micropython/ports/stm32/qspi.c

396 lines
16 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "py/mperrno.h"
#include "py/mphal.h"
#include "mpu.h"
#include "qspi.h"
#include "pin_static_af.h"
#if defined(MICROPY_HW_QSPIFLASH_SIZE_BITS_LOG2)
#define QSPI_MAP_ADDR (0x90000000)
#ifndef MICROPY_HW_QSPI_PRESCALER
#define MICROPY_HW_QSPI_PRESCALER 3 // F_CLK = F_AHB/3 (72MHz when CPU is 216MHz)
#endif
#ifndef MICROPY_HW_QSPI_SAMPLE_SHIFT
#define MICROPY_HW_QSPI_SAMPLE_SHIFT 1 // sample shift enabled
#endif
#ifndef MICROPY_HW_QSPI_TIMEOUT_COUNTER
#define MICROPY_HW_QSPI_TIMEOUT_COUNTER 0 // timeout counter disabled (see F7 errata)
#endif
#ifndef MICROPY_HW_QSPI_CS_HIGH_CYCLES
#define MICROPY_HW_QSPI_CS_HIGH_CYCLES 2 // nCS stays high for 2 cycles
#endif
#ifndef MICROPY_HW_QSPI_MPU_REGION_SIZE
#define MICROPY_HW_QSPI_MPU_REGION_SIZE ((1 << (MICROPY_HW_QSPIFLASH_SIZE_BITS_LOG2 - 3)) >> 20)
#endif
#if (MICROPY_HW_QSPIFLASH_SIZE_BITS_LOG2 - 3 - 1) >= 24
#define QSPI_CMD 0xec
#define QSPI_ADSIZE 3
#else
#define QSPI_CMD 0xeb
#define QSPI_ADSIZE 2
#endif
static inline void qspi_mpu_disable_all(void) {
// Configure MPU to disable access to entire QSPI region, to prevent CPU
// speculative execution from accessing this region and modifying QSPI registers.
uint32_t irq_state = mpu_config_start();
mpu_config_region(MPU_REGION_QSPI1, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x00, MPU_REGION_SIZE_256MB));
mpu_config_end(irq_state);
}
static inline void qspi_mpu_enable_mapped(void) {
// Configure MPU to allow access to only the valid part of external SPI flash.
// The memory accesses to the mapped QSPI are faster if the MPU is not used
// for the memory-mapped region, so 3 MPU regions are used to disable access
// to everything except the valid address space, using holes in the bottom
// of the regions and nesting them.
// Note: Disabling a subregion (by setting its corresponding SRD bit to 1)
// means another region overlapping the disabled range matches instead. If no
// other enabled region overlaps the disabled subregion, and the access is
// unprivileged or the background region is disabled, the MPU issues a fault.
uint32_t irq_state = mpu_config_start();
#if MICROPY_HW_QSPI_MPU_REGION_SIZE > 128
mpu_config_region(MPU_REGION_QSPI1, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0xFF, MPU_REGION_SIZE_256MB));
#elif MICROPY_HW_QSPI_MPU_REGION_SIZE > 64
mpu_config_region(MPU_REGION_QSPI1, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x0F, MPU_REGION_SIZE_256MB));
#elif MICROPY_HW_QSPI_MPU_REGION_SIZE > 32
mpu_config_region(MPU_REGION_QSPI1, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x03, MPU_REGION_SIZE_256MB));
#elif MICROPY_HW_QSPI_MPU_REGION_SIZE > 16
mpu_config_region(MPU_REGION_QSPI1, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x01, MPU_REGION_SIZE_256MB));
#elif MICROPY_HW_QSPI_MPU_REGION_SIZE > 8
mpu_config_region(MPU_REGION_QSPI1, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x01, MPU_REGION_SIZE_256MB));
mpu_config_region(MPU_REGION_QSPI2, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x0F, MPU_REGION_SIZE_32MB));
#elif MICROPY_HW_QSPI_MPU_REGION_SIZE > 4
mpu_config_region(MPU_REGION_QSPI1, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x01, MPU_REGION_SIZE_256MB));
mpu_config_region(MPU_REGION_QSPI2, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x03, MPU_REGION_SIZE_32MB));
#elif MICROPY_HW_QSPI_MPU_REGION_SIZE > 2
mpu_config_region(MPU_REGION_QSPI1, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x01, MPU_REGION_SIZE_256MB));
mpu_config_region(MPU_REGION_QSPI2, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x01, MPU_REGION_SIZE_32MB));
#elif MICROPY_HW_QSPI_MPU_REGION_SIZE > 1
mpu_config_region(MPU_REGION_QSPI1, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x01, MPU_REGION_SIZE_256MB));
mpu_config_region(MPU_REGION_QSPI2, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x0F, MPU_REGION_SIZE_32MB));
mpu_config_region(MPU_REGION_QSPI3, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x01, MPU_REGION_SIZE_16MB));
#else
mpu_config_region(MPU_REGION_QSPI1, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x01, MPU_REGION_SIZE_256MB));
mpu_config_region(MPU_REGION_QSPI2, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x01, MPU_REGION_SIZE_32MB));
mpu_config_region(MPU_REGION_QSPI3, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x03, MPU_REGION_SIZE_4MB));
#endif
mpu_config_end(irq_state);
}
void qspi_init(void) {
qspi_mpu_disable_all();
// Configure pins
mp_hal_pin_config_alt_static_speed(MICROPY_HW_QSPIFLASH_CS, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_QUADSPI_BK1_NCS);
mp_hal_pin_config_alt_static_speed(MICROPY_HW_QSPIFLASH_SCK, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_QUADSPI_CLK);
mp_hal_pin_config_alt_static_speed(MICROPY_HW_QSPIFLASH_IO0, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_QUADSPI_BK1_IO0);
mp_hal_pin_config_alt_static_speed(MICROPY_HW_QSPIFLASH_IO1, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_QUADSPI_BK1_IO1);
mp_hal_pin_config_alt_static_speed(MICROPY_HW_QSPIFLASH_IO2, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_QUADSPI_BK1_IO2);
mp_hal_pin_config_alt_static_speed(MICROPY_HW_QSPIFLASH_IO3, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_QUADSPI_BK1_IO3);
// Bring up the QSPI peripheral
__HAL_RCC_QSPI_CLK_ENABLE();
__HAL_RCC_QSPI_FORCE_RESET();
__HAL_RCC_QSPI_RELEASE_RESET();
QUADSPI->CR =
(MICROPY_HW_QSPI_PRESCALER - 1) << QUADSPI_CR_PRESCALER_Pos
| 3 << QUADSPI_CR_FTHRES_Pos // 4 bytes must be available to read/write
#if defined(QUADSPI_CR_FSEL_Pos)
| 0 << QUADSPI_CR_FSEL_Pos // FLASH 1 selected
#endif
#if defined(QUADSPI_CR_DFM_Pos)
| 0 << QUADSPI_CR_DFM_Pos // dual-flash mode disabled
#endif
| MICROPY_HW_QSPI_SAMPLE_SHIFT << QUADSPI_CR_SSHIFT_Pos
| MICROPY_HW_QSPI_TIMEOUT_COUNTER << QUADSPI_CR_TCEN_Pos
| 1 << QUADSPI_CR_EN_Pos // enable the peripheral
;
QUADSPI->DCR =
(MICROPY_HW_QSPIFLASH_SIZE_BITS_LOG2 - 3 - 1) << QUADSPI_DCR_FSIZE_Pos
| (MICROPY_HW_QSPI_CS_HIGH_CYCLES - 1) << QUADSPI_DCR_CSHT_Pos
| 0 << QUADSPI_DCR_CKMODE_Pos // CLK idles at low state
;
}
void qspi_memory_map(void) {
// Enable memory-mapped mode
QUADSPI->ABR = 0; // disable continuous read mode
QUADSPI->CCR =
0 << QUADSPI_CCR_DDRM_Pos // DDR mode disabled
| 0 << QUADSPI_CCR_SIOO_Pos // send instruction every transaction
| 3 << QUADSPI_CCR_FMODE_Pos // memory-mapped mode
| 3 << QUADSPI_CCR_DMODE_Pos // data on 4 lines
| 4 << QUADSPI_CCR_DCYC_Pos // 4 dummy cycles
| 0 << QUADSPI_CCR_ABSIZE_Pos // 8-bit alternate byte
| 3 << QUADSPI_CCR_ABMODE_Pos // alternate byte on 4 lines
| QSPI_ADSIZE << QUADSPI_CCR_ADSIZE_Pos
| 3 << QUADSPI_CCR_ADMODE_Pos // address on 4 lines
| 1 << QUADSPI_CCR_IMODE_Pos // instruction on 1 line
| QSPI_CMD << QUADSPI_CCR_INSTRUCTION_Pos
;
qspi_mpu_enable_mapped();
}
STATIC int qspi_ioctl(void *self_in, uint32_t cmd) {
(void)self_in;
switch (cmd) {
case MP_QSPI_IOCTL_INIT:
qspi_init();
break;
case MP_QSPI_IOCTL_BUS_ACQUIRE:
// Disable memory-mapped region during bus access
qspi_mpu_disable_all();
// Abort any ongoing transfer if peripheral is busy
if (QUADSPI->SR & QUADSPI_SR_BUSY) {
QUADSPI->CR |= QUADSPI_CR_ABORT;
while (QUADSPI->CR & QUADSPI_CR_ABORT) {
}
}
break;
case MP_QSPI_IOCTL_BUS_RELEASE:
// Switch to memory-map mode when bus is idle
qspi_memory_map();
break;
}
return 0; // success
}
STATIC void qspi_write_cmd_data(void *self_in, uint8_t cmd, size_t len, uint32_t data) {
(void)self_in;
QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag
if (len == 0) {
QUADSPI->CCR =
0 << QUADSPI_CCR_DDRM_Pos // DDR mode disabled
| 0 << QUADSPI_CCR_SIOO_Pos // send instruction every transaction
| 0 << QUADSPI_CCR_FMODE_Pos // indirect write mode
| 0 << QUADSPI_CCR_DMODE_Pos // no data
| 0 << QUADSPI_CCR_DCYC_Pos // 0 dummy cycles
| 0 << QUADSPI_CCR_ABMODE_Pos // no alternate byte
| 0 << QUADSPI_CCR_ADMODE_Pos // no address
| 1 << QUADSPI_CCR_IMODE_Pos // instruction on 1 line
| cmd << QUADSPI_CCR_INSTRUCTION_Pos // write opcode
;
} else {
QUADSPI->DLR = len - 1;
QUADSPI->CCR =
0 << QUADSPI_CCR_DDRM_Pos // DDR mode disabled
| 0 << QUADSPI_CCR_SIOO_Pos // send instruction every transaction
| 0 << QUADSPI_CCR_FMODE_Pos // indirect write mode
| 1 << QUADSPI_CCR_DMODE_Pos // data on 1 line
| 0 << QUADSPI_CCR_DCYC_Pos // 0 dummy cycles
| 0 << QUADSPI_CCR_ABMODE_Pos // no alternate byte
| 0 << QUADSPI_CCR_ADMODE_Pos // no address
| 1 << QUADSPI_CCR_IMODE_Pos // instruction on 1 line
| cmd << QUADSPI_CCR_INSTRUCTION_Pos // write opcode
;
// Wait for at least 1 free byte location in the FIFO.
while (!(QUADSPI->SR & QUADSPI_SR_FTF)) {
}
// This assumes len==2
*(uint16_t *)&QUADSPI->DR = data;
}
// Wait for write to finish
while (!(QUADSPI->SR & QUADSPI_SR_TCF)) {
}
QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag
}
STATIC void qspi_write_cmd_addr_data(void *self_in, uint8_t cmd, uint32_t addr, size_t len, const uint8_t *src) {
(void)self_in;
uint8_t adsize = MICROPY_HW_SPI_ADDR_IS_32BIT(addr) ? 3 : 2;
QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag
if (len == 0) {
QUADSPI->CCR =
0 << QUADSPI_CCR_DDRM_Pos // DDR mode disabled
| 0 << QUADSPI_CCR_SIOO_Pos // send instruction every transaction
| 0 << QUADSPI_CCR_FMODE_Pos // indirect write mode
| 0 << QUADSPI_CCR_DMODE_Pos // no data
| 0 << QUADSPI_CCR_DCYC_Pos // 0 dummy cycles
| 0 << QUADSPI_CCR_ABMODE_Pos // no alternate byte
| adsize << QUADSPI_CCR_ADSIZE_Pos // 32/24-bit address size
| 1 << QUADSPI_CCR_ADMODE_Pos // address on 1 line
| 1 << QUADSPI_CCR_IMODE_Pos // instruction on 1 line
| cmd << QUADSPI_CCR_INSTRUCTION_Pos // write opcode
;
QUADSPI->AR = addr;
} else {
QUADSPI->DLR = len - 1;
QUADSPI->CCR =
0 << QUADSPI_CCR_DDRM_Pos // DDR mode disabled
| 0 << QUADSPI_CCR_SIOO_Pos // send instruction every transaction
| 0 << QUADSPI_CCR_FMODE_Pos // indirect write mode
| 1 << QUADSPI_CCR_DMODE_Pos // data on 1 line
| 0 << QUADSPI_CCR_DCYC_Pos // 0 dummy cycles
| 0 << QUADSPI_CCR_ABMODE_Pos // no alternate byte
| adsize << QUADSPI_CCR_ADSIZE_Pos // 32/24-bit address size
| 1 << QUADSPI_CCR_ADMODE_Pos // address on 1 line
| 1 << QUADSPI_CCR_IMODE_Pos // instruction on 1 line
| cmd << QUADSPI_CCR_INSTRUCTION_Pos // write opcode
;
QUADSPI->AR = addr;
// Write out the data 1 byte at a time
while (len) {
while (!(QUADSPI->SR & QUADSPI_SR_FTF)) {
}
*(volatile uint8_t *)&QUADSPI->DR = *src++;
--len;
}
}
// Wait for write to finish
while (!(QUADSPI->SR & QUADSPI_SR_TCF)) {
}
QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag
}
STATIC uint32_t qspi_read_cmd(void *self_in, uint8_t cmd, size_t len) {
(void)self_in;
QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag
QUADSPI->DLR = len - 1; // number of bytes to read
QUADSPI->CCR =
0 << QUADSPI_CCR_DDRM_Pos // DDR mode disabled
| 0 << QUADSPI_CCR_SIOO_Pos // send instruction every transaction
| 1 << QUADSPI_CCR_FMODE_Pos // indirect read mode
| 1 << QUADSPI_CCR_DMODE_Pos // data on 1 line
| 0 << QUADSPI_CCR_DCYC_Pos // 0 dummy cycles
| 0 << QUADSPI_CCR_ABMODE_Pos // no alternate byte
| 0 << QUADSPI_CCR_ADMODE_Pos // no address
| 1 << QUADSPI_CCR_IMODE_Pos // instruction on 1 line
| cmd << QUADSPI_CCR_INSTRUCTION_Pos // read opcode
;
// Wait for read to finish
while (!(QUADSPI->SR & QUADSPI_SR_TCF)) {
}
QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag
// Read result
return QUADSPI->DR;
}
STATIC void qspi_read_cmd_qaddr_qdata(void *self_in, uint8_t cmd, uint32_t addr, size_t len, uint8_t *dest) {
(void)self_in;
uint8_t adsize = MICROPY_HW_SPI_ADDR_IS_32BIT(addr) ? 3 : 2;
QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag
QUADSPI->DLR = len - 1; // number of bytes to read
QUADSPI->CCR =
0 << QUADSPI_CCR_DDRM_Pos // DDR mode disabled
| 0 << QUADSPI_CCR_SIOO_Pos // send instruction every transaction
| 1 << QUADSPI_CCR_FMODE_Pos // indirect read mode
| 3 << QUADSPI_CCR_DMODE_Pos // data on 4 lines
| 4 << QUADSPI_CCR_DCYC_Pos // 4 dummy cycles
| 0 << QUADSPI_CCR_ABSIZE_Pos // 8-bit alternate byte
| 3 << QUADSPI_CCR_ABMODE_Pos // alternate byte on 4 lines
| adsize << QUADSPI_CCR_ADSIZE_Pos // 32 or 24-bit address size
| 3 << QUADSPI_CCR_ADMODE_Pos // address on 4 lines
| 1 << QUADSPI_CCR_IMODE_Pos // instruction on 1 line
| cmd << QUADSPI_CCR_INSTRUCTION_Pos // quad read opcode
;
QUADSPI->ABR = 0; // alternate byte: disable continuous read mode
QUADSPI->AR = addr; // address to read from
#if defined(STM32H7)
// Workaround for SR getting set immediately after setting the address.
if (QUADSPI->SR & 0x01) {
QUADSPI->FCR |= QUADSPI_FCR_CTEF;
QUADSPI->AR = addr; // address to read from
}
#endif
// Read in the data 4 bytes at a time if dest is aligned
if (((uintptr_t)dest & 3) == 0) {
while (len >= 4) {
while (!(QUADSPI->SR & QUADSPI_SR_FTF)) {
}
*(uint32_t *)dest = QUADSPI->DR;
dest += 4;
len -= 4;
}
}
// Read in remaining data 1 byte at a time
while (len) {
while (!((QUADSPI->SR >> QUADSPI_SR_FLEVEL_Pos) & 0x3f)) {
}
*dest++ = *(volatile uint8_t *)&QUADSPI->DR;
--len;
}
QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag
}
const mp_qspi_proto_t qspi_proto = {
.ioctl = qspi_ioctl,
.write_cmd_data = qspi_write_cmd_data,
.write_cmd_addr_data = qspi_write_cmd_addr_data,
.read_cmd = qspi_read_cmd,
.read_cmd_qaddr_qdata = qspi_read_cmd_qaddr_qdata,
};
#endif // defined(MICROPY_HW_QSPIFLASH_SIZE_BITS_LOG2)