271 lines
9.2 KiB
C
271 lines
9.2 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2015 Josef Gajdusek
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include "py/runtime.h"
|
|
#include "lib/timeutils/timeutils.h"
|
|
#include "user_interface.h"
|
|
#include "modmachine.h"
|
|
|
|
typedef struct _pyb_rtc_obj_t {
|
|
mp_obj_base_t base;
|
|
} pyb_rtc_obj_t;
|
|
|
|
#define MEM_MAGIC 0x75507921
|
|
#define MEM_DELTA_ADDR 64
|
|
#define MEM_CAL_ADDR (MEM_DELTA_ADDR + 2)
|
|
#define MEM_USER_MAGIC_ADDR (MEM_CAL_ADDR + 1)
|
|
#define MEM_USER_LEN_ADDR (MEM_USER_MAGIC_ADDR + 1)
|
|
#define MEM_USER_DATA_ADDR (MEM_USER_LEN_ADDR + 1)
|
|
#define MEM_USER_MAXLEN (512 - (MEM_USER_DATA_ADDR - MEM_DELTA_ADDR) * 4)
|
|
|
|
// singleton RTC object
|
|
STATIC const pyb_rtc_obj_t pyb_rtc_obj = {{&pyb_rtc_type}};
|
|
|
|
// ALARM0 state
|
|
uint32_t pyb_rtc_alarm0_wake; // see MACHINE_WAKE_xxx constants
|
|
uint64_t pyb_rtc_alarm0_expiry; // in microseconds
|
|
|
|
// RTC overflow checking
|
|
STATIC uint32_t rtc_last_ticks;
|
|
|
|
void mp_hal_rtc_init(void) {
|
|
uint32_t magic;
|
|
|
|
system_rtc_mem_read(MEM_USER_MAGIC_ADDR, &magic, sizeof(magic));
|
|
if (magic != MEM_MAGIC) {
|
|
magic = MEM_MAGIC;
|
|
system_rtc_mem_write(MEM_USER_MAGIC_ADDR, &magic, sizeof(magic));
|
|
uint32_t cal = system_rtc_clock_cali_proc();
|
|
int64_t delta = 0;
|
|
system_rtc_mem_write(MEM_CAL_ADDR, &cal, sizeof(cal));
|
|
system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta));
|
|
uint32_t len = 0;
|
|
system_rtc_mem_write(MEM_USER_LEN_ADDR, &len, sizeof(len));
|
|
}
|
|
// system_get_rtc_time() is always 0 after reset/deepsleep
|
|
rtc_last_ticks = system_get_rtc_time();
|
|
|
|
// reset ALARM0 state
|
|
pyb_rtc_alarm0_wake = 0;
|
|
pyb_rtc_alarm0_expiry = 0;
|
|
}
|
|
|
|
STATIC mp_obj_t pyb_rtc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
|
// check arguments
|
|
mp_arg_check_num(n_args, n_kw, 0, 0, false);
|
|
|
|
// return constant object
|
|
return (mp_obj_t)&pyb_rtc_obj;
|
|
}
|
|
|
|
void pyb_rtc_set_us_since_2000(uint64_t nowus) {
|
|
uint32_t cal = system_rtc_clock_cali_proc();
|
|
// Save RTC ticks for overflow detection.
|
|
rtc_last_ticks = system_get_rtc_time();
|
|
int64_t delta = nowus - (((uint64_t)rtc_last_ticks * cal) >> 12);
|
|
|
|
// As the calibration value jitters quite a bit, to make the
|
|
// clock at least somewhat practically usable, we need to store it
|
|
system_rtc_mem_write(MEM_CAL_ADDR, &cal, sizeof(cal));
|
|
system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta));
|
|
};
|
|
|
|
uint64_t pyb_rtc_get_us_since_2000() {
|
|
uint32_t cal;
|
|
int64_t delta;
|
|
uint32_t rtc_ticks;
|
|
|
|
system_rtc_mem_read(MEM_CAL_ADDR, &cal, sizeof(cal));
|
|
system_rtc_mem_read(MEM_DELTA_ADDR, &delta, sizeof(delta));
|
|
|
|
// ESP-SDK system_get_rtc_time() only returns uint32 and therefore
|
|
// overflow about every 7:45h. Thus, we have to check for
|
|
// overflow and handle it.
|
|
rtc_ticks = system_get_rtc_time();
|
|
if (rtc_ticks < rtc_last_ticks) {
|
|
// Adjust delta because of RTC overflow.
|
|
delta += (uint64_t)cal << 20;
|
|
system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta));
|
|
}
|
|
rtc_last_ticks = rtc_ticks;
|
|
|
|
return (((uint64_t)rtc_ticks * cal) >> 12) + delta;
|
|
};
|
|
|
|
void rtc_prepare_deepsleep(uint64_t sleep_us) {
|
|
// RTC time will reset at wake up. Let's be preared for this.
|
|
int64_t delta = pyb_rtc_get_us_since_2000() + sleep_us;
|
|
system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta));
|
|
}
|
|
|
|
STATIC mp_obj_t pyb_rtc_datetime(size_t n_args, const mp_obj_t *args) {
|
|
if (n_args == 1) {
|
|
// Get time
|
|
uint64_t msecs = pyb_rtc_get_us_since_2000() / 1000;
|
|
|
|
timeutils_struct_time_t tm;
|
|
timeutils_seconds_since_2000_to_struct_time(msecs / 1000, &tm);
|
|
|
|
mp_obj_t tuple[8] = {
|
|
mp_obj_new_int(tm.tm_year),
|
|
mp_obj_new_int(tm.tm_mon),
|
|
mp_obj_new_int(tm.tm_mday),
|
|
mp_obj_new_int(tm.tm_wday),
|
|
mp_obj_new_int(tm.tm_hour),
|
|
mp_obj_new_int(tm.tm_min),
|
|
mp_obj_new_int(tm.tm_sec),
|
|
mp_obj_new_int(msecs % 1000)
|
|
};
|
|
|
|
return mp_obj_new_tuple(8, tuple);
|
|
} else {
|
|
// Set time
|
|
mp_obj_t *items;
|
|
mp_obj_get_array_fixed_n(args[1], 8, &items);
|
|
|
|
pyb_rtc_set_us_since_2000(
|
|
((uint64_t)timeutils_seconds_since_2000(
|
|
mp_obj_get_int(items[0]),
|
|
mp_obj_get_int(items[1]),
|
|
mp_obj_get_int(items[2]),
|
|
mp_obj_get_int(items[4]),
|
|
mp_obj_get_int(items[5]),
|
|
mp_obj_get_int(items[6])) * 1000 + mp_obj_get_int(items[7])) * 1000);
|
|
|
|
return mp_const_none;
|
|
}
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_datetime_obj, 1, 2, pyb_rtc_datetime);
|
|
|
|
STATIC mp_obj_t pyb_rtc_memory(size_t n_args, const mp_obj_t *args) {
|
|
uint8_t rtcram[MEM_USER_MAXLEN];
|
|
uint32_t len;
|
|
|
|
if (n_args == 1) {
|
|
// read RTC memory
|
|
|
|
system_rtc_mem_read(MEM_USER_LEN_ADDR, &len, sizeof(len));
|
|
system_rtc_mem_read(MEM_USER_DATA_ADDR, rtcram, (len + 3) & ~3);
|
|
|
|
return mp_obj_new_bytes(rtcram, len);
|
|
} else {
|
|
// write RTC memory
|
|
|
|
mp_buffer_info_t bufinfo;
|
|
mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_READ);
|
|
|
|
if (bufinfo.len > MEM_USER_MAXLEN) {
|
|
mp_raise_ValueError("buffer too long");
|
|
}
|
|
|
|
len = bufinfo.len;
|
|
system_rtc_mem_write(MEM_USER_LEN_ADDR, &len, sizeof(len));
|
|
|
|
int i = 0;
|
|
for (; i < bufinfo.len; i++) {
|
|
rtcram[i] = ((uint8_t *)bufinfo.buf)[i];
|
|
}
|
|
|
|
system_rtc_mem_write(MEM_USER_DATA_ADDR, rtcram, (len + 3) & ~3);
|
|
|
|
return mp_const_none;
|
|
}
|
|
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_memory_obj, 1, 2, pyb_rtc_memory);
|
|
|
|
STATIC mp_obj_t pyb_rtc_alarm(mp_obj_t self_in, mp_obj_t alarm_id, mp_obj_t time_in) {
|
|
(void)self_in; // unused
|
|
|
|
// check we want alarm0
|
|
if (mp_obj_get_int(alarm_id) != 0) {
|
|
mp_raise_ValueError("invalid alarm");
|
|
}
|
|
|
|
// set expiry time (in microseconds)
|
|
pyb_rtc_alarm0_expiry = pyb_rtc_get_us_since_2000() + (uint64_t)mp_obj_get_int(time_in) * 1000;
|
|
|
|
return mp_const_none;
|
|
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_rtc_alarm_obj, pyb_rtc_alarm);
|
|
|
|
STATIC mp_obj_t pyb_rtc_alarm_left(size_t n_args, const mp_obj_t *args) {
|
|
// check we want alarm0
|
|
if (n_args > 1 && mp_obj_get_int(args[1]) != 0) {
|
|
mp_raise_ValueError("invalid alarm");
|
|
}
|
|
|
|
uint64_t now = pyb_rtc_get_us_since_2000();
|
|
if (pyb_rtc_alarm0_expiry <= now) {
|
|
return MP_OBJ_NEW_SMALL_INT(0);
|
|
} else {
|
|
return mp_obj_new_int((pyb_rtc_alarm0_expiry - now) / 1000);
|
|
}
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_alarm_left_obj, 1, 2, pyb_rtc_alarm_left);
|
|
|
|
STATIC mp_obj_t pyb_rtc_irq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
enum { ARG_trigger, ARG_wake };
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_trigger, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
|
|
{ MP_QSTR_wake, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
|
|
};
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
// check we want alarm0
|
|
if (args[ARG_trigger].u_int != 0) {
|
|
mp_raise_ValueError("invalid alarm");
|
|
}
|
|
|
|
// set the wake value
|
|
pyb_rtc_alarm0_wake = args[ARG_wake].u_int;
|
|
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_rtc_irq_obj, 1, pyb_rtc_irq);
|
|
|
|
STATIC const mp_rom_map_elem_t pyb_rtc_locals_dict_table[] = {
|
|
{ MP_ROM_QSTR(MP_QSTR_datetime), MP_ROM_PTR(&pyb_rtc_datetime_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_memory), MP_ROM_PTR(&pyb_rtc_memory_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_alarm), MP_ROM_PTR(&pyb_rtc_alarm_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_alarm_left), MP_ROM_PTR(&pyb_rtc_alarm_left_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&pyb_rtc_irq_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_ALARM0), MP_ROM_INT(0) },
|
|
};
|
|
STATIC MP_DEFINE_CONST_DICT(pyb_rtc_locals_dict, pyb_rtc_locals_dict_table);
|
|
|
|
const mp_obj_type_t pyb_rtc_type = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_RTC,
|
|
.make_new = pyb_rtc_make_new,
|
|
.locals_dict = (mp_obj_dict_t *)&pyb_rtc_locals_dict,
|
|
};
|