mp_parse_node_t)s;
}
EMIT(load_build_class);
// scope for this class
scope_t *cscope = (scope_t*)pns->nodes[3];
// compile the class
close_over_variables_etc(comp, cscope, 0, 0);
// get its name
EMIT(load_const_id, cscope->simple_name);
// nodes[1] has parent classes, if any
if (MP_PARSE_NODE_IS_NULL(pns->nodes[1])) {
// no parent classes
EMIT(call_function, 2, 0, false, false);
} else {
// have a parent class or classes
// TODO what if we have, eg, *a or **a in the parent list?
compile_node(comp, pns->nodes[1]);
EMIT(call_function, 2 + list_len(pns->nodes[1], PN_arglist), 0, false, false);
}
// return its name (the 'C' in class C(...):")
return cscope->simple_name;
}
// returns true if it was a built-in decorator (even if the built-in had an error)
static bool compile_built_in_decorator(compiler_t *comp, int name_len, mp_parse_node_t *name_nodes, uint *emit_options) {
if (MP_PARSE_NODE_LEAF_ARG(name_nodes[0]) != MP_QSTR_micropython) {
return false;
}
if (name_len != 2) {
printf("SyntaxError: invalid micropython decorator\n");
return true;
}
qstr attr = MP_PARSE_NODE_LEAF_ARG(name_nodes[1]);
if (attr == MP_QSTR_byte_code) {
*emit_options = EMIT_OPT_BYTE_CODE;
#if MICROPY_EMIT_NATIVE
} else if (attr == MP_QSTR_native) {
*emit_options = EMIT_OPT_NATIVE_PYTHON;
} else if (attr == MP_QSTR_viper) {
*emit_options = EMIT_OPT_VIPER;
#endif
#if MICROPY_EMIT_INLINE_THUMB
} else if (attr == MP_QSTR_asm_thumb) {
*emit_options = EMIT_OPT_ASM_THUMB;
#endif
} else {
printf("SyntaxError: invalid micropython decorator '%s'\n", qstr_str(attr));
}
return true;
}
void compile_decorated(compiler_t *comp, mp_parse_node_struct_t *pns) {
// get the list of decorators
mp_parse_node_t *nodes;
int n = list_get(&pns->nodes[0], PN_decorators, &nodes);
// inherit emit options for this function/class definition
uint emit_options = comp->scope_cur->emit_options;
// compile each decorator
int num_built_in_decorators = 0;
for (int i = 0; i < n; i++) {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(nodes[i], PN_decorator)); // should be
mp_parse_node_struct_t *pns_decorator = (mp_parse_node_struct_t*)nodes[i];
// nodes[0] contains the decorator function, which is a dotted name
mp_parse_node_t *name_nodes;
int name_len = list_get(&pns_decorator->nodes[0], PN_dotted_name, &name_nodes);
// check for built-in decorators
if (compile_built_in_decorator(comp, name_len, name_nodes, &emit_options)) {
// this was a built-in
num_built_in_decorators += 1;
} else {
// not a built-in, compile normally
// compile the decorator function
compile_node(comp, name_nodes[0]);
for (int i = 1; i < name_len; i++) {
assert(MP_PARSE_NODE_IS_ID(name_nodes[i])); // should be
EMIT(load_attr, MP_PARSE_NODE_LEAF_ARG(name_nodes[i]));
}
// nodes[1] contains arguments to the decorator function, if any
if (!MP_PARSE_NODE_IS_NULL(pns_decorator->nodes[1])) {
// call the decorator function with the arguments in nodes[1]
compile_node(comp, pns_decorator->nodes[1]);
}
}
}
// compile the body (funcdef or classdef) and get its name
mp_parse_node_struct_t *pns_body = (mp_parse_node_struct_t*)pns->nodes[1];
qstr body_name = 0;
if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_funcdef) {
body_name = compile_funcdef_helper(comp, pns_body, emit_options);
} else if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_classdef) {
body_name = compile_classdef_helper(comp, pns_body, emit_options);
} else {
// shouldn't happen
assert(0);
}
// call each decorator
for (int i = 0; i < n - num_built_in_decorators; i++) {
EMIT(call_function, 1, 0, false, false);
}
// store func/class object into name
EMIT(store_id, body_name);
}
void compile_funcdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
qstr fname = compile_funcdef_helper(comp, pns, comp->scope_cur->emit_options);
// store function object into function name
EMIT(store_id, fname);
}
void c_del_stmt(compiler_t *comp, mp_parse_node_t pn) {
if (MP_PARSE_NODE_IS_ID(pn)) {
EMIT(delete_id, MP_PARSE_NODE_LEAF_ARG(pn));
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_power)) {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
compile_node(comp, pns->nodes[0]); // base of the power node
if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_power_trailers) {
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
for (int i = 0; i < n - 1; i++) {
compile_node(comp, pns1->nodes[i]);
}
assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1]));
pns1 = (mp_parse_node_struct_t*)pns1->nodes[n - 1];
}
if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_paren) {
// SyntaxError: can't delete a function call
assert(0);
} else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) {
compile_node(comp, pns1->nodes[0]);
EMIT(delete_subscr);
} else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) {
assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
EMIT(delete_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]));
} else {
// shouldn't happen
assert(0);
}
} else {
// shouldn't happen
assert(0);
}
if (!MP_PARSE_NODE_IS_NULL(pns->nodes[2])) {
// SyntaxError, cannot delete
assert(0);
}
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_paren)) {
pn = ((mp_parse_node_struct_t*)pn)->nodes[0];
if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_testlist_comp)) {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
// TODO perhaps factorise testlist_comp code with other uses of PN_testlist_comp
if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_testlist_comp_3b) {
// sequence of one item, with trailing comma
assert(MP_PARSE_NODE_IS_NULL(pns1->nodes[0]));
c_del_stmt(comp, pns->nodes[0]);
} else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_testlist_comp_3c) {
// sequence of many items
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
c_del_stmt(comp, pns->nodes[0]);
for (int i = 0; i < n; i++) {
c_del_stmt(comp, pns1->nodes[i]);
}
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_comp_for) {
// TODO not implemented; can't del comprehension?
assert(0);
} else {
// sequence with 2 items
goto sequence_with_2_items;
}
} else {
// sequence with 2 items
sequence_with_2_items:
c_del_stmt(comp, pns->nodes[0]);
c_del_stmt(comp, pns->nodes[1]);
}
} else {
// tuple with 1 element
c_del_stmt(comp, pn);
}
} else {
// not implemented
assert(0);
}
}
void compile_del_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
apply_to_single_or_list(comp, pns->nodes[0], PN_exprlist, c_del_stmt);
}
void compile_break_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (comp->break_label == 0) {
printf("ERROR: cannot break from here\n");
}
EMIT(break_loop, comp->break_label);
}
void compile_continue_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (comp->continue_label == 0) {
printf("ERROR: cannot continue from here\n");
}
if (comp->except_nest_level > 0) {
EMIT(continue_loop, comp->continue_label);
} else {
EMIT(jump, comp->continue_label);
}
}
void compile_return_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (comp->scope_cur->kind != SCOPE_FUNCTION) {
printf("SyntaxError: 'return' outside function\n");
comp->had_error = true;
return;
}
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// no argument to 'return', so return None
EMIT(load_const_tok, MP_TOKEN_KW_NONE);
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_test_if_expr)) {
// special case when returning an if-expression; to match CPython optimisation
mp_parse_node_struct_t *pns_test_if_expr = (mp_parse_node_struct_t*)pns->nodes[0];
mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns_test_if_expr->nodes[1];
int l_fail = comp_next_label(comp);
c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition
compile_node(comp, pns_test_if_expr->nodes[0]); // success value
EMIT(return_value);
EMIT(label_assign, l_fail);
compile_node(comp, pns_test_if_else->nodes[1]); // failure value
} else {
compile_node(comp, pns->nodes[0]);
}
EMIT(return_value);
}
void compile_yield_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
compile_node(comp, pns->nodes[0]);
EMIT(pop_top);
}
void compile_raise_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// raise
EMIT(raise_varargs, 0);
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_raise_stmt_arg)) {
// raise x from y
pns = (mp_parse_node_struct_t*)pns->nodes[0];
compile_node(comp, pns->nodes[0]);
compile_node(comp, pns->nodes[1]);
EMIT(raise_varargs, 2);
} else {
// raise x
compile_node(comp, pns->nodes[0]);
EMIT(raise_varargs, 1);
}
}
// q1 holds the base, q2 the full name
// eg a -> q1=q2=a
// a.b.c -> q1=a, q2=a.b.c
void do_import_name(compiler_t *comp, mp_parse_node_t pn, qstr *q1, qstr *q2) {
bool is_as = false;
if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_as_name)) {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
// a name of the form x as y; unwrap it
*q1 = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]);
pn = pns->nodes[0];
is_as = true;
}
if (MP_PARSE_NODE_IS_ID(pn)) {
// just a simple name
*q2 = MP_PARSE_NODE_LEAF_ARG(pn);
if (!is_as) {
*q1 = *q2;
}
EMIT(import_name, *q2);
} else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dotted_name) {
// a name of the form a.b.c
if (!is_as) {
*q1 = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
}
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
int len = n - 1;
for (int i = 0; i < n; i++) {
len += strlen(qstr_str(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i])));
}
char *str = m_new(char, len + 1);
char *str_dest = str;
str[0] = 0;
for (int i = 0; i < n; i++) {
if (i > 0) {
*str_dest++ = '.';
}
const char *str_src = qstr_str(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]));
size_t str_src_len = strlen(str_src);
memcpy(str_dest, str_src, str_src_len);
str_dest += str_src_len;
}
*str_dest = '\0';
*q2 = qstr_from_str_take(str, len + 1);
EMIT(import_name, *q2);
if (is_as) {
for (int i = 1; i < n; i++) {
EMIT(load_attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]));
}
}
} else {
// TODO not implemented
assert(0);
}
} else {
// TODO not implemented
assert(0);
}
}
void compile_dotted_as_name(compiler_t *comp, mp_parse_node_t pn) {
EMIT(load_const_small_int, 0); // ??
EMIT(load_const_tok, MP_TOKEN_KW_NONE);
qstr q1, q2;
do_import_name(comp, pn, &q1, &q2);
EMIT(store_id, q1);
}
void compile_import_name(compiler_t *comp, mp_parse_node_struct_t *pns) {
apply_to_single_or_list(comp, pns->nodes[0], PN_dotted_as_names, compile_dotted_as_name);
}
void compile_import_from(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_STAR)) {
EMIT(load_const_small_int, 0); // level 0 for __import__
// build the "fromlist" tuple
#if MICROPY_EMIT_CPYTHON
EMIT(load_const_verbatim_str, "('*',)");
#else
EMIT(load_const_str, qstr_from_str_static("*"), false);
EMIT(build_tuple, 1);
#endif
// do the import
qstr dummy_q, id1;
do_import_name(comp, pns->nodes[0], &dummy_q, &id1);
EMIT(import_star);
} else {
EMIT(load_const_small_int, 0); // level 0 for __import__
// build the "fromlist" tuple
mp_parse_node_t *pn_nodes;
int n = list_get(&pns->nodes[1], PN_import_as_names, &pn_nodes);
#if MICROPY_EMIT_CPYTHON
{
vstr_t *vstr = vstr_new();
vstr_printf(vstr, "(");
for (int i = 0; i < n; i++) {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name));
mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pn_nodes[i];
qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id
if (i > 0) {
vstr_printf(vstr, ", ");
}
vstr_printf(vstr, "'");
vstr_printf(vstr, qstr_str(id2));
vstr_printf(vstr, "'");
}
if (n == 1) {
vstr_printf(vstr, ",");
}
vstr_printf(vstr, ")");
EMIT(load_const_verbatim_str, vstr_str(vstr));
vstr_free(vstr);
}
#else
for (int i = 0; i < n; i++) {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name));
mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pn_nodes[i];
qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id
EMIT(load_const_str, id2, false);
}
EMIT(build_tuple, n);
#endif
// do the import
qstr dummy_q, id1;
do_import_name(comp, pns->nodes[0], &dummy_q, &id1);
for (int i = 0; i < n; i++) {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name));
mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pn_nodes[i];
qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id
EMIT(import_from, id2);
if (MP_PARSE_NODE_IS_NULL(pns3->nodes[1])) {
EMIT(store_id, id2);
} else {
EMIT(store_id, MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1]));
}
}
EMIT(pop_top);
}
}
void compile_global_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (comp->pass == PASS_1) {
if (MP_PARSE_NODE_IS_LEAF(pns->nodes[0])) {
scope_declare_global(comp->scope_cur, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]));
} else {
pns = (mp_parse_node_struct_t*)pns->nodes[0];
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
for (int i = 0; i < num_nodes; i++) {
scope_declare_global(comp->scope_cur, MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]));
}
}
}
}
void compile_nonlocal_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (comp->pass == PASS_1) {
if (MP_PARSE_NODE_IS_LEAF(pns->nodes[0])) {
scope_declare_nonlocal(comp->scope_cur, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]));
} else {
pns = (mp_parse_node_struct_t*)pns->nodes[0];
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
for (int i = 0; i < num_nodes; i++) {
scope_declare_nonlocal(comp->scope_cur, MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]));
}
}
}
}
void compile_assert_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
int l_end = comp_next_label(comp);
c_if_cond(comp, pns->nodes[0], true, l_end);
EMIT(load_global, MP_QSTR_AssertionError); // we load_global instead of load_id, to be consistent with CPython
if (!MP_PARSE_NODE_IS_NULL(pns->nodes[1])) {
// assertion message
compile_node(comp, pns->nodes[1]);
EMIT(call_function, 1, 0, false, false);
}
EMIT(raise_varargs, 1);
EMIT(label_assign, l_end);
}
void compile_if_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
// TODO proper and/or short circuiting
int l_end = comp_next_label(comp);
int l_fail = comp_next_label(comp);
c_if_cond(comp, pns->nodes[0], false, l_fail); // if condition
compile_node(comp, pns->nodes[1]); // if block
//if (!(MP_PARSE_NODE_IS_NULL(pns->nodes[2]) && MP_PARSE_NODE_IS_NULL(pns->nodes[3]))) { // optimisation; doesn't align with CPython
// jump over elif/else blocks if they exist
if (!EMIT(last_emit_was_return_value)) { // simple optimisation to align with CPython
EMIT(jump, l_end);
}
//}
EMIT(label_assign, l_fail);
if (!MP_PARSE_NODE_IS_NULL(pns->nodes[2])) {
// compile elif blocks
mp_parse_node_struct_t *pns_elif = (mp_parse_node_struct_t*)pns->nodes[2];
if (MP_PARSE_NODE_STRUCT_KIND(pns_elif) == PN_if_stmt_elif_list) {
// multiple elif blocks
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_elif);
for (int i = 0; i < n; i++) {
mp_parse_node_struct_t *pns_elif2 = (mp_parse_node_struct_t*)pns_elif->nodes[i];
l_fail = comp_next_label(comp);
c_if_cond(comp, pns_elif2->nodes[0], false, l_fail); // elif condition
compile_node(comp, pns_elif2->nodes[1]); // elif block
if (!EMIT(last_emit_was_return_value)) { // simple optimisation to align with CPython
EMIT(jump, l_end);
}
EMIT(label_assign, l_fail);
}
} else {
// a single elif block
l_fail = comp_next_label(comp);
c_if_cond(comp, pns_elif->nodes[0], false, l_fail); // elif condition
compile_node(comp, pns_elif->nodes[1]); // elif block
if (!EMIT(last_emit_was_return_value)) { // simple optimisation to align with CPython
EMIT(jump, l_end);
}
EMIT(label_assign, l_fail);
}
}
// compile else block
compile_node(comp, pns->nodes[3]); // can be null
EMIT(label_assign, l_end);
}
void compile_while_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
int old_break_label = comp->break_label;
int old_continue_label = comp->continue_label;
int break_label = comp_next_label(comp);
int continue_label = comp_next_label(comp);
comp->break_label = break_label;
comp->continue_label = continue_label;
// compared to CPython, we have an optimised version of while loops
#if MICROPY_EMIT_CPYTHON
int done_label = comp_next_label(comp);
EMIT(setup_loop, break_label);
EMIT(label_assign, continue_label);
c_if_cond(comp, pns->nodes[0], false, done_label); // condition
compile_node(comp, pns->nodes[1]); // body
if (!EMIT(last_emit_was_return_value)) {
EMIT(jump, continue_label);
}
EMIT(label_assign, done_label);
// CPython does not emit POP_BLOCK if the condition was a constant; don't undertand why
// this is a small hack to agree with CPython
if (!node_is_const_true(pns->nodes[0])) {
EMIT(pop_block);
}
#else
int top_label = comp_next_label(comp);
EMIT(jump, continue_label);
EMIT(label_assign, top_label);
compile_node(comp, pns->nodes[1]); // body
EMIT(label_assign, continue_label);
c_if_cond(comp, pns->nodes[0], true, top_label); // condition
#endif
// break/continue apply to outer loop (if any) in the else block
comp->break_label = old_break_label;
comp->continue_label = old_continue_label;
compile_node(comp, pns->nodes[2]); // else
EMIT(label_assign, break_label);
}
// TODO preload end and step onto stack if they are not constants
// TODO check if step is negative and do opposite test
void compile_for_stmt_optimised_range(compiler_t *comp, mp_parse_node_t pn_var, mp_parse_node_t pn_start, mp_parse_node_t pn_end, mp_parse_node_t pn_step, mp_parse_node_t pn_body, mp_parse_node_t pn_else) {
int old_break_label = comp->break_label;
int old_continue_label = comp->continue_label;
int break_label = comp_next_label(comp);
int continue_label = comp_next_label(comp);
comp->break_label = break_label;
comp->continue_label = continue_label;
int top_label = comp_next_label(comp);
// compile: var = start
compile_node(comp, pn_start);
c_assign(comp, pn_var, ASSIGN_STORE);
EMIT(jump, continue_label);
EMIT(label_assign, top_label);
// compile body
compile_node(comp, pn_body);
// compile: var += step
c_assign(comp, pn_var, ASSIGN_AUG_LOAD);
compile_node(comp, pn_step);
EMIT(binary_op, RT_BINARY_OP_INPLACE_ADD);
c_assign(comp, pn_var, ASSIGN_AUG_STORE);
EMIT(label_assign, continue_label);
// compile: if var <cond> end: goto top
compile_node(comp, pn_var);
compile_node(comp, pn_end);
if (MP_PARSE_NODE_LEAF_ARG(pn_step) >= 0) {
EMIT(binary_op, RT_COMPARE_OP_LESS);
} else {
EMIT(binary_op, RT_COMPARE_OP_MORE);
}
EMIT(pop_jump_if_true, top_label);
// break/continue apply to outer loop (if any) in the else block
comp->break_label = old_break_label;
comp->continue_label = old_continue_label;
compile_node(comp, pn_else);
EMIT(label_assign, break_label);
}
void compile_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
#if !MICROPY_EMIT_CPYTHON
// this bit optimises: for <x> in range(...), turning it into an explicitly incremented variable
// this is actually slower, but uses no heap memory
// for viper it will be much, much faster
if (/*comp->scope_cur->emit_options == EMIT_OPT_VIPER &&*/ MP_PARSE_NODE_IS_ID(pns->nodes[0]) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_power)) {
mp_parse_node_struct_t *pns_it = (mp_parse_node_struct_t*)pns->nodes[1];
if (MP_PARSE_NODE_IS_ID(pns_it->nodes[0])
&& MP_PARSE_NODE_LEAF_ARG(pns_it->nodes[0]) == MP_QSTR_range
&& MP_PARSE_NODE_IS_STRUCT_KIND(pns_it->nodes[1], PN_trailer_paren)
&& MP_PARSE_NODE_IS_NULL(pns_it->nodes[2])) {
mp_parse_node_t pn_range_args = ((mp_parse_node_struct_t*)pns_it->nodes[1])->nodes[0];
mp_parse_node_t *args;
int n_args = list_get(&pn_range_args, PN_arglist, &args);
mp_parse_node_t pn_range_start;
mp_parse_node_t pn_range_end;
mp_parse_node_t pn_range_step;
bool optimize = false;
if (1 <= n_args && n_args <= 3) {
optimize = true;
if (n_args == 1) {
pn_range_start = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, 0);
pn_range_end = args[0];
pn_range_step = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, 1);
} else if (n_args == 2) {
pn_range_start = args[0];
pn_range_end = args[1];
pn_range_step = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, 1);
} else {
pn_range_start = args[0];
pn_range_end = args[1];
pn_range_step = args[2];
// We need to know sign of step. This is possible only if it's constant
if (!MP_PARSE_NODE_IS_SMALL_INT(pn_range_step)) {
optimize = false;
}
}
}
if (optimize) {
compile_for_stmt_optimised_range(comp, pns->nodes[0], pn_range_start, pn_range_end, pn_range_step, pns->nodes[2], pns->nodes[3]);
return;
}
}
}
#endif
int old_break_label = comp->break_label;
int old_continue_label = comp->continue_label;
int for_label = comp_next_label(comp);
int pop_label = comp_next_label(comp);
int end_label = comp_next_label(comp);
int break_label = comp_next_label(comp);
comp->continue_label = for_label;
comp->break_label = break_label;
// I don't think our implementation needs SETUP_LOOP/POP_BLOCK for for-statements
#if MICROPY_EMIT_CPYTHON
EMIT(setup_loop, end_label);
#endif
compile_node(comp, pns->nodes[1]); // iterator
EMIT(get_iter);
EMIT(label_assign, for_label);
EMIT(for_iter, pop_label);
c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable
compile_node(comp, pns->nodes[2]); // body
if (!EMIT(last_emit_was_return_value)) {
EMIT(jump, for_label);
}
EMIT(label_assign, pop_label);
EMIT(for_iter_end);
// break/continue apply to outer loop (if any) in the else block
comp->break_label = old_break_label;
comp->continue_label = old_continue_label;
#if MICROPY_EMIT_CPYTHON
EMIT(pop_block);
#endif
compile_node(comp, pns->nodes[3]); // else (not tested)
EMIT(label_assign, break_label);
EMIT(label_assign, end_label);
}
void compile_try_except(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_excepts, mp_parse_node_t pn_else) {
// this function is a bit of a hack at the moment
// don't understand how the stack works with exceptions, so we force it to return to the correct value
// setup code
int stack_size = EMIT(get_stack_size);
int l1 = comp_next_label(comp);
int success_label = comp_next_label(comp);
comp->except_nest_level += 1; // for correct handling of continue
EMIT(setup_except, l1);
compile_node(comp, pn_body); // body
EMIT(pop_block);
EMIT(jump, success_label);
EMIT(label_assign, l1);
int l2 = comp_next_label(comp);
for (int i = 0; i < n_except; i++) {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_excepts[i], PN_try_stmt_except)); // should be
mp_parse_node_struct_t *pns_except = (mp_parse_node_struct_t*)pn_excepts[i];
qstr qstr_exception_local = 0;
int end_finally_label = comp_next_label(comp);
if (MP_PARSE_NODE_IS_NULL(pns_except->nodes[0])) {
// this is a catch all exception handler
if (i + 1 != n_except) {
printf("SyntaxError: default 'except:' must be last\n");
return;
}
} else {
// this exception handler requires a match to a certain type of exception
mp_parse_node_t pns_exception_expr = pns_except->nodes[0];
if (MP_PARSE_NODE_IS_STRUCT(pns_exception_expr)) {
mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pns_exception_expr;
if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_try_stmt_as_name) {
// handler binds the exception to a local
pns_exception_expr = pns3->nodes[0];
qstr_exception_local = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1]);
}
}
EMIT(dup_top);
compile_node(comp, pns_exception_expr);
EMIT(binary_op, RT_COMPARE_OP_EXCEPTION_MATCH);
EMIT(pop_jump_if_false, end_finally_label);
}
EMIT(pop_top);
if (qstr_exception_local == 0) {
EMIT(pop_top);
} else {
EMIT(store_id, qstr_exception_local);
}
EMIT(pop_top);
int l3 = 0;
if (qstr_exception_local != 0) {
l3 = comp_next_label(comp);
EMIT(setup_finally, l3);
}
compile_node(comp, pns_except->nodes[1]);
if (qstr_exception_local != 0) {
EMIT(pop_block);
}
EMIT(pop_except);
if (qstr_exception_local != 0) {
EMIT(load_const_tok, MP_TOKEN_KW_NONE);
EMIT(label_assign, l3);
EMIT(load_const_tok, MP_TOKEN_KW_NONE);
EMIT(store_id, qstr_exception_local);
EMIT(delete_id, qstr_exception_local);
EMIT(end_finally);
}
EMIT(jump, l2);
EMIT(label_assign, end_finally_label);
}
EMIT(end_finally);
EMIT(label_assign, success_label);
comp->except_nest_level -= 1;
compile_node(comp, pn_else); // else block, can be null
EMIT(label_assign, l2);
EMIT(set_stack_size, stack_size);
}
void compile_try_finally(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_except, mp_parse_node_t pn_else, mp_parse_node_t pn_finally) {
// don't understand how the stack works with exceptions, so we force it to return to the correct value
int stack_size = EMIT(get_stack_size);
int l_finally_block = comp_next_label(comp);
EMIT(setup_finally, l_finally_block);
if (n_except == 0) {
assert(MP_PARSE_NODE_IS_NULL(pn_else));
compile_node(comp, pn_body);
} else {
compile_try_except(comp, pn_body, n_except, pn_except, pn_else);
}
EMIT(pop_block);
EMIT(load_const_tok, MP_TOKEN_KW_NONE);
EMIT(label_assign, l_finally_block);
compile_node(comp, pn_finally);
EMIT(end_finally);
EMIT(set_stack_size, stack_size);
}
void compile_try_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1];
if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_finally) {
// just try-finally
compile_try_finally(comp, pns->nodes[0], 0, NULL, MP_PARSE_NODE_NULL, pns2->nodes[0]);
} else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_except_and_more) {
// try-except and possibly else and/or finally
mp_parse_node_t *pn_excepts;
int n_except = list_get(&pns2->nodes[0], PN_try_stmt_except_list, &pn_excepts);
if (MP_PARSE_NODE_IS_NULL(pns2->nodes[2])) {
// no finally
compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1]);
} else {
// have finally
compile_try_finally(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1], ((mp_parse_node_struct_t*)pns2->nodes[2])->nodes[0]);
}
} else {
// just try-except
mp_parse_node_t *pn_excepts;
int n_except = list_get(&pns->nodes[1], PN_try_stmt_except_list, &pn_excepts);
compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, MP_PARSE_NODE_NULL);
}
} else {
// shouldn't happen
assert(0);
}
}
void compile_with_stmt_helper(compiler_t *comp, int n, mp_parse_node_t *nodes, mp_parse_node_t body) {
if (n == 0) {
// no more pre-bits, compile the body of the with
compile_node(comp, body);
} else {
int l_end = comp_next_label(comp);
if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) {
// this pre-bit is of the form "a as b"
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)nodes[0];
compile_node(comp, pns->nodes[0]);
EMIT(setup_with, l_end);
c_assign(comp, pns->nodes[1], ASSIGN_STORE);
} else {
// this pre-bit is just an expression
compile_node(comp, nodes[0]);
EMIT(setup_with, l_end);
EMIT(pop_top);
}
// compile additional pre-bits and the body
compile_with_stmt_helper(comp, n - 1, nodes + 1, body);
// finish this with block
EMIT(pop_block);
EMIT(load_const_tok, MP_TOKEN_KW_NONE);
EMIT(label_assign, l_end);
EMIT(with_cleanup);
EMIT(end_finally);
}
}
void compile_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
// get the nodes for the pre-bit of the with (the a as b, c as d, ... bit)
mp_parse_node_t *nodes;
int n = list_get(&pns->nodes[0], PN_with_stmt_list, &nodes);
assert(n > 0);
// compile in a nested fashion
compile_with_stmt_helper(comp, n, nodes, pns->nodes[1]);
}
void compile_expr_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (MP_PARSE_NODE_IS_NULL(pns->nodes[1])) {
if (comp->is_repl && comp->scope_cur->kind == SCOPE_MODULE) {
// for REPL, evaluate then print the expression
EMIT(load_id, MP_QSTR___repl_print__);
compile_node(comp, pns->nodes[0]);
EMIT(call_function, 1, 0, false, false);
EMIT(pop_top);
} else {
// for non-REPL, evaluate then discard the expression
if (MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) && !MP_PARSE_NODE_IS_ID(pns->nodes[0])) {
// do nothing with a lonely constant
} else {
compile_node(comp, pns->nodes[0]); // just an expression
EMIT(pop_top); // discard last result since this is a statement and leaves nothing on the stack
}
}
} else {
mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
int kind = MP_PARSE_NODE_STRUCT_KIND(pns1);
if (kind == PN_expr_stmt_augassign) {
c_assign(comp, pns->nodes[0], ASSIGN_AUG_LOAD); // lhs load for aug assign
compile_node(comp, pns1->nodes[1]); // rhs
assert(MP_PARSE_NODE_IS_TOKEN(pns1->nodes[0]));
// note that we don't really need to implement separate inplace ops, just normal binary ops will suffice
switch (MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0])) {
case MP_TOKEN_DEL_PIPE_EQUAL: EMIT(binary_op, RT_BINARY_OP_INPLACE_OR); break;
case MP_TOKEN_DEL_CARET_EQUAL: EMIT(binary_op, RT_BINARY_OP_INPLACE_XOR); break;
case MP_TOKEN_DEL_AMPERSAND_EQUAL: EMIT(binary_op, RT_BINARY_OP_INPLACE_AND); break;
case MP_TOKEN_DEL_DBL_LESS_EQUAL: EMIT(binary_op, RT_BINARY_OP_INPLACE_LSHIFT); break;
case MP_TOKEN_DEL_DBL_MORE_EQUAL: EMIT(binary_op, RT_BINARY_OP_INPLACE_RSHIFT); break;
case MP_TOKEN_DEL_PLUS_EQUAL: EMIT(binary_op, RT_BINARY_OP_INPLACE_ADD); break;
case MP_TOKEN_DEL_MINUS_EQUAL: EMIT(binary_op, RT_BINARY_OP_INPLACE_SUBTRACT); break;
case MP_TOKEN_DEL_STAR_EQUAL: EMIT(binary_op, RT_BINARY_OP_INPLACE_MULTIPLY); break;
case MP_TOKEN_DEL_DBL_SLASH_EQUAL: EMIT(binary_op, RT_BINARY_OP_INPLACE_FLOOR_DIVIDE); break;
case MP_TOKEN_DEL_SLASH_EQUAL: EMIT(binary_op, RT_BINARY_OP_INPLACE_TRUE_DIVIDE); break;
case MP_TOKEN_DEL_PERCENT_EQUAL: EMIT(binary_op, RT_BINARY_OP_INPLACE_MODULO); break;
case MP_TOKEN_DEL_DBL_STAR_EQUAL: EMIT(binary_op, RT_BINARY_OP_INPLACE_POWER); break;
default: assert(0); // shouldn't happen
}
c_assign(comp, pns->nodes[0], ASSIGN_AUG_STORE); // lhs store for aug assign
} else if (kind == PN_expr_stmt_assign_list) {
int rhs = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1) - 1;
compile_node(comp, ((mp_parse_node_struct_t*)pns1->nodes[rhs])->nodes[0]); // rhs
// following CPython, we store left-most first
if (rhs > 0) {
EMIT(dup_top);
}
c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store
for (int i = 0; i < rhs; i++) {
if (i + 1 < rhs) {
EMIT(dup_top);
}
c_assign(comp, ((mp_parse_node_struct_t*)pns1->nodes[i])->nodes[0], ASSIGN_STORE); // middle store
}
} else if (kind == PN_expr_stmt_assign) {
if (MP_PARSE_NODE_IS_STRUCT_KIND(pns1->nodes[0], PN_testlist_star_expr)
&& MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr)
&& MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns1->nodes[0]) == 2
&& MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[0]) == 2) {
// optimisation for a, b = c, d; to match CPython's optimisation
mp_parse_node_struct_t* pns10 = (mp_parse_node_struct_t*)pns1->nodes[0];
mp_parse_node_struct_t* pns0 = (mp_parse_node_struct_t*)pns->nodes[0];
compile_node(comp, pns10->nodes[0]); // rhs
compile_node(comp, pns10->nodes[1]); // rhs
EMIT(rot_two);
c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store
c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns1->nodes[0], PN_testlist_star_expr)
&& MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr)
&& MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns1->nodes[0]) == 3
&& MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[0]) == 3) {
// optimisation for a, b, c = d, e, f; to match CPython's optimisation
mp_parse_node_struct_t* pns10 = (mp_parse_node_struct_t*)pns1->nodes[0];
mp_parse_node_struct_t* pns0 = (mp_parse_node_struct_t*)pns->nodes[0];
compile_node(comp, pns10->nodes[0]); // rhs
compile_node(comp, pns10->nodes[1]); // rhs
compile_node(comp, pns10->nodes[2]); // rhs
EMIT(rot_three);
EMIT(rot_two);
c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store
c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store
c_assign(comp, pns0->nodes[2], ASSIGN_STORE); // lhs store
} else {
compile_node(comp, pns1->nodes[0]); // rhs
c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store
}
} else {
// shouldn't happen
assert(0);
}
}
}
void c_binary_op(compiler_t *comp, mp_parse_node_struct_t *pns, rt_binary_op_t binary_op) {
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
compile_node(comp, pns->nodes[0]);
for (int i = 1; i < num_nodes; i += 1) {
compile_node(comp, pns->nodes[i]);
EMIT(binary_op, binary_op);
}
}
void compile_test_if_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_test_if_else));
mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns->nodes[1];
int stack_size = EMIT(get_stack_size);
int l_fail = comp_next_label(comp);
int l_end = comp_next_label(comp);
c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition
compile_node(comp, pns->nodes[0]); // success value
EMIT(jump, l_end);
EMIT(label_assign, l_fail);
EMIT(set_stack_size, stack_size); // force stack size reset
compile_node(comp, pns_test_if_else->nodes[1]); // failure value
EMIT(label_assign, l_end);
}
void compile_lambdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
// TODO default params etc for lambda; possibly just use funcdef code
//mp_parse_node_t pn_params = pns->nodes[0];
//mp_parse_node_t pn_body = pns->nodes[1];
if (comp->pass == PASS_1) {
// create a new scope for this lambda
scope_t *s = scope_new_and_link(comp, SCOPE_LAMBDA, (mp_parse_node_t)pns, comp->scope_cur->emit_options);
// store the lambda scope so the compiling function (this one) can use it at each pass
pns->nodes[2] = (mp_parse_node_t)s;
}
// get the scope for this lambda
scope_t *this_scope = (scope_t*)pns->nodes[2];
// make the lambda
close_over_variables_etc(comp, this_scope, 0, 0);
}
void compile_or_test(compiler_t *comp, mp_parse_node_struct_t *pns) {
int l_end = comp_next_label(comp);
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
for (int i = 0; i < n; i += 1) {
compile_node(comp, pns->nodes[i]);
if (i + 1 < n) {
EMIT(jump_if_true_or_pop, l_end);
}
}
EMIT(label_assign, l_end);
}
void compile_and_test(compiler_t *comp, mp_parse_node_struct_t *pns) {
int l_end = comp_next_label(comp);
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
for (int i = 0; i < n; i += 1) {
compile_node(comp, pns->nodes[i]);
if (i + 1 < n) {
EMIT(jump_if_false_or_pop, l_end);
}
}
EMIT(label_assign, l_end);
}
void compile_not_test_2(compiler_t *comp, mp_parse_node_struct_t *pns) {
compile_node(comp, pns->nodes[0]);
EMIT(unary_op, RT_UNARY_OP_NOT);
}
void compile_comparison(compiler_t *comp, mp_parse_node_struct_t *pns) {
int stack_size = EMIT(get_stack_size);
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
compile_node(comp, pns->nodes[0]);
bool multi = (num_nodes > 3);
int l_fail = 0;
if (multi) {
l_fail = comp_next_label(comp);
}
for (int i = 1; i + 1 < num_nodes; i += 2) {
compile_node(comp, pns->nodes[i + 1]);
if (i + 2 < num_nodes) {
EMIT(dup_top);
EMIT(rot_three);
}
if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_LESS)) {
EMIT(binary_op, RT_COMPARE_OP_LESS);
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_MORE)) {
EMIT(binary_op, RT_COMPARE_OP_MORE);
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_DBL_EQUAL)) {
EMIT(binary_op, RT_COMPARE_OP_EQUAL);
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_LESS_EQUAL)) {
EMIT(binary_op, RT_COMPARE_OP_LESS_EQUAL);
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_MORE_EQUAL)) {
EMIT(binary_op, RT_COMPARE_OP_MORE_EQUAL);
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_NOT_EQUAL)) {
EMIT(binary_op, RT_COMPARE_OP_NOT_EQUAL);
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_KW_IN)) {
EMIT(binary_op, RT_COMPARE_OP_IN);
} else if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[i])) {
mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[i];
int kind = MP_PARSE_NODE_STRUCT_KIND(pns2);
if (kind == PN_comp_op_not_in) {
EMIT(binary_op, RT_COMPARE_OP_NOT_IN);
} else if (kind == PN_comp_op_is) {
if (MP_PARSE_NODE_IS_NULL(pns2->nodes[0])) {
EMIT(binary_op, RT_COMPARE_OP_IS);
} else {
EMIT(binary_op, RT_COMPARE_OP_IS_NOT);
}
} else {
// shouldn't happen
assert(0);
}
} else {
// shouldn't happen
assert(0);
}
if (i + 2 < num_nodes) {
EMIT(jump_if_false_or_pop, l_fail);
}
}
if (multi) {
int l_end = comp_next_label(comp);
EMIT(jump, l_end);
EMIT(label_assign, l_fail);
EMIT(rot_two);
EMIT(pop_top);
EMIT(label_assign, l_end);
EMIT(set_stack_size, stack_size + 1); // force stack size
}
}
void compile_star_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
// TODO
assert(0);
compile_node(comp, pns->nodes[0]);
//EMIT(unary_op, "UNARY_STAR");
}
void compile_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
c_binary_op(comp, pns, RT_BINARY_OP_OR);
}
void compile_xor_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
c_binary_op(comp, pns, RT_BINARY_OP_XOR);
}
void compile_and_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
c_binary_op(comp, pns, RT_BINARY_OP_AND);
}
void compile_shift_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
compile_node(comp, pns->nodes[0]);
for (int i = 1; i + 1 < num_nodes; i += 2) {
compile_node(comp, pns->nodes[i + 1]);
if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_DBL_LESS)) {
EMIT(binary_op, RT_BINARY_OP_LSHIFT);
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_DBL_MORE)) {
EMIT(binary_op, RT_BINARY_OP_RSHIFT);
} else {
// shouldn't happen
assert(0);
}
}
}
void compile_arith_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
compile_node(comp, pns->nodes[0]);
for (int i = 1; i + 1 < num_nodes; i += 2) {
compile_node(comp, pns->nodes[i + 1]);
if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_PLUS)) {
EMIT(binary_op, RT_BINARY_OP_ADD);
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_MINUS)) {
EMIT(binary_op, RT_BINARY_OP_SUBTRACT);
} else {
// shouldn't happen
assert(0);
}
}
}
void compile_term(compiler_t *comp, mp_parse_node_struct_t *pns) {
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
compile_node(comp, pns->nodes[0]);
for (int i = 1; i + 1 < num_nodes; i += 2) {
compile_node(comp, pns->nodes[i + 1]);
if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_STAR)) {
EMIT(binary_op, RT_BINARY_OP_MULTIPLY);
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_DBL_SLASH)) {
EMIT(binary_op, RT_BINARY_OP_FLOOR_DIVIDE);
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_SLASH)) {
EMIT(binary_op, RT_BINARY_OP_TRUE_DIVIDE);
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_PERCENT)) {
EMIT(binary_op, RT_BINARY_OP_MODULO);
} else {
// shouldn't happen
assert(0);
}
}
}
void compile_factor_2(compiler_t *comp, mp_parse_node_struct_t *pns) {
compile_node(comp, pns->nodes[1]);
if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[0], MP_TOKEN_OP_PLUS)) {
EMIT(unary_op, RT_UNARY_OP_POSITIVE);
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[0], MP_TOKEN_OP_MINUS)) {
EMIT(unary_op, RT_UNARY_OP_NEGATIVE);
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[0], MP_TOKEN_OP_TILDE)) {
EMIT(unary_op, RT_UNARY_OP_INVERT);
} else {
// shouldn't happen
assert(0);
}
}
void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_struct_t *pns, bool is_method_call) {
// function to call is on top of stack
int old_n_arg_keyword = comp->n_arg_keyword;
bool old_have_star_arg = comp->have_star_arg;
bool old_have_dbl_star_arg = comp->have_dbl_star_arg;
comp->n_arg_keyword = 0;
comp->have_star_arg = false;
comp->have_dbl_star_arg = false;
compile_node(comp, pns->nodes[0]); // arguments to function call; can be null
// compute number of positional arguments
int n_positional = list_len(pns->nodes[0], PN_arglist) - comp->n_arg_keyword;
if (comp->have_star_arg) {
n_positional -= 1;
}
if (comp->have_dbl_star_arg) {
n_positional -= 1;
}
if (is_method_call) {
EMIT(call_method, n_positional, comp->n_arg_keyword, comp->have_star_arg, comp->have_dbl_star_arg);
} else {
EMIT(call_function, n_positional, comp->n_arg_keyword, comp->have_star_arg, comp->have_dbl_star_arg);
}
comp->n_arg_keyword = old_n_arg_keyword;
comp->have_star_arg = old_have_star_arg;
comp->have_dbl_star_arg = old_have_dbl_star_arg;
}
void compile_power_trailers(compiler_t *comp, mp_parse_node_struct_t *pns) {
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
for (int i = 0; i < num_nodes; i++) {
if (i + 1 < num_nodes && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[i], PN_trailer_period) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[i + 1], PN_trailer_paren)) {
// optimisation for method calls a.f(...), following PyPy
mp_parse_node_struct_t *pns_period = (mp_parse_node_struct_t*)pns->nodes[i];
mp_parse_node_struct_t *pns_paren = (mp_parse_node_struct_t*)pns->nodes[i + 1];
EMIT(load_method, MP_PARSE_NODE_LEAF_ARG(pns_period->nodes[0])); // get the method
compile_trailer_paren_helper(comp, pns_paren, true);
i += 1;
} else {
compile_node(comp, pns->nodes[i]);
}
}
}
void compile_power_dbl_star(compiler_t *comp, mp_parse_node_struct_t *pns) {
compile_node(comp, pns->nodes[0]);
EMIT(binary_op, RT_BINARY_OP_POWER);
}
void compile_atom_string(compiler_t *comp, mp_parse_node_struct_t *pns) {
// a list of strings
// check type of list (string or bytes) and count total number of bytes
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
int n_bytes = 0;
int string_kind = MP_PARSE_NODE_NULL;
for (int i = 0; i < n; i++) {
assert(MP_PARSE_NODE_IS_LEAF(pns->nodes[i]));
int pn_kind = MP_PARSE_NODE_LEAF_KIND(pns->nodes[i]);
assert(pn_kind == MP_PARSE_NODE_STRING || pn_kind == MP_PARSE_NODE_BYTES);
if (i == 0) {
string_kind = pn_kind;
} else if (pn_kind != string_kind) {
printf("SyntaxError: cannot mix bytes and nonbytes literals\n");
return;
}
const char *str = qstr_str(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]));
n_bytes += strlen(str);
}
// allocate memory for concatenated string/bytes
char *cat_str = m_new(char, n_bytes + 1);
// concatenate string/bytes
char *s_dest = cat_str;
for (int i = 0; i < n; i++) {
const char *s = qstr_str(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]));
size_t s_len = strlen(s);
memcpy(s_dest, s, s_len);
s_dest += s_len;
}
*s_dest = '\0';
EMIT(load_const_str, qstr_from_str_take(cat_str, n_bytes + 1), string_kind == MP_PARSE_NODE_BYTES);
}
// pns needs to have 2 nodes, first is lhs of comprehension, second is PN_comp_for node
void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind) {
assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2);
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for));
mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t*)pns->nodes[1];
if (comp->pass == PASS_1) {
// create a new scope for this comprehension
scope_t *s = scope_new_and_link(comp, kind, (mp_parse_node_t)pns, comp->scope_cur->emit_options);
// store the comprehension scope so the compiling function (this one) can use it at each pass
pns_comp_for->nodes[3] = (mp_parse_node_t)s;
}
// get the scope for this comprehension
scope_t *this_scope = (scope_t*)pns_comp_for->nodes[3];
// compile the comprehension
close_over_variables_etc(comp, this_scope, 0, 0);
compile_node(comp, pns_comp_for->nodes[1]); // source of the iterator
EMIT(get_iter);
EMIT(call_function, 1, 0, false, false);
}
void compile_atom_paren(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// an empty tuple
c_tuple(comp, MP_PARSE_NODE_NULL, NULL);
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) {
pns = (mp_parse_node_struct_t*)pns->nodes[0];
assert(!MP_PARSE_NODE_IS_NULL(pns->nodes[1]));
if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1];
if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3b) {
// tuple of one item, with trailing comma
assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[0]));
c_tuple(comp, pns->nodes[0], NULL);
} else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3c) {
// tuple of many items
c_tuple(comp, pns->nodes[0], pns2);
} else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_comp_for) {
// generator expression
compile_comprehension(comp, pns, SCOPE_GEN_EXPR);
} else {
// tuple with 2 items
goto tuple_with_2_items;
}
} else {
// tuple with 2 items
tuple_with_2_items:
c_tuple(comp, MP_PARSE_NODE_NULL, pns);
}
} else {
// parenthesis around a single item, is just that item
compile_node(comp, pns->nodes[0]);
}
}
void compile_atom_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// empty list
EMIT(build_list, 0);
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) {
mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[0];
if (MP_PARSE_NODE_IS_STRUCT(pns2->nodes[1])) {
mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pns2->nodes[1];
if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_testlist_comp_3b) {
// list of one item, with trailing comma
assert(MP_PARSE_NODE_IS_NULL(pns3->nodes[0]));
compile_node(comp, pns2->nodes[0]);
EMIT(build_list, 1);
} else if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_testlist_comp_3c) {
// list of many items
compile_node(comp, pns2->nodes[0]);
compile_generic_all_nodes(comp, pns3);
EMIT(build_list, 1 + MP_PARSE_NODE_STRUCT_NUM_NODES(pns3));
} else if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_comp_for) {
// list comprehension
compile_comprehension(comp, pns2, SCOPE_LIST_COMP);
} else {
// list with 2 items
goto list_with_2_items;
}
} else {
// list with 2 items
list_with_2_items:
compile_node(comp, pns2->nodes[0]);
compile_node(comp, pns2->nodes[1]);
EMIT(build_list, 2);
}
} else {
// list with 1 item
compile_node(comp, pns->nodes[0]);
EMIT(build_list, 1);
}
}
void compile_atom_brace(compiler_t *comp, mp_parse_node_struct_t *pns) {
mp_parse_node_t pn = pns->nodes[0];
if (MP_PARSE_NODE_IS_NULL(pn)) {
// empty dict
EMIT(build_map, 0);
} else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
pns = (mp_parse_node_struct_t*)pn;
if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker_item) {
// dict with one element
EMIT(build_map, 1);
compile_node(comp, pn);
EMIT(store_map);
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker) {
assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should succeed
mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_dictorsetmaker_list) {
// dict/set with multiple elements
// get tail elements (2nd, 3rd, ...)
mp_parse_node_t *nodes;
int n = list_get(&pns1->nodes[0], PN_dictorsetmaker_list2, &nodes);
// first element sets whether it's a dict or set
bool is_dict;
if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) {
// a dictionary
EMIT(build_map, 1 + n);
compile_node(comp, pns->nodes[0]);
EMIT(store_map);
is_dict = true;
} else {
// a set
compile_node(comp, pns->nodes[0]); // 1st value of set
is_dict = false;
}
// process rest of elements
for (int i = 0; i < n; i++) {
mp_parse_node_t pn = nodes[i];
bool is_key_value = MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dictorsetmaker_item);
compile_node(comp, pn);
if (is_dict) {
if (!is_key_value) {
printf("SyntaxError?: expecting key:value for dictionary");
return;
}
EMIT(store_map);
} else {
if (is_key_value) {
printf("SyntaxError?: expecting just a value for set");
return;
}
}
}
// if it's a set, build it
if (!is_dict) {
EMIT(build_set, 1 + n);
}
} else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_comp_for) {
// dict/set comprehension
if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) {
// a dictionary comprehension
compile_comprehension(comp, pns, SCOPE_DICT_COMP);
} else {
// a set comprehension
compile_comprehension(comp, pns, SCOPE_SET_COMP);
}
} else {
// shouldn't happen
assert(0);
}
} else {
// set with one element
goto set_with_one_element;
}
} else {
// set with one element
set_with_one_element:
compile_node(comp, pn);
EMIT(build_set, 1);
}
}
void compile_trailer_paren(compiler_t *comp, mp_parse_node_struct_t *pns) {
compile_trailer_paren_helper(comp, pns, false);
}
void compile_trailer_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) {
// object who's index we want is on top of stack
compile_node(comp, pns->nodes[0]); // the index
EMIT(binary_op, RT_BINARY_OP_SUBSCR);
}
void compile_trailer_period(compiler_t *comp, mp_parse_node_struct_t *pns) {
// object who's attribute we want is on top of stack
EMIT(load_attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); // attribute to get
}
void compile_subscript_3_helper(compiler_t *comp, mp_parse_node_struct_t *pns) {
assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3); // should always be
mp_parse_node_t pn = pns->nodes[0];
if (MP_PARSE_NODE_IS_NULL(pn)) {
// [?:]
EMIT(load_const_tok, MP_TOKEN_KW_NONE);
EMIT(build_slice, 2);
} else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
pns = (mp_parse_node_struct_t*)pn;
if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3c) {
EMIT(load_const_tok, MP_TOKEN_KW_NONE);
pn = pns->nodes[0];
if (MP_PARSE_NODE_IS_NULL(pn)) {
// [?::]
EMIT(build_slice, 2);
} else {
// [?::x]
compile_node(comp, pn);
EMIT(build_slice, 3);
}
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3d) {
compile_node(comp, pns->nodes[0]);
assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be
pns = (mp_parse_node_struct_t*)pns->nodes[1];
assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_sliceop); // should always be
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// [?:x:]
EMIT(build_slice, 2);
} else {
// [?:x:x]
compile_node(comp, pns->nodes[0]);
EMIT(build_slice, 3);
}
} else {
// [?:x]
compile_node(comp, pn);
EMIT(build_slice, 2);
}
} else {
// [?:x]
compile_node(comp, pn);
EMIT(build_slice, 2);
}
}
void compile_subscript_2(compiler_t *comp, mp_parse_node_struct_t *pns) {
compile_node(comp, pns->nodes[0]); // start of slice
assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be
compile_subscript_3_helper(comp, (mp_parse_node_struct_t*)pns->nodes[1]);
}
void compile_subscript_3(compiler_t *comp, mp_parse_node_struct_t *pns) {
EMIT(load_const_tok, MP_TOKEN_KW_NONE);
compile_subscript_3_helper(comp, pns);
}
void compile_dictorsetmaker_item(compiler_t *comp, mp_parse_node_struct_t *pns) {
// if this is called then we are compiling a dict key:value pair
compile_node(comp, pns->nodes[1]); // value
compile_node(comp, pns->nodes[0]); // key
}
void compile_classdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
qstr cname = compile_classdef_helper(comp, pns, comp->scope_cur->emit_options);
// store class object into class name
EMIT(store_id, cname);
}
void compile_arglist_star(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (comp->have_star_arg) {
printf("SyntaxError?: can't have multiple *x\n");
return;
}
comp->have_star_arg = true;
compile_node(comp, pns->nodes[0]);
}
void compile_arglist_dbl_star(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (comp->have_dbl_star_arg) {
printf("SyntaxError?: can't have multiple **x\n");
return;
}
comp->have_dbl_star_arg = true;
compile_node(comp, pns->nodes[0]);
}
void compile_argument(compiler_t *comp, mp_parse_node_struct_t *pns) {
assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be
mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1];
if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_argument_3) {
if (!MP_PARSE_NODE_IS_ID(pns->nodes[0])) {
printf("SyntaxError?: lhs of keyword argument must be an id\n");
return;
}
EMIT(load_const_id, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]));
compile_node(comp, pns2->nodes[0]);
comp->n_arg_keyword += 1;
} else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_comp_for) {
compile_comprehension(comp, pns, SCOPE_GEN_EXPR);
} else {
// shouldn't happen
assert(0);
}
}
void compile_yield_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (comp->scope_cur->kind != SCOPE_FUNCTION) {
printf("SyntaxError: 'yield' outside function\n");
return;
}
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
EMIT(load_const_tok, MP_TOKEN_KW_NONE);
EMIT(yield_value);
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_yield_arg_from)) {
pns = (mp_parse_node_struct_t*)pns->nodes[0];
compile_node(comp, pns->nodes[0]);
EMIT(get_iter);
EMIT(load_const_tok, MP_TOKEN_KW_NONE);
EMIT(yield_from);
} else {
compile_node(comp, pns->nodes[0]);
EMIT(yield_value);
}
}
typedef void (*compile_function_t)(compiler_t*, mp_parse_node_struct_t*);
static compile_function_t compile_function[] = {
NULL,
#define nc NULL
#define c(f) compile_##f
#define DEF_RULE(rule, comp, kind, arg...) comp,
#include "grammar.h"
#undef nc
#undef c
#undef DEF_RULE
};
void compile_node(compiler_t *comp, mp_parse_node_t pn) {
if (MP_PARSE_NODE_IS_NULL(pn)) {
// pass
} else if (MP_PARSE_NODE_IS_LEAF(pn)) {
int arg = MP_PARSE_NODE_LEAF_ARG(pn);
switch (MP_PARSE_NODE_LEAF_KIND(pn)) {
case MP_PARSE_NODE_ID: EMIT(load_id, arg); break;
case MP_PARSE_NODE_SMALL_INT: EMIT(load_const_small_int, arg); break;
case MP_PARSE_NODE_INTEGER: EMIT(load_const_int, arg); break;
case MP_PARSE_NODE_DECIMAL: EMIT(load_const_dec, arg); break;
case MP_PARSE_NODE_STRING: EMIT(load_const_str, arg, false); break;
case MP_PARSE_NODE_BYTES: EMIT(load_const_str, arg, true); break;
case MP_PARSE_NODE_TOKEN:
if (arg == MP_TOKEN_NEWLINE) {
// this can occur when file_input lets through a NEWLINE (eg if file starts with a newline)
// or when single_input lets through a NEWLINE (user enters a blank line)
// do nothing
} else {
EMIT(load_const_tok, arg);
}
break;
default: assert(0);
}
} else {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
EMIT(set_line_number, pns->source_line);
compile_function_t f = compile_function[MP_PARSE_NODE_STRUCT_KIND(pns)];
if (f == NULL) {
printf("node %u cannot be compiled\n", (uint)MP_PARSE_NODE_STRUCT_KIND(pns));
mp_parse_node_show(pn, 0);
assert(0);
} else {
f(comp, pns);
}
}
}
void compile_scope_func_lambda_param(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_name, pn_kind_t pn_star, pn_kind_t pn_dbl_star, bool allow_annotations) {
// TODO verify that *k and **k are last etc
qstr param_name = 0;
mp_parse_node_t pn_annotation = MP_PARSE_NODE_NULL;
if (MP_PARSE_NODE_IS_ID(pn)) {
param_name = MP_PARSE_NODE_LEAF_ARG(pn);
if (comp->have_bare_star) {
// comes after a bare star, so doesn't count as a parameter
} else {
comp->scope_cur->num_params += 1;
}
} else {
assert(MP_PARSE_NODE_IS_STRUCT(pn));
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_name) {
param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
//int node_index = 1; unused
if (allow_annotations) {
if (!MP_PARSE_NODE_IS_NULL(pns->nodes[1])) {
// this parameter has an annotation
pn_annotation = pns->nodes[1];
}
//node_index = 2; unused
}
/* this is obsolete now that num dict/default params are calculated in compile_funcdef_param
if (!MP_PARSE_NODE_IS_NULL(pns->nodes[node_index])) {
// this parameter has a default value
if (comp->have_bare_star) {
comp->scope_cur->num_dict_params += 1;
} else {
comp->scope_cur->num_default_params += 1;
}
}
*/
if (comp->have_bare_star) {
// comes after a bare star, so doesn't count as a parameter
} else {
comp->scope_cur->num_params += 1;
}
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_star) {
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// bare star
// TODO see http://www.python.org/dev/peps/pep-3102/
comp->have_bare_star = true;
//assert(comp->scope_cur->num_dict_params == 0);
} else if (MP_PARSE_NODE_IS_ID(pns->nodes[0])) {
// named star
comp->scope_cur->flags |= SCOPE_FLAG_VARARGS;
param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
} else if (allow_annotations && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_tfpdef)) {
// named star with annotation
comp->scope_cur->flags |= SCOPE_FLAG_VARARGS;
pns = (mp_parse_node_struct_t*)pns->nodes[0];
param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
pn_annotation = pns->nodes[1];
} else {
// shouldn't happen
assert(0);
}
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_dbl_star) {
param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
if (allow_annotations && !MP_PARSE_NODE_IS_NULL(pns->nodes[1])) {
// this parameter has an annotation
pn_annotation = pns->nodes[1];
}
comp->scope_cur->flags |= SCOPE_FLAG_VARKEYWORDS;
} else {
// TODO anything to implement?
assert(0);
}
}
if (param_name != 0) {
if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) {
// TODO this parameter has an annotation
}
bool added;
id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, param_name, &added);
if (!added) {
printf("SyntaxError?: same name used for parameter; %s\n", qstr_str(param_name));
return;
}
id_info->param = true;
id_info->kind = ID_INFO_KIND_LOCAL;
}
}
void compile_scope_func_param(compiler_t *comp, mp_parse_node_t pn) {
compile_scope_func_lambda_param(comp, pn, PN_typedargslist_name, PN_typedargslist_star, PN_typedargslist_dbl_star, true);
}
void compile_scope_lambda_param(compiler_t *comp, mp_parse_node_t pn) {
compile_scope_func_lambda_param(comp, pn, PN_varargslist_name, PN_varargslist_star, PN_varargslist_dbl_star, false);
}
void compile_scope_comp_iter(compiler_t *comp, mp_parse_node_t pn_iter, mp_parse_node_t pn_inner_expr, int l_top, int for_depth) {
tail_recursion:
if (MP_PARSE_NODE_IS_NULL(pn_iter)) {
// no more nested if/for; compile inner expression
compile_node(comp, pn_inner_expr);
if (comp->scope_cur->kind == SCOPE_LIST_COMP) {
EMIT(list_append, for_depth + 2);
} else if (comp->scope_cur->kind == SCOPE_DICT_COMP) {
EMIT(map_add, for_depth + 2);
} else if (comp->scope_cur->kind == SCOPE_SET_COMP) {
EMIT(set_add, for_depth + 2);
} else {
EMIT(yield_value);
EMIT(pop_top);
}
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn_iter, PN_comp_if)) {
// if condition
mp_parse_node_struct_t *pns_comp_if = (mp_parse_node_struct_t*)pn_iter;
c_if_cond(comp, pns_comp_if->nodes[0], false, l_top);
pn_iter = pns_comp_if->nodes[1];
goto tail_recursion;
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn_iter, PN_comp_for)) {
// for loop
mp_parse_node_struct_t *pns_comp_for2 = (mp_parse_node_struct_t*)pn_iter;
compile_node(comp, pns_comp_for2->nodes[1]);
int l_end2 = comp_next_label(comp);
int l_top2 = comp_next_label(comp);
EMIT(get_iter);
EMIT(label_assign, l_top2);
EMIT(for_iter, l_end2);
c_assign(comp, pns_comp_for2->nodes[0], ASSIGN_STORE);
compile_scope_comp_iter(comp, pns_comp_for2->nodes[2], pn_inner_expr, l_top2, for_depth + 1);
EMIT(jump, l_top2);
EMIT(label_assign, l_end2);
EMIT(for_iter_end);
} else {
// shouldn't happen
assert(0);
}
}
void check_for_doc_string(compiler_t *comp, mp_parse_node_t pn) {
// see http://www.python.org/dev/peps/pep-0257/
// look for the first statement
if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) {
// a statement; fall through
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_file_input_2)) {
// file input; find the first non-newline node
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
for (int i = 0; i < num_nodes; i++) {
pn = pns->nodes[i];
if (!(MP_PARSE_NODE_IS_LEAF(pn) && MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN && MP_PARSE_NODE_LEAF_ARG(pn) == MP_TOKEN_NEWLINE)) {
// not a newline, so this is the first statement; finish search
break;
}
}
// if we didn't find a non-newline then it's okay to fall through; pn will be a newline and so doc-string test below will fail gracefully
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_suite_block_stmts)) {
// a list of statements; get the first one
pn = ((mp_parse_node_struct_t*)pn)->nodes[0];
} else {
return;
}
// check the first statement for a doc string
if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) {
mp_parse_node_struct_t* pns = (mp_parse_node_struct_t*)pn;
if (MP_PARSE_NODE_IS_LEAF(pns->nodes[0])) {
int kind = MP_PARSE_NODE_LEAF_KIND(pns->nodes[0]);
if (kind == MP_PARSE_NODE_STRING) {
compile_node(comp, pns->nodes[0]); // a doc string
// store doc string
EMIT(store_id, MP_QSTR___doc__);
}
}
}
}
void compile_scope(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
comp->pass = pass;
comp->scope_cur = scope;
comp->next_label = 1;
EMIT(start_pass, pass, scope);
if (comp->pass == PASS_1) {
scope->stack_size = 0;
}
#if MICROPY_EMIT_CPYTHON
if (comp->pass == PASS_3) {
scope_print_info(scope);
}
#endif
// compile
if (MP_PARSE_NODE_IS_STRUCT_KIND(scope->pn, PN_eval_input)) {
assert(scope->kind == SCOPE_MODULE);
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
compile_node(comp, pns->nodes[0]); // compile the expression
EMIT(return_value);
} else if (scope->kind == SCOPE_MODULE) {
if (!comp->is_repl) {
check_for_doc_string(comp, scope->pn);
}
compile_node(comp, scope->pn);
EMIT(load_const_tok, MP_TOKEN_KW_NONE);
EMIT(return_value);
} else if (scope->kind == SCOPE_FUNCTION) {
assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef);
// work out number of parameters, keywords and default parameters, and add them to the id_info array
// must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc)
if (comp->pass == PASS_1) {
comp->have_bare_star = false;
apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_scope_func_param);
}
assert(MP_PARSE_NODE_IS_NULL(pns->nodes[2])); // 2 is something...
compile_node(comp, pns->nodes[3]); // 3 is function body
// emit return if it wasn't the last opcode
if (!EMIT(last_emit_was_return_value)) {
EMIT(load_const_tok, MP_TOKEN_KW_NONE);
EMIT(return_value);
}
} else if (scope->kind == SCOPE_LAMBDA) {
assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 3);
// work out number of parameters, keywords and default parameters, and add them to the id_info array
// must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc)
if (comp->pass == PASS_1) {
comp->have_bare_star = false;
apply_to_single_or_list(comp, pns->nodes[0], PN_varargslist, compile_scope_lambda_param);
}
compile_node(comp, pns->nodes[1]); // 1 is lambda body
EMIT(return_value);
} else if (scope->kind == SCOPE_LIST_COMP || scope->kind == SCOPE_DICT_COMP || scope->kind == SCOPE_SET_COMP || scope->kind == SCOPE_GEN_EXPR) {
// a bit of a hack at the moment
assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2);
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for));
mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t*)pns->nodes[1];
qstr qstr_arg = qstr_from_str_static(".0");
if (comp->pass == PASS_1) {
bool added;
id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qstr_arg, &added);
assert(added);
id_info->kind = ID_INFO_KIND_LOCAL;
scope->num_params = 1;
}
if (scope->kind == SCOPE_LIST_COMP) {
EMIT(build_list, 0);
} else if (scope->kind == SCOPE_DICT_COMP) {
EMIT(build_map, 0);
} else if (scope->kind == SCOPE_SET_COMP) {
EMIT(build_set, 0);
}
int l_end = comp_next_label(comp);
int l_top = comp_next_label(comp);
EMIT(load_id, qstr_arg);
EMIT(label_assign, l_top);
EMIT(for_iter, l_end);
c_assign(comp, pns_comp_for->nodes[0], ASSIGN_STORE);
compile_scope_comp_iter(comp, pns_comp_for->nodes[2], pns->nodes[0], l_top, 0);
EMIT(jump, l_top);
EMIT(label_assign, l_end);
EMIT(for_iter_end);
if (scope->kind == SCOPE_GEN_EXPR) {
EMIT(load_const_tok, MP_TOKEN_KW_NONE);
}
EMIT(return_value);
} else {
assert(scope->kind == SCOPE_CLASS);
assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_classdef);
if (comp->pass == PASS_1) {
bool added;
id_info_t *id_info = scope_find_or_add_id(scope, MP_QSTR___class__, &added);
assert(added);
id_info->kind = ID_INFO_KIND_LOCAL;
id_info = scope_find_or_add_id(scope, MP_QSTR___locals__, &added);
assert(added);
id_info->kind = ID_INFO_KIND_LOCAL;
id_info->param = true;
scope->num_params = 1; // __locals__ is the parameter
}
EMIT(load_id, MP_QSTR___locals__);
EMIT(store_locals);
EMIT(load_id, MP_QSTR___name__);
EMIT(store_id, MP_QSTR___module__);
EMIT(load_const_id, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); // 0 is class name
EMIT(store_id, MP_QSTR___qualname__);
check_for_doc_string(comp, pns->nodes[2]);
compile_node(comp, pns->nodes[2]); // 2 is class body
id_info_t *id = scope_find(scope, MP_QSTR___class__);
assert(id != NULL);
if (id->kind == ID_INFO_KIND_LOCAL) {
EMIT(load_const_tok, MP_TOKEN_KW_NONE);
} else {
#if MICROPY_EMIT_CPYTHON
EMIT(load_closure, MP_QSTR___class__, 0); // XXX check this is the correct local num
#else
EMIT(load_fast, MP_QSTR___class__, 0); // XXX check this is the correct local num
#endif
}
EMIT(return_value);
}
EMIT(end_pass);
}
void compile_scope_inline_asm(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
comp->pass = pass;
comp->scope_cur = scope;
comp->next_label = 1;
if (scope->kind != SCOPE_FUNCTION) {
printf("Error: inline assembler must be a function\n");
return;
}
if (comp->pass > PASS_1) {
EMIT_INLINE_ASM(start_pass, comp->pass, comp->scope_cur);
}
// get the function definition parse node
assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef);
//qstr f_id = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); // function name
// parameters are in pns->nodes[1]
if (comp->pass == PASS_2) {
mp_parse_node_t *pn_params;
int n_params = list_get(&pns->nodes[1], PN_typedargslist, &pn_params);
scope->num_params = EMIT_INLINE_ASM(count_params, n_params, pn_params);
}
assert(MP_PARSE_NODE_IS_NULL(pns->nodes[2])); // type
mp_parse_node_t pn_body = pns->nodes[3]; // body
mp_parse_node_t *nodes;
int num = list_get(&pn_body, PN_suite_block_stmts, &nodes);
if (comp->pass == PASS_3) {
//printf("----\n");
scope_print_info(scope);
}
for (int i = 0; i < num; i++) {
assert(MP_PARSE_NODE_IS_STRUCT(nodes[i]));
mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)nodes[i];
assert(MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_expr_stmt);
assert(MP_PARSE_NODE_IS_STRUCT(pns2->nodes[0]));
assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[1]));
pns2 = (mp_parse_node_struct_t*)pns2->nodes[0];
assert(MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_power);
assert(MP_PARSE_NODE_IS_ID(pns2->nodes[0]));
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns2->nodes[1], PN_trailer_paren));
assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[2]));
qstr op = MP_PARSE_NODE_LEAF_ARG(pns2->nodes[0]);
pns2 = (mp_parse_node_struct_t*)pns2->nodes[1]; // PN_trailer_paren
mp_parse_node_t *pn_arg;
int n_args = list_get(&pns2->nodes[0], PN_arglist, &pn_arg);
// emit instructions
if (strcmp(qstr_str(op), "label") == 0) {
if (!(n_args == 1 && MP_PARSE_NODE_IS_ID(pn_arg[0]))) {
printf("SyntaxError: inline assembler 'label' requires 1 argument\n");
return;
}
int lab = comp_next_label(comp);
if (pass > PASS_1) {
EMIT_INLINE_ASM(label, lab, MP_PARSE_NODE_LEAF_ARG(pn_arg[0]));
}
} else {
if (pass > PASS_1) {
EMIT_INLINE_ASM(op, op, n_args, pn_arg);
}
}
}
if (comp->pass > PASS_1) {
EMIT_INLINE_ASM(end_pass);
}
}
void compile_scope_compute_things(compiler_t *comp, scope_t *scope) {
// in functions, turn implicit globals into explicit globals
// compute the index of each local
scope->num_locals = 0;
for (int i = 0; i < scope->id_info_len; i++) {
id_info_t *id = &scope->id_info[i];
if (scope->kind == SCOPE_CLASS && id->qstr == MP_QSTR___class__) {
// __class__ is not counted as a local; if it's used then it becomes a ID_INFO_KIND_CELL
continue;
}
if (scope->kind >= SCOPE_FUNCTION && scope->kind <= SCOPE_GEN_EXPR && id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
id->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
}
// note: params always count for 1 local, even if they are a cell
if (id->param || id->kind == ID_INFO_KIND_LOCAL) {
id->local_num = scope->num_locals;
scope->num_locals += 1;
}
}
// compute the index of cell vars (freevars[idx] in CPython)
#if MICROPY_EMIT_CPYTHON
int num_cell = 0;
#endif
for (int i = 0; i < scope->id_info_len; i++) {
id_info_t *id = &scope->id_info[i];
#if MICROPY_EMIT_CPYTHON
// in CPython the cells are numbered starting from 0
if (id->kind == ID_INFO_KIND_CELL) {
id->local_num = num_cell;
num_cell += 1;
}
#else
// in Micro Python the cells come right after the fast locals
// parameters are not counted here, since they remain at the start
// of the locals, even if they are cell vars
if (!id->param && id->kind == ID_INFO_KIND_CELL) {
id->local_num = scope->num_locals;
scope->num_locals += 1;
}
#endif
}
// compute the index of free vars (freevars[idx] in CPython)
// make sure they are in the order of the parent scope
if (scope->parent != NULL) {
int num_free = 0;
for (int i = 0; i < scope->parent->id_info_len; i++) {
id_info_t *id = &scope->parent->id_info[i];
if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
for (int j = 0; j < scope->id_info_len; j++) {
id_info_t *id2 = &scope->id_info[j];
if (id2->kind == ID_INFO_KIND_FREE && id->qstr == id2->qstr) {
assert(!id2->param); // free vars should not be params
#if MICROPY_EMIT_CPYTHON
// in CPython the frees are numbered after the cells
id2->local_num = num_cell + num_free;
#else
// in Micro Python the frees come first, before the params
id2->local_num = num_free;
#endif
num_free += 1;
}
}
}
}
#if !MICROPY_EMIT_CPYTHON
// in Micro Python shift all other locals after the free locals
if (num_free > 0) {
for (int i = 0; i < scope->id_info_len; i++) {
id_info_t *id = &scope->id_info[i];
if (id->param || id->kind != ID_INFO_KIND_FREE) {
id->local_num += num_free;
}
}
scope->num_params += num_free; // free vars are counted as params for passing them into the function
scope->num_locals += num_free;
}
#endif
}
// compute flags
//scope->flags = 0; since we set some things in parameters
if (scope->kind != SCOPE_MODULE) {
scope->flags |= SCOPE_FLAG_NEWLOCALS;
}
if (scope->kind == SCOPE_FUNCTION || scope->kind == SCOPE_LAMBDA || scope->kind == SCOPE_LIST_COMP || scope->kind == SCOPE_DICT_COMP || scope->kind == SCOPE_SET_COMP || scope->kind == SCOPE_GEN_EXPR) {
assert(scope->parent != NULL);
scope->flags |= SCOPE_FLAG_OPTIMISED;
// TODO possibly other ways it can be nested
if (scope->parent->kind == SCOPE_FUNCTION || (scope->parent->kind == SCOPE_CLASS && scope->parent->parent->kind == SCOPE_FUNCTION)) {
scope->flags |= SCOPE_FLAG_NESTED;
}
}
int num_free = 0;
for (int i = 0; i < scope->id_info_len; i++) {
id_info_t *id = &scope->id_info[i];
if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
num_free += 1;
}
}
if (num_free == 0) {
scope->flags |= SCOPE_FLAG_NOFREE;
}
}
mp_obj_t mp_compile(mp_parse_node_t pn, qstr source_file, bool is_repl) {
compiler_t *comp = m_new(compiler_t, 1);
comp->is_repl = is_repl;
comp->had_error = false;
comp->break_label = 0;
comp->continue_label = 0;
comp->except_nest_level = 0;
comp->scope_head = NULL;
comp->scope_cur = NULL;
// optimise constants
pn = fold_constants(pn);
// set the outer scope
scope_t *module_scope = scope_new_and_link(comp, SCOPE_MODULE, pn, EMIT_OPT_NONE);
// compile pass 1
comp->emit = emit_pass1_new(MP_QSTR___class__);
comp->emit_method_table = &emit_pass1_method_table;
comp->emit_inline_asm = NULL;
comp->emit_inline_asm_method_table = NULL;
uint max_num_labels = 0;
for (scope_t *s = comp->scope_head; s != NULL && !comp->had_error; s = s->next) {
if (false) {
#if MICROPY_EMIT_INLINE_THUMB
} else if (s->emit_options == EMIT_OPT_ASM_THUMB) {
compile_scope_inline_asm(comp, s, PASS_1);
#endif
} else {
compile_scope(comp, s, PASS_1);
}
// update maximim number of labels needed
if (comp->next_label > max_num_labels) {
max_num_labels = comp->next_label;
}
}
// compute some things related to scope and identifiers
for (scope_t *s = comp->scope_head; s != NULL && !comp->had_error; s = s->next) {
compile_scope_compute_things(comp, s);
}
// finish with pass 1
emit_pass1_free(comp->emit);
// compile pass 2 and 3
#if !MICROPY_EMIT_CPYTHON
emit_t *emit_bc = NULL;
#if MICROPY_EMIT_NATIVE
emit_t *emit_native = NULL;
#endif
#if MICROPY_EMIT_INLINE_THUMB
emit_inline_asm_t *emit_inline_thumb = NULL;
#endif
#endif // !MICROPY_EMIT_CPYTHON
for (scope_t *s = comp->scope_head; s != NULL && !comp->had_error; s = s->next) {
if (false) {
// dummy
#if MICROPY_EMIT_INLINE_THUMB
} else if (s->emit_options == EMIT_OPT_ASM_THUMB) {
// inline assembly for thumb
if (emit_inline_thumb == NULL) {
emit_inline_thumb = emit_inline_thumb_new(max_num_labels);
}
comp->emit = NULL;
comp->emit_method_table = NULL;
comp->emit_inline_asm = emit_inline_thumb;
comp->emit_inline_asm_method_table = &emit_inline_thumb_method_table;
compile_scope_inline_asm(comp, s, PASS_2);
compile_scope_inline_asm(comp, s, PASS_3);
#endif
} else {
// choose the emit type
#if MICROPY_EMIT_CPYTHON
comp->emit = emit_cpython_new(max_num_labels);
comp->emit_method_table = &emit_cpython_method_table;
#else
switch (s->emit_options) {
#if MICROPY_EMIT_NATIVE
case EMIT_OPT_NATIVE_PYTHON:
case EMIT_OPT_VIPER:
#if MICROPY_EMIT_X64
if (emit_native == NULL) {
emit_native = emit_native_x64_new(max_num_labels);
}
comp->emit_method_table = &emit_native_x64_method_table;
#elif MICROPY_EMIT_THUMB
if (emit_native == NULL) {
emit_native = emit_native_thumb_new(max_num_labels);
}
comp->emit_method_table = &emit_native_thumb_method_table;
#endif
comp->emit = emit_native;
comp->emit_method_table->set_native_types(comp->emit, s->emit_options == EMIT_OPT_VIPER);
break;
#endif // MICROPY_EMIT_NATIVE
default:
if (emit_bc == NULL) {
emit_bc = emit_bc_new(source_file, max_num_labels);
}
comp->emit = emit_bc;
comp->emit_method_table = &emit_bc_method_table;
break;
}
#endif // !MICROPY_EMIT_CPYTHON
// compile pass 2 and pass 3
compile_scope(comp, s, PASS_2);
compile_scope(comp, s, PASS_3);
}
}
bool had_error = comp->had_error;
m_del_obj(compiler_t, comp);
if (had_error) {
// TODO return a proper error message
return mp_const_none;
} else {
#if MICROPY_EMIT_CPYTHON
// can't create code, so just return true
(void)module_scope; // to suppress warning that module_scope is unused
return mp_const_true;
#else
// return function that executes the outer module
return rt_make_function_from_id(module_scope->unique_code_id);
#endif
}
}