micropython/ports/nrf/modules/machine/modmachine.c

247 lines
8.7 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2015 Damien P. George
* Copyright (c) 2016 Glenn Ruben Bakke
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include "modmachine.h"
#include "py/gc.h"
#include "py/runtime.h"
#include "py/mphal.h"
#include "extmod/machine_mem.h"
#include "extmod/machine_pulse.h"
#include "extmod/machine_i2c.h"
#include "lib/utils/pyexec.h"
#include "lib/oofatfs/ff.h"
#include "lib/oofatfs/diskio.h"
#include "gccollect.h"
#include "pin.h"
#include "uart.h"
#include "spi.h"
#include "i2c.h"
#include "timer.h"
#if MICROPY_PY_MACHINE_HW_PWM
#include "pwm.h"
#endif
#if MICROPY_PY_MACHINE_ADC
#include "adc.h"
#endif
#if MICROPY_PY_MACHINE_TEMP
#include "temp.h"
#endif
#if MICROPY_PY_MACHINE_RTCOUNTER
#include "rtcounter.h"
#endif
#define PYB_RESET_HARD (0)
#define PYB_RESET_WDT (1)
#define PYB_RESET_SOFT (2)
#define PYB_RESET_LOCKUP (3)
#define PYB_RESET_POWER_ON (16)
#define PYB_RESET_LPCOMP (17)
#define PYB_RESET_DIF (18)
#define PYB_RESET_NFC (19)
STATIC uint32_t reset_cause;
void machine_init(void) {
uint32_t state = NRF_POWER->RESETREAS;
if (state & POWER_RESETREAS_RESETPIN_Msk) {
reset_cause = PYB_RESET_HARD;
} else if (state & POWER_RESETREAS_DOG_Msk) {
reset_cause = PYB_RESET_WDT;
} else if (state & POWER_RESETREAS_SREQ_Msk) {
reset_cause = PYB_RESET_SOFT;
} else if (state & POWER_RESETREAS_LOCKUP_Msk) {
reset_cause = PYB_RESET_LOCKUP;
} else if (state & POWER_RESETREAS_OFF_Msk) {
reset_cause = PYB_RESET_POWER_ON;
} else if (state & POWER_RESETREAS_LPCOMP_Msk) {
reset_cause = PYB_RESET_LPCOMP;
} else if (state & POWER_RESETREAS_DIF_Msk) {
reset_cause = PYB_RESET_DIF;
#if defined(NRF52_SERIES)
} else if (state & POWER_RESETREAS_NFC_Msk) {
reset_cause = PYB_RESET_NFC;
#endif
}
// clear reset reason
NRF_POWER->RESETREAS = (1 << reset_cause);
}
// machine.info([dump_alloc_table])
// Print out lots of information about the board.
STATIC mp_obj_t machine_info(mp_uint_t n_args, const mp_obj_t *args) {
// to print info about memory
{
printf("_etext=%p\n", &_etext);
printf("_sidata=%p\n", &_sidata);
printf("_sdata=%p\n", &_sdata);
printf("_edata=%p\n", &_edata);
printf("_sbss=%p\n", &_sbss);
printf("_ebss=%p\n", &_ebss);
printf("_estack=%p\n", &_estack);
printf("_ram_start=%p\n", &_ram_start);
printf("_heap_start=%p\n", &_heap_start);
printf("_heap_end=%p\n", &_heap_end);
printf("_ram_end=%p\n", &_ram_end);
}
// qstr info
{
mp_uint_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
printf("qstr:\n n_pool=" UINT_FMT "\n n_qstr=" UINT_FMT "\n n_str_data_bytes=" UINT_FMT "\n n_total_bytes=" UINT_FMT "\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
}
// GC info
{
gc_info_t info;
gc_info(&info);
printf("GC:\n");
printf(" " UINT_FMT " total\n", info.total);
printf(" " UINT_FMT " : " UINT_FMT "\n", info.used, info.free);
printf(" 1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block);
}
if (n_args == 1) {
// arg given means dump gc allocation table
gc_dump_alloc_table();
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_info_obj, 0, 1, machine_info);
// Resets the board in a manner similar to pushing the external RESET button.
STATIC mp_obj_t machine_reset(void) {
NVIC_SystemReset();
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_obj, machine_reset);
STATIC mp_obj_t machine_soft_reset(void) {
pyexec_system_exit = PYEXEC_FORCED_EXIT;
nlr_raise(mp_obj_new_exception(&mp_type_SystemExit));
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_soft_reset_obj, machine_soft_reset);
STATIC mp_obj_t machine_sleep(void) {
__WFE();
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_sleep_obj, machine_sleep);
STATIC mp_obj_t machine_deepsleep(void) {
__WFI();
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_deepsleep_obj, machine_deepsleep);
STATIC mp_obj_t machine_reset_cause(void) {
return MP_OBJ_NEW_SMALL_INT(reset_cause);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_cause_obj, machine_reset_cause);
STATIC mp_obj_t machine_enable_irq(void) {
#ifndef BLUETOOTH_SD
__enable_irq();
#else
#endif
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_enable_irq_obj, machine_enable_irq);
// Resets the board in a manner similar to pushing the external RESET button.
STATIC mp_obj_t machine_disable_irq(void) {
#ifndef BLUETOOTH_SD
__disable_irq();
#else
#endif
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_disable_irq_obj, machine_disable_irq);
STATIC const mp_rom_map_elem_t machine_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_umachine) },
{ MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&machine_info_obj) },
{ MP_ROM_QSTR(MP_QSTR_reset), MP_ROM_PTR(&machine_reset_obj) },
{ MP_ROM_QSTR(MP_QSTR_soft_reset), MP_ROM_PTR(&machine_soft_reset_obj) },
{ MP_ROM_QSTR(MP_QSTR_enable_irq), MP_ROM_PTR(&machine_enable_irq_obj) },
{ MP_ROM_QSTR(MP_QSTR_disable_irq), MP_ROM_PTR(&machine_disable_irq_obj) },
#if MICROPY_HW_ENABLE_RNG
{ MP_ROM_QSTR(MP_QSTR_rng), MP_ROM_PTR(&random_module) },
#endif
{ MP_ROM_QSTR(MP_QSTR_sleep), MP_ROM_PTR(&machine_sleep_obj) },
{ MP_ROM_QSTR(MP_QSTR_deepsleep), MP_ROM_PTR(&machine_deepsleep_obj) },
{ MP_ROM_QSTR(MP_QSTR_reset_cause), MP_ROM_PTR(&machine_reset_cause_obj) },
{ MP_ROM_QSTR(MP_QSTR_Pin), MP_ROM_PTR(&pin_type) },
#if MICROPY_PY_MACHINE_UART
{ MP_ROM_QSTR(MP_QSTR_UART), MP_ROM_PTR(&machine_hard_uart_type) },
#endif
#if MICROPY_PY_MACHINE_HW_SPI
{ MP_ROM_QSTR(MP_QSTR_SPI), MP_ROM_PTR(&machine_hard_spi_type) },
#endif
#if MICROPY_PY_MACHINE_I2C
{ MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&machine_i2c_type) },
#endif
#if MICROPY_PY_MACHINE_ADC
{ MP_ROM_QSTR(MP_QSTR_ADC), MP_ROM_PTR(&machine_adc_type) },
#endif
#if MICROPY_PY_MACHINE_RTCOUNTER
{ MP_ROM_QSTR(MP_QSTR_RTCounter), MP_ROM_PTR(&machine_rtcounter_type) },
#endif
#if MICROPY_PY_MACHINE_TIMER
{ MP_ROM_QSTR(MP_QSTR_Timer), MP_ROM_PTR(&machine_timer_type) },
#endif
#if MICROPY_PY_MACHINE_HW_PWM
{ MP_ROM_QSTR(MP_QSTR_PWM), MP_ROM_PTR(&machine_hard_pwm_type) },
#endif
#if MICROPY_PY_MACHINE_TEMP
{ MP_ROM_QSTR(MP_QSTR_Temp), MP_ROM_PTR(&machine_temp_type) },
#endif
{ MP_ROM_QSTR(MP_QSTR_HARD_RESET), MP_ROM_INT(PYB_RESET_HARD) },
{ MP_ROM_QSTR(MP_QSTR_WDT_RESET), MP_ROM_INT(PYB_RESET_WDT) },
{ MP_ROM_QSTR(MP_QSTR_SOFT_RESET), MP_ROM_INT(PYB_RESET_SOFT) },
{ MP_ROM_QSTR(MP_QSTR_LOCKUP_RESET), MP_ROM_INT(PYB_RESET_LOCKUP) },
{ MP_ROM_QSTR(MP_QSTR_PWRON_RESET), MP_ROM_INT(PYB_RESET_POWER_ON) },
{ MP_ROM_QSTR(MP_QSTR_LPCOMP_RESET), MP_ROM_INT(PYB_RESET_LPCOMP) },
{ MP_ROM_QSTR(MP_QSTR_DEBUG_IF_RESET), MP_ROM_INT(PYB_RESET_DIF) },
#if defined(NRF52_SERIES)
{ MP_ROM_QSTR(MP_QSTR_NFC_RESET), MP_ROM_INT(PYB_RESET_NFC) },
#endif
};
STATIC MP_DEFINE_CONST_DICT(machine_module_globals, machine_module_globals_table);
const mp_obj_module_t machine_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&machine_module_globals,
};