micropython/lib/littlefs/lfs2.c

5817 lines
173 KiB
C

/*
* The little filesystem
*
* Copyright (c) 2022, The littlefs authors.
* Copyright (c) 2017, Arm Limited. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "lfs2.h"
#include "lfs2_util.h"
// some constants used throughout the code
#define LFS2_BLOCK_NULL ((lfs2_block_t)-1)
#define LFS2_BLOCK_INLINE ((lfs2_block_t)-2)
enum {
LFS2_OK_RELOCATED = 1,
LFS2_OK_DROPPED = 2,
LFS2_OK_ORPHANED = 3,
};
enum {
LFS2_CMP_EQ = 0,
LFS2_CMP_LT = 1,
LFS2_CMP_GT = 2,
};
/// Caching block device operations ///
static inline void lfs2_cache_drop(lfs2_t *lfs2, lfs2_cache_t *rcache) {
// do not zero, cheaper if cache is readonly or only going to be
// written with identical data (during relocates)
(void)lfs2;
rcache->block = LFS2_BLOCK_NULL;
}
static inline void lfs2_cache_zero(lfs2_t *lfs2, lfs2_cache_t *pcache) {
// zero to avoid information leak
memset(pcache->buffer, 0xff, lfs2->cfg->cache_size);
pcache->block = LFS2_BLOCK_NULL;
}
static int lfs2_bd_read(lfs2_t *lfs2,
const lfs2_cache_t *pcache, lfs2_cache_t *rcache, lfs2_size_t hint,
lfs2_block_t block, lfs2_off_t off,
void *buffer, lfs2_size_t size) {
uint8_t *data = buffer;
if (block >= lfs2->cfg->block_count ||
off+size > lfs2->cfg->block_size) {
return LFS2_ERR_CORRUPT;
}
while (size > 0) {
lfs2_size_t diff = size;
if (pcache && block == pcache->block &&
off < pcache->off + pcache->size) {
if (off >= pcache->off) {
// is already in pcache?
diff = lfs2_min(diff, pcache->size - (off-pcache->off));
memcpy(data, &pcache->buffer[off-pcache->off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
// pcache takes priority
diff = lfs2_min(diff, pcache->off-off);
}
if (block == rcache->block &&
off < rcache->off + rcache->size) {
if (off >= rcache->off) {
// is already in rcache?
diff = lfs2_min(diff, rcache->size - (off-rcache->off));
memcpy(data, &rcache->buffer[off-rcache->off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
// rcache takes priority
diff = lfs2_min(diff, rcache->off-off);
}
if (size >= hint && off % lfs2->cfg->read_size == 0 &&
size >= lfs2->cfg->read_size) {
// bypass cache?
diff = lfs2_aligndown(diff, lfs2->cfg->read_size);
int err = lfs2->cfg->read(lfs2->cfg, block, off, data, diff);
if (err) {
return err;
}
data += diff;
off += diff;
size -= diff;
continue;
}
// load to cache, first condition can no longer fail
LFS2_ASSERT(block < lfs2->cfg->block_count);
rcache->block = block;
rcache->off = lfs2_aligndown(off, lfs2->cfg->read_size);
rcache->size = lfs2_min(
lfs2_min(
lfs2_alignup(off+hint, lfs2->cfg->read_size),
lfs2->cfg->block_size)
- rcache->off,
lfs2->cfg->cache_size);
int err = lfs2->cfg->read(lfs2->cfg, rcache->block,
rcache->off, rcache->buffer, rcache->size);
LFS2_ASSERT(err <= 0);
if (err) {
return err;
}
}
return 0;
}
static int lfs2_bd_cmp(lfs2_t *lfs2,
const lfs2_cache_t *pcache, lfs2_cache_t *rcache, lfs2_size_t hint,
lfs2_block_t block, lfs2_off_t off,
const void *buffer, lfs2_size_t size) {
const uint8_t *data = buffer;
lfs2_size_t diff = 0;
for (lfs2_off_t i = 0; i < size; i += diff) {
uint8_t dat[8];
diff = lfs2_min(size-i, sizeof(dat));
int res = lfs2_bd_read(lfs2,
pcache, rcache, hint-i,
block, off+i, &dat, diff);
if (res) {
return res;
}
res = memcmp(dat, data + i, diff);
if (res) {
return res < 0 ? LFS2_CMP_LT : LFS2_CMP_GT;
}
}
return LFS2_CMP_EQ;
}
#ifndef LFS2_READONLY
static int lfs2_bd_flush(lfs2_t *lfs2,
lfs2_cache_t *pcache, lfs2_cache_t *rcache, bool validate) {
if (pcache->block != LFS2_BLOCK_NULL && pcache->block != LFS2_BLOCK_INLINE) {
LFS2_ASSERT(pcache->block < lfs2->cfg->block_count);
lfs2_size_t diff = lfs2_alignup(pcache->size, lfs2->cfg->prog_size);
int err = lfs2->cfg->prog(lfs2->cfg, pcache->block,
pcache->off, pcache->buffer, diff);
LFS2_ASSERT(err <= 0);
if (err) {
return err;
}
if (validate) {
// check data on disk
lfs2_cache_drop(lfs2, rcache);
int res = lfs2_bd_cmp(lfs2,
NULL, rcache, diff,
pcache->block, pcache->off, pcache->buffer, diff);
if (res < 0) {
return res;
}
if (res != LFS2_CMP_EQ) {
return LFS2_ERR_CORRUPT;
}
}
lfs2_cache_zero(lfs2, pcache);
}
return 0;
}
#endif
#ifndef LFS2_READONLY
static int lfs2_bd_sync(lfs2_t *lfs2,
lfs2_cache_t *pcache, lfs2_cache_t *rcache, bool validate) {
lfs2_cache_drop(lfs2, rcache);
int err = lfs2_bd_flush(lfs2, pcache, rcache, validate);
if (err) {
return err;
}
err = lfs2->cfg->sync(lfs2->cfg);
LFS2_ASSERT(err <= 0);
return err;
}
#endif
#ifndef LFS2_READONLY
static int lfs2_bd_prog(lfs2_t *lfs2,
lfs2_cache_t *pcache, lfs2_cache_t *rcache, bool validate,
lfs2_block_t block, lfs2_off_t off,
const void *buffer, lfs2_size_t size) {
const uint8_t *data = buffer;
LFS2_ASSERT(block == LFS2_BLOCK_INLINE || block < lfs2->cfg->block_count);
LFS2_ASSERT(off + size <= lfs2->cfg->block_size);
while (size > 0) {
if (block == pcache->block &&
off >= pcache->off &&
off < pcache->off + lfs2->cfg->cache_size) {
// already fits in pcache?
lfs2_size_t diff = lfs2_min(size,
lfs2->cfg->cache_size - (off-pcache->off));
memcpy(&pcache->buffer[off-pcache->off], data, diff);
data += diff;
off += diff;
size -= diff;
pcache->size = lfs2_max(pcache->size, off - pcache->off);
if (pcache->size == lfs2->cfg->cache_size) {
// eagerly flush out pcache if we fill up
int err = lfs2_bd_flush(lfs2, pcache, rcache, validate);
if (err) {
return err;
}
}
continue;
}
// pcache must have been flushed, either by programming and
// entire block or manually flushing the pcache
LFS2_ASSERT(pcache->block == LFS2_BLOCK_NULL);
// prepare pcache, first condition can no longer fail
pcache->block = block;
pcache->off = lfs2_aligndown(off, lfs2->cfg->prog_size);
pcache->size = 0;
}
return 0;
}
#endif
#ifndef LFS2_READONLY
static int lfs2_bd_erase(lfs2_t *lfs2, lfs2_block_t block) {
LFS2_ASSERT(block < lfs2->cfg->block_count);
int err = lfs2->cfg->erase(lfs2->cfg, block);
LFS2_ASSERT(err <= 0);
return err;
}
#endif
/// Small type-level utilities ///
// operations on block pairs
static inline void lfs2_pair_swap(lfs2_block_t pair[2]) {
lfs2_block_t t = pair[0];
pair[0] = pair[1];
pair[1] = t;
}
static inline bool lfs2_pair_isnull(const lfs2_block_t pair[2]) {
return pair[0] == LFS2_BLOCK_NULL || pair[1] == LFS2_BLOCK_NULL;
}
static inline int lfs2_pair_cmp(
const lfs2_block_t paira[2],
const lfs2_block_t pairb[2]) {
return !(paira[0] == pairb[0] || paira[1] == pairb[1] ||
paira[0] == pairb[1] || paira[1] == pairb[0]);
}
#ifndef LFS2_READONLY
static inline bool lfs2_pair_sync(
const lfs2_block_t paira[2],
const lfs2_block_t pairb[2]) {
return (paira[0] == pairb[0] && paira[1] == pairb[1]) ||
(paira[0] == pairb[1] && paira[1] == pairb[0]);
}
#endif
static inline void lfs2_pair_fromle32(lfs2_block_t pair[2]) {
pair[0] = lfs2_fromle32(pair[0]);
pair[1] = lfs2_fromle32(pair[1]);
}
#ifndef LFS2_READONLY
static inline void lfs2_pair_tole32(lfs2_block_t pair[2]) {
pair[0] = lfs2_tole32(pair[0]);
pair[1] = lfs2_tole32(pair[1]);
}
#endif
// operations on 32-bit entry tags
typedef uint32_t lfs2_tag_t;
typedef int32_t lfs2_stag_t;
#define LFS2_MKTAG(type, id, size) \
(((lfs2_tag_t)(type) << 20) | ((lfs2_tag_t)(id) << 10) | (lfs2_tag_t)(size))
#define LFS2_MKTAG_IF(cond, type, id, size) \
((cond) ? LFS2_MKTAG(type, id, size) : LFS2_MKTAG(LFS2_FROM_NOOP, 0, 0))
#define LFS2_MKTAG_IF_ELSE(cond, type1, id1, size1, type2, id2, size2) \
((cond) ? LFS2_MKTAG(type1, id1, size1) : LFS2_MKTAG(type2, id2, size2))
static inline bool lfs2_tag_isvalid(lfs2_tag_t tag) {
return !(tag & 0x80000000);
}
static inline bool lfs2_tag_isdelete(lfs2_tag_t tag) {
return ((int32_t)(tag << 22) >> 22) == -1;
}
static inline uint16_t lfs2_tag_type1(lfs2_tag_t tag) {
return (tag & 0x70000000) >> 20;
}
static inline uint16_t lfs2_tag_type3(lfs2_tag_t tag) {
return (tag & 0x7ff00000) >> 20;
}
static inline uint8_t lfs2_tag_chunk(lfs2_tag_t tag) {
return (tag & 0x0ff00000) >> 20;
}
static inline int8_t lfs2_tag_splice(lfs2_tag_t tag) {
return (int8_t)lfs2_tag_chunk(tag);
}
static inline uint16_t lfs2_tag_id(lfs2_tag_t tag) {
return (tag & 0x000ffc00) >> 10;
}
static inline lfs2_size_t lfs2_tag_size(lfs2_tag_t tag) {
return tag & 0x000003ff;
}
static inline lfs2_size_t lfs2_tag_dsize(lfs2_tag_t tag) {
return sizeof(tag) + lfs2_tag_size(tag + lfs2_tag_isdelete(tag));
}
// operations on attributes in attribute lists
struct lfs2_mattr {
lfs2_tag_t tag;
const void *buffer;
};
struct lfs2_diskoff {
lfs2_block_t block;
lfs2_off_t off;
};
#define LFS2_MKATTRS(...) \
(struct lfs2_mattr[]){__VA_ARGS__}, \
sizeof((struct lfs2_mattr[]){__VA_ARGS__}) / sizeof(struct lfs2_mattr)
// operations on global state
static inline void lfs2_gstate_xor(lfs2_gstate_t *a, const lfs2_gstate_t *b) {
for (int i = 0; i < 3; i++) {
((uint32_t*)a)[i] ^= ((const uint32_t*)b)[i];
}
}
static inline bool lfs2_gstate_iszero(const lfs2_gstate_t *a) {
for (int i = 0; i < 3; i++) {
if (((uint32_t*)a)[i] != 0) {
return false;
}
}
return true;
}
#ifndef LFS2_READONLY
static inline bool lfs2_gstate_hasorphans(const lfs2_gstate_t *a) {
return lfs2_tag_size(a->tag);
}
static inline uint8_t lfs2_gstate_getorphans(const lfs2_gstate_t *a) {
return lfs2_tag_size(a->tag);
}
static inline bool lfs2_gstate_hasmove(const lfs2_gstate_t *a) {
return lfs2_tag_type1(a->tag);
}
#endif
static inline bool lfs2_gstate_hasmovehere(const lfs2_gstate_t *a,
const lfs2_block_t *pair) {
return lfs2_tag_type1(a->tag) && lfs2_pair_cmp(a->pair, pair) == 0;
}
static inline void lfs2_gstate_fromle32(lfs2_gstate_t *a) {
a->tag = lfs2_fromle32(a->tag);
a->pair[0] = lfs2_fromle32(a->pair[0]);
a->pair[1] = lfs2_fromle32(a->pair[1]);
}
#ifndef LFS2_READONLY
static inline void lfs2_gstate_tole32(lfs2_gstate_t *a) {
a->tag = lfs2_tole32(a->tag);
a->pair[0] = lfs2_tole32(a->pair[0]);
a->pair[1] = lfs2_tole32(a->pair[1]);
}
#endif
// other endianness operations
static void lfs2_ctz_fromle32(struct lfs2_ctz *ctz) {
ctz->head = lfs2_fromle32(ctz->head);
ctz->size = lfs2_fromle32(ctz->size);
}
#ifndef LFS2_READONLY
static void lfs2_ctz_tole32(struct lfs2_ctz *ctz) {
ctz->head = lfs2_tole32(ctz->head);
ctz->size = lfs2_tole32(ctz->size);
}
#endif
static inline void lfs2_superblock_fromle32(lfs2_superblock_t *superblock) {
superblock->version = lfs2_fromle32(superblock->version);
superblock->block_size = lfs2_fromle32(superblock->block_size);
superblock->block_count = lfs2_fromle32(superblock->block_count);
superblock->name_max = lfs2_fromle32(superblock->name_max);
superblock->file_max = lfs2_fromle32(superblock->file_max);
superblock->attr_max = lfs2_fromle32(superblock->attr_max);
}
#ifndef LFS2_READONLY
static inline void lfs2_superblock_tole32(lfs2_superblock_t *superblock) {
superblock->version = lfs2_tole32(superblock->version);
superblock->block_size = lfs2_tole32(superblock->block_size);
superblock->block_count = lfs2_tole32(superblock->block_count);
superblock->name_max = lfs2_tole32(superblock->name_max);
superblock->file_max = lfs2_tole32(superblock->file_max);
superblock->attr_max = lfs2_tole32(superblock->attr_max);
}
#endif
#ifndef LFS2_NO_ASSERT
static bool lfs2_mlist_isopen(struct lfs2_mlist *head,
struct lfs2_mlist *node) {
for (struct lfs2_mlist **p = &head; *p; p = &(*p)->next) {
if (*p == (struct lfs2_mlist*)node) {
return true;
}
}
return false;
}
#endif
static void lfs2_mlist_remove(lfs2_t *lfs2, struct lfs2_mlist *mlist) {
for (struct lfs2_mlist **p = &lfs2->mlist; *p; p = &(*p)->next) {
if (*p == mlist) {
*p = (*p)->next;
break;
}
}
}
static void lfs2_mlist_append(lfs2_t *lfs2, struct lfs2_mlist *mlist) {
mlist->next = lfs2->mlist;
lfs2->mlist = mlist;
}
/// Internal operations predeclared here ///
#ifndef LFS2_READONLY
static int lfs2_dir_commit(lfs2_t *lfs2, lfs2_mdir_t *dir,
const struct lfs2_mattr *attrs, int attrcount);
static int lfs2_dir_compact(lfs2_t *lfs2,
lfs2_mdir_t *dir, const struct lfs2_mattr *attrs, int attrcount,
lfs2_mdir_t *source, uint16_t begin, uint16_t end);
static lfs2_ssize_t lfs2_file_flushedwrite(lfs2_t *lfs2, lfs2_file_t *file,
const void *buffer, lfs2_size_t size);
static lfs2_ssize_t lfs2_file_rawwrite(lfs2_t *lfs2, lfs2_file_t *file,
const void *buffer, lfs2_size_t size);
static int lfs2_file_rawsync(lfs2_t *lfs2, lfs2_file_t *file);
static int lfs2_file_outline(lfs2_t *lfs2, lfs2_file_t *file);
static int lfs2_file_flush(lfs2_t *lfs2, lfs2_file_t *file);
static int lfs2_fs_deorphan(lfs2_t *lfs2, bool powerloss);
static int lfs2_fs_preporphans(lfs2_t *lfs2, int8_t orphans);
static void lfs2_fs_prepmove(lfs2_t *lfs2,
uint16_t id, const lfs2_block_t pair[2]);
static int lfs2_fs_pred(lfs2_t *lfs2, const lfs2_block_t dir[2],
lfs2_mdir_t *pdir);
static lfs2_stag_t lfs2_fs_parent(lfs2_t *lfs2, const lfs2_block_t dir[2],
lfs2_mdir_t *parent);
static int lfs2_fs_forceconsistency(lfs2_t *lfs2);
#endif
#ifdef LFS2_MIGRATE
static int lfs21_traverse(lfs2_t *lfs2,
int (*cb)(void*, lfs2_block_t), void *data);
#endif
static int lfs2_dir_rawrewind(lfs2_t *lfs2, lfs2_dir_t *dir);
static lfs2_ssize_t lfs2_file_flushedread(lfs2_t *lfs2, lfs2_file_t *file,
void *buffer, lfs2_size_t size);
static lfs2_ssize_t lfs2_file_rawread(lfs2_t *lfs2, lfs2_file_t *file,
void *buffer, lfs2_size_t size);
static int lfs2_file_rawclose(lfs2_t *lfs2, lfs2_file_t *file);
static lfs2_soff_t lfs2_file_rawsize(lfs2_t *lfs2, lfs2_file_t *file);
static lfs2_ssize_t lfs2_fs_rawsize(lfs2_t *lfs2);
static int lfs2_fs_rawtraverse(lfs2_t *lfs2,
int (*cb)(void *data, lfs2_block_t block), void *data,
bool includeorphans);
static int lfs2_deinit(lfs2_t *lfs2);
static int lfs2_rawunmount(lfs2_t *lfs2);
/// Block allocator ///
#ifndef LFS2_READONLY
static int lfs2_alloc_lookahead(void *p, lfs2_block_t block) {
lfs2_t *lfs2 = (lfs2_t*)p;
lfs2_block_t off = ((block - lfs2->free.off)
+ lfs2->cfg->block_count) % lfs2->cfg->block_count;
if (off < lfs2->free.size) {
lfs2->free.buffer[off / 32] |= 1U << (off % 32);
}
return 0;
}
#endif
// indicate allocated blocks have been committed into the filesystem, this
// is to prevent blocks from being garbage collected in the middle of a
// commit operation
static void lfs2_alloc_ack(lfs2_t *lfs2) {
lfs2->free.ack = lfs2->cfg->block_count;
}
// drop the lookahead buffer, this is done during mounting and failed
// traversals in order to avoid invalid lookahead state
static void lfs2_alloc_drop(lfs2_t *lfs2) {
lfs2->free.size = 0;
lfs2->free.i = 0;
lfs2_alloc_ack(lfs2);
}
#ifndef LFS2_READONLY
static int lfs2_alloc(lfs2_t *lfs2, lfs2_block_t *block) {
while (true) {
while (lfs2->free.i != lfs2->free.size) {
lfs2_block_t off = lfs2->free.i;
lfs2->free.i += 1;
lfs2->free.ack -= 1;
if (!(lfs2->free.buffer[off / 32] & (1U << (off % 32)))) {
// found a free block
*block = (lfs2->free.off + off) % lfs2->cfg->block_count;
// eagerly find next off so an alloc ack can
// discredit old lookahead blocks
while (lfs2->free.i != lfs2->free.size &&
(lfs2->free.buffer[lfs2->free.i / 32]
& (1U << (lfs2->free.i % 32)))) {
lfs2->free.i += 1;
lfs2->free.ack -= 1;
}
return 0;
}
}
// check if we have looked at all blocks since last ack
if (lfs2->free.ack == 0) {
LFS2_ERROR("No more free space %"PRIu32,
lfs2->free.i + lfs2->free.off);
return LFS2_ERR_NOSPC;
}
lfs2->free.off = (lfs2->free.off + lfs2->free.size)
% lfs2->cfg->block_count;
lfs2->free.size = lfs2_min(8*lfs2->cfg->lookahead_size, lfs2->free.ack);
lfs2->free.i = 0;
// find mask of free blocks from tree
memset(lfs2->free.buffer, 0, lfs2->cfg->lookahead_size);
int err = lfs2_fs_rawtraverse(lfs2, lfs2_alloc_lookahead, lfs2, true);
if (err) {
lfs2_alloc_drop(lfs2);
return err;
}
}
}
#endif
/// Metadata pair and directory operations ///
static lfs2_stag_t lfs2_dir_getslice(lfs2_t *lfs2, const lfs2_mdir_t *dir,
lfs2_tag_t gmask, lfs2_tag_t gtag,
lfs2_off_t goff, void *gbuffer, lfs2_size_t gsize) {
lfs2_off_t off = dir->off;
lfs2_tag_t ntag = dir->etag;
lfs2_stag_t gdiff = 0;
if (lfs2_gstate_hasmovehere(&lfs2->gdisk, dir->pair) &&
lfs2_tag_id(gmask) != 0 &&
lfs2_tag_id(lfs2->gdisk.tag) <= lfs2_tag_id(gtag)) {
// synthetic moves
gdiff -= LFS2_MKTAG(0, 1, 0);
}
// iterate over dir block backwards (for faster lookups)
while (off >= sizeof(lfs2_tag_t) + lfs2_tag_dsize(ntag)) {
off -= lfs2_tag_dsize(ntag);
lfs2_tag_t tag = ntag;
int err = lfs2_bd_read(lfs2,
NULL, &lfs2->rcache, sizeof(ntag),
dir->pair[0], off, &ntag, sizeof(ntag));
if (err) {
return err;
}
ntag = (lfs2_frombe32(ntag) ^ tag) & 0x7fffffff;
if (lfs2_tag_id(gmask) != 0 &&
lfs2_tag_type1(tag) == LFS2_TYPE_SPLICE &&
lfs2_tag_id(tag) <= lfs2_tag_id(gtag - gdiff)) {
if (tag == (LFS2_MKTAG(LFS2_TYPE_CREATE, 0, 0) |
(LFS2_MKTAG(0, 0x3ff, 0) & (gtag - gdiff)))) {
// found where we were created
return LFS2_ERR_NOENT;
}
// move around splices
gdiff += LFS2_MKTAG(0, lfs2_tag_splice(tag), 0);
}
if ((gmask & tag) == (gmask & (gtag - gdiff))) {
if (lfs2_tag_isdelete(tag)) {
return LFS2_ERR_NOENT;
}
lfs2_size_t diff = lfs2_min(lfs2_tag_size(tag), gsize);
err = lfs2_bd_read(lfs2,
NULL, &lfs2->rcache, diff,
dir->pair[0], off+sizeof(tag)+goff, gbuffer, diff);
if (err) {
return err;
}
memset((uint8_t*)gbuffer + diff, 0, gsize - diff);
return tag + gdiff;
}
}
return LFS2_ERR_NOENT;
}
static lfs2_stag_t lfs2_dir_get(lfs2_t *lfs2, const lfs2_mdir_t *dir,
lfs2_tag_t gmask, lfs2_tag_t gtag, void *buffer) {
return lfs2_dir_getslice(lfs2, dir,
gmask, gtag,
0, buffer, lfs2_tag_size(gtag));
}
static int lfs2_dir_getread(lfs2_t *lfs2, const lfs2_mdir_t *dir,
const lfs2_cache_t *pcache, lfs2_cache_t *rcache, lfs2_size_t hint,
lfs2_tag_t gmask, lfs2_tag_t gtag,
lfs2_off_t off, void *buffer, lfs2_size_t size) {
uint8_t *data = buffer;
if (off+size > lfs2->cfg->block_size) {
return LFS2_ERR_CORRUPT;
}
while (size > 0) {
lfs2_size_t diff = size;
if (pcache && pcache->block == LFS2_BLOCK_INLINE &&
off < pcache->off + pcache->size) {
if (off >= pcache->off) {
// is already in pcache?
diff = lfs2_min(diff, pcache->size - (off-pcache->off));
memcpy(data, &pcache->buffer[off-pcache->off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
// pcache takes priority
diff = lfs2_min(diff, pcache->off-off);
}
if (rcache->block == LFS2_BLOCK_INLINE &&
off < rcache->off + rcache->size) {
if (off >= rcache->off) {
// is already in rcache?
diff = lfs2_min(diff, rcache->size - (off-rcache->off));
memcpy(data, &rcache->buffer[off-rcache->off], diff);
data += diff;
off += diff;
size -= diff;
continue;
}
// rcache takes priority
diff = lfs2_min(diff, rcache->off-off);
}
// load to cache, first condition can no longer fail
rcache->block = LFS2_BLOCK_INLINE;
rcache->off = lfs2_aligndown(off, lfs2->cfg->read_size);
rcache->size = lfs2_min(lfs2_alignup(off+hint, lfs2->cfg->read_size),
lfs2->cfg->cache_size);
int err = lfs2_dir_getslice(lfs2, dir, gmask, gtag,
rcache->off, rcache->buffer, rcache->size);
if (err < 0) {
return err;
}
}
return 0;
}
#ifndef LFS2_READONLY
static int lfs2_dir_traverse_filter(void *p,
lfs2_tag_t tag, const void *buffer) {
lfs2_tag_t *filtertag = p;
(void)buffer;
// which mask depends on unique bit in tag structure
uint32_t mask = (tag & LFS2_MKTAG(0x100, 0, 0))
? LFS2_MKTAG(0x7ff, 0x3ff, 0)
: LFS2_MKTAG(0x700, 0x3ff, 0);
// check for redundancy
if ((mask & tag) == (mask & *filtertag) ||
lfs2_tag_isdelete(*filtertag) ||
(LFS2_MKTAG(0x7ff, 0x3ff, 0) & tag) == (
LFS2_MKTAG(LFS2_TYPE_DELETE, 0, 0) |
(LFS2_MKTAG(0, 0x3ff, 0) & *filtertag))) {
*filtertag = LFS2_MKTAG(LFS2_FROM_NOOP, 0, 0);
return true;
}
// check if we need to adjust for created/deleted tags
if (lfs2_tag_type1(tag) == LFS2_TYPE_SPLICE &&
lfs2_tag_id(tag) <= lfs2_tag_id(*filtertag)) {
*filtertag += LFS2_MKTAG(0, lfs2_tag_splice(tag), 0);
}
return false;
}
#endif
#ifndef LFS2_READONLY
// maximum recursive depth of lfs2_dir_traverse, the deepest call:
//
// traverse with commit
// '-> traverse with move
// '-> traverse with filter
//
#define LFS2_DIR_TRAVERSE_DEPTH 3
struct lfs2_dir_traverse {
const lfs2_mdir_t *dir;
lfs2_off_t off;
lfs2_tag_t ptag;
const struct lfs2_mattr *attrs;
int attrcount;
lfs2_tag_t tmask;
lfs2_tag_t ttag;
uint16_t begin;
uint16_t end;
int16_t diff;
int (*cb)(void *data, lfs2_tag_t tag, const void *buffer);
void *data;
lfs2_tag_t tag;
const void *buffer;
struct lfs2_diskoff disk;
};
static int lfs2_dir_traverse(lfs2_t *lfs2,
const lfs2_mdir_t *dir, lfs2_off_t off, lfs2_tag_t ptag,
const struct lfs2_mattr *attrs, int attrcount,
lfs2_tag_t tmask, lfs2_tag_t ttag,
uint16_t begin, uint16_t end, int16_t diff,
int (*cb)(void *data, lfs2_tag_t tag, const void *buffer), void *data) {
// This function in inherently recursive, but bounded. To allow tool-based
// analysis without unnecessary code-cost we use an explicit stack
struct lfs2_dir_traverse stack[LFS2_DIR_TRAVERSE_DEPTH-1];
unsigned sp = 0;
int res;
// iterate over directory and attrs
lfs2_tag_t tag;
const void *buffer;
struct lfs2_diskoff disk;
while (true) {
{
if (off+lfs2_tag_dsize(ptag) < dir->off) {
off += lfs2_tag_dsize(ptag);
int err = lfs2_bd_read(lfs2,
NULL, &lfs2->rcache, sizeof(tag),
dir->pair[0], off, &tag, sizeof(tag));
if (err) {
return err;
}
tag = (lfs2_frombe32(tag) ^ ptag) | 0x80000000;
disk.block = dir->pair[0];
disk.off = off+sizeof(lfs2_tag_t);
buffer = &disk;
ptag = tag;
} else if (attrcount > 0) {
tag = attrs[0].tag;
buffer = attrs[0].buffer;
attrs += 1;
attrcount -= 1;
} else {
// finished traversal, pop from stack?
res = 0;
break;
}
// do we need to filter?
lfs2_tag_t mask = LFS2_MKTAG(0x7ff, 0, 0);
if ((mask & tmask & tag) != (mask & tmask & ttag)) {
continue;
}
if (lfs2_tag_id(tmask) != 0) {
LFS2_ASSERT(sp < LFS2_DIR_TRAVERSE_DEPTH);
// recurse, scan for duplicates, and update tag based on
// creates/deletes
stack[sp] = (struct lfs2_dir_traverse){
.dir = dir,
.off = off,
.ptag = ptag,
.attrs = attrs,
.attrcount = attrcount,
.tmask = tmask,
.ttag = ttag,
.begin = begin,
.end = end,
.diff = diff,
.cb = cb,
.data = data,
.tag = tag,
.buffer = buffer,
.disk = disk,
};
sp += 1;
tmask = 0;
ttag = 0;
begin = 0;
end = 0;
diff = 0;
cb = lfs2_dir_traverse_filter;
data = &stack[sp-1].tag;
continue;
}
}
popped:
// in filter range?
if (lfs2_tag_id(tmask) != 0 &&
!(lfs2_tag_id(tag) >= begin && lfs2_tag_id(tag) < end)) {
continue;
}
// handle special cases for mcu-side operations
if (lfs2_tag_type3(tag) == LFS2_FROM_NOOP) {
// do nothing
} else if (lfs2_tag_type3(tag) == LFS2_FROM_MOVE) {
// Without this condition, lfs2_dir_traverse can exhibit an
// extremely expensive O(n^3) of nested loops when renaming.
// This happens because lfs2_dir_traverse tries to filter tags by
// the tags in the source directory, triggering a second
// lfs2_dir_traverse with its own filter operation.
//
// traverse with commit
// '-> traverse with filter
// '-> traverse with move
// '-> traverse with filter
//
// However we don't actually care about filtering the second set of
// tags, since duplicate tags have no effect when filtering.
//
// This check skips this unnecessary recursive filtering explicitly,
// reducing this runtime from O(n^3) to O(n^2).
if (cb == lfs2_dir_traverse_filter) {
continue;
}
// recurse into move
stack[sp] = (struct lfs2_dir_traverse){
.dir = dir,
.off = off,
.ptag = ptag,
.attrs = attrs,
.attrcount = attrcount,
.tmask = tmask,
.ttag = ttag,
.begin = begin,
.end = end,
.diff = diff,
.cb = cb,
.data = data,
.tag = LFS2_MKTAG(LFS2_FROM_NOOP, 0, 0),
};
sp += 1;
uint16_t fromid = lfs2_tag_size(tag);
uint16_t toid = lfs2_tag_id(tag);
dir = buffer;
off = 0;
ptag = 0xffffffff;
attrs = NULL;
attrcount = 0;
tmask = LFS2_MKTAG(0x600, 0x3ff, 0);
ttag = LFS2_MKTAG(LFS2_TYPE_STRUCT, 0, 0);
begin = fromid;
end = fromid+1;
diff = toid-fromid+diff;
} else if (lfs2_tag_type3(tag) == LFS2_FROM_USERATTRS) {
for (unsigned i = 0; i < lfs2_tag_size(tag); i++) {
const struct lfs2_attr *a = buffer;
res = cb(data, LFS2_MKTAG(LFS2_TYPE_USERATTR + a[i].type,
lfs2_tag_id(tag) + diff, a[i].size), a[i].buffer);
if (res < 0) {
return res;
}
if (res) {
break;
}
}
} else {
res = cb(data, tag + LFS2_MKTAG(0, diff, 0), buffer);
if (res < 0) {
return res;
}
if (res) {
break;
}
}
}
if (sp > 0) {
// pop from the stack and return, fortunately all pops share
// a destination
dir = stack[sp-1].dir;
off = stack[sp-1].off;
ptag = stack[sp-1].ptag;
attrs = stack[sp-1].attrs;
attrcount = stack[sp-1].attrcount;
tmask = stack[sp-1].tmask;
ttag = stack[sp-1].ttag;
begin = stack[sp-1].begin;
end = stack[sp-1].end;
diff = stack[sp-1].diff;
cb = stack[sp-1].cb;
data = stack[sp-1].data;
tag = stack[sp-1].tag;
buffer = stack[sp-1].buffer;
disk = stack[sp-1].disk;
sp -= 1;
goto popped;
} else {
return res;
}
}
#endif
static lfs2_stag_t lfs2_dir_fetchmatch(lfs2_t *lfs2,
lfs2_mdir_t *dir, const lfs2_block_t pair[2],
lfs2_tag_t fmask, lfs2_tag_t ftag, uint16_t *id,
int (*cb)(void *data, lfs2_tag_t tag, const void *buffer), void *data) {
// we can find tag very efficiently during a fetch, since we're already
// scanning the entire directory
lfs2_stag_t besttag = -1;
// if either block address is invalid we return LFS2_ERR_CORRUPT here,
// otherwise later writes to the pair could fail
if (pair[0] >= lfs2->cfg->block_count || pair[1] >= lfs2->cfg->block_count) {
return LFS2_ERR_CORRUPT;
}
// find the block with the most recent revision
uint32_t revs[2] = {0, 0};
int r = 0;
for (int i = 0; i < 2; i++) {
int err = lfs2_bd_read(lfs2,
NULL, &lfs2->rcache, sizeof(revs[i]),
pair[i], 0, &revs[i], sizeof(revs[i]));
revs[i] = lfs2_fromle32(revs[i]);
if (err && err != LFS2_ERR_CORRUPT) {
return err;
}
if (err != LFS2_ERR_CORRUPT &&
lfs2_scmp(revs[i], revs[(i+1)%2]) > 0) {
r = i;
}
}
dir->pair[0] = pair[(r+0)%2];
dir->pair[1] = pair[(r+1)%2];
dir->rev = revs[(r+0)%2];
dir->off = 0; // nonzero = found some commits
// now scan tags to fetch the actual dir and find possible match
for (int i = 0; i < 2; i++) {
lfs2_off_t off = 0;
lfs2_tag_t ptag = 0xffffffff;
uint16_t tempcount = 0;
lfs2_block_t temptail[2] = {LFS2_BLOCK_NULL, LFS2_BLOCK_NULL};
bool tempsplit = false;
lfs2_stag_t tempbesttag = besttag;
dir->rev = lfs2_tole32(dir->rev);
uint32_t crc = lfs2_crc(0xffffffff, &dir->rev, sizeof(dir->rev));
dir->rev = lfs2_fromle32(dir->rev);
while (true) {
// extract next tag
lfs2_tag_t tag;
off += lfs2_tag_dsize(ptag);
int err = lfs2_bd_read(lfs2,
NULL, &lfs2->rcache, lfs2->cfg->block_size,
dir->pair[0], off, &tag, sizeof(tag));
if (err) {
if (err == LFS2_ERR_CORRUPT) {
// can't continue?
dir->erased = false;
break;
}
return err;
}
crc = lfs2_crc(crc, &tag, sizeof(tag));
tag = lfs2_frombe32(tag) ^ ptag;
// next commit not yet programmed or we're not in valid range
if (!lfs2_tag_isvalid(tag)) {
dir->erased = (lfs2_tag_type1(ptag) == LFS2_TYPE_CRC &&
dir->off % lfs2->cfg->prog_size == 0);
break;
} else if (off + lfs2_tag_dsize(tag) > lfs2->cfg->block_size) {
dir->erased = false;
break;
}
ptag = tag;
if (lfs2_tag_type1(tag) == LFS2_TYPE_CRC) {
// check the crc attr
uint32_t dcrc;
err = lfs2_bd_read(lfs2,
NULL, &lfs2->rcache, lfs2->cfg->block_size,
dir->pair[0], off+sizeof(tag), &dcrc, sizeof(dcrc));
if (err) {
if (err == LFS2_ERR_CORRUPT) {
dir->erased = false;
break;
}
return err;
}
dcrc = lfs2_fromle32(dcrc);
if (crc != dcrc) {
dir->erased = false;
break;
}
// reset the next bit if we need to
ptag ^= (lfs2_tag_t)(lfs2_tag_chunk(tag) & 1U) << 31;
// toss our crc into the filesystem seed for
// pseudorandom numbers, note we use another crc here
// as a collection function because it is sufficiently
// random and convenient
lfs2->seed = lfs2_crc(lfs2->seed, &crc, sizeof(crc));
// update with what's found so far
besttag = tempbesttag;
dir->off = off + lfs2_tag_dsize(tag);
dir->etag = ptag;
dir->count = tempcount;
dir->tail[0] = temptail[0];
dir->tail[1] = temptail[1];
dir->split = tempsplit;
// reset crc
crc = 0xffffffff;
continue;
}
// crc the entry first, hopefully leaving it in the cache
for (lfs2_off_t j = sizeof(tag); j < lfs2_tag_dsize(tag); j++) {
uint8_t dat;
err = lfs2_bd_read(lfs2,
NULL, &lfs2->rcache, lfs2->cfg->block_size,
dir->pair[0], off+j, &dat, 1);
if (err) {
if (err == LFS2_ERR_CORRUPT) {
dir->erased = false;
break;
}
return err;
}
crc = lfs2_crc(crc, &dat, 1);
}
// directory modification tags?
if (lfs2_tag_type1(tag) == LFS2_TYPE_NAME) {
// increase count of files if necessary
if (lfs2_tag_id(tag) >= tempcount) {
tempcount = lfs2_tag_id(tag) + 1;
}
} else if (lfs2_tag_type1(tag) == LFS2_TYPE_SPLICE) {
tempcount += lfs2_tag_splice(tag);
if (tag == (LFS2_MKTAG(LFS2_TYPE_DELETE, 0, 0) |
(LFS2_MKTAG(0, 0x3ff, 0) & tempbesttag))) {
tempbesttag |= 0x80000000;
} else if (tempbesttag != -1 &&
lfs2_tag_id(tag) <= lfs2_tag_id(tempbesttag)) {
tempbesttag += LFS2_MKTAG(0, lfs2_tag_splice(tag), 0);
}
} else if (lfs2_tag_type1(tag) == LFS2_TYPE_TAIL) {
tempsplit = (lfs2_tag_chunk(tag) & 1);
err = lfs2_bd_read(lfs2,
NULL, &lfs2->rcache, lfs2->cfg->block_size,
dir->pair[0], off+sizeof(tag), &temptail, 8);
if (err) {
if (err == LFS2_ERR_CORRUPT) {
dir->erased = false;
break;
}
}
lfs2_pair_fromle32(temptail);
}
// found a match for our fetcher?
if ((fmask & tag) == (fmask & ftag)) {
int res = cb(data, tag, &(struct lfs2_diskoff){
dir->pair[0], off+sizeof(tag)});
if (res < 0) {
if (res == LFS2_ERR_CORRUPT) {
dir->erased = false;
break;
}
return res;
}
if (res == LFS2_CMP_EQ) {
// found a match
tempbesttag = tag;
} else if ((LFS2_MKTAG(0x7ff, 0x3ff, 0) & tag) ==
(LFS2_MKTAG(0x7ff, 0x3ff, 0) & tempbesttag)) {
// found an identical tag, but contents didn't match
// this must mean that our besttag has been overwritten
tempbesttag = -1;
} else if (res == LFS2_CMP_GT &&
lfs2_tag_id(tag) <= lfs2_tag_id(tempbesttag)) {
// found a greater match, keep track to keep things sorted
tempbesttag = tag | 0x80000000;
}
}
}
// consider what we have good enough
if (dir->off > 0) {
// synthetic move
if (lfs2_gstate_hasmovehere(&lfs2->gdisk, dir->pair)) {
if (lfs2_tag_id(lfs2->gdisk.tag) == lfs2_tag_id(besttag)) {
besttag |= 0x80000000;
} else if (besttag != -1 &&
lfs2_tag_id(lfs2->gdisk.tag) < lfs2_tag_id(besttag)) {
besttag -= LFS2_MKTAG(0, 1, 0);
}
}
// found tag? or found best id?
if (id) {
*id = lfs2_min(lfs2_tag_id(besttag), dir->count);
}
if (lfs2_tag_isvalid(besttag)) {
return besttag;
} else if (lfs2_tag_id(besttag) < dir->count) {
return LFS2_ERR_NOENT;
} else {
return 0;
}
}
// failed, try the other block?
lfs2_pair_swap(dir->pair);
dir->rev = revs[(r+1)%2];
}
LFS2_ERROR("Corrupted dir pair at {0x%"PRIx32", 0x%"PRIx32"}",
dir->pair[0], dir->pair[1]);
return LFS2_ERR_CORRUPT;
}
static int lfs2_dir_fetch(lfs2_t *lfs2,
lfs2_mdir_t *dir, const lfs2_block_t pair[2]) {
// note, mask=-1, tag=-1 can never match a tag since this
// pattern has the invalid bit set
return (int)lfs2_dir_fetchmatch(lfs2, dir, pair,
(lfs2_tag_t)-1, (lfs2_tag_t)-1, NULL, NULL, NULL);
}
static int lfs2_dir_getgstate(lfs2_t *lfs2, const lfs2_mdir_t *dir,
lfs2_gstate_t *gstate) {
lfs2_gstate_t temp;
lfs2_stag_t res = lfs2_dir_get(lfs2, dir, LFS2_MKTAG(0x7ff, 0, 0),
LFS2_MKTAG(LFS2_TYPE_MOVESTATE, 0, sizeof(temp)), &temp);
if (res < 0 && res != LFS2_ERR_NOENT) {
return res;
}
if (res != LFS2_ERR_NOENT) {
// xor together to find resulting gstate
lfs2_gstate_fromle32(&temp);
lfs2_gstate_xor(gstate, &temp);
}
return 0;
}
static int lfs2_dir_getinfo(lfs2_t *lfs2, lfs2_mdir_t *dir,
uint16_t id, struct lfs2_info *info) {
if (id == 0x3ff) {
// special case for root
strcpy(info->name, "/");
info->type = LFS2_TYPE_DIR;
return 0;
}
lfs2_stag_t tag = lfs2_dir_get(lfs2, dir, LFS2_MKTAG(0x780, 0x3ff, 0),
LFS2_MKTAG(LFS2_TYPE_NAME, id, lfs2->name_max+1), info->name);
if (tag < 0) {
return (int)tag;
}
info->type = lfs2_tag_type3(tag);
struct lfs2_ctz ctz;
tag = lfs2_dir_get(lfs2, dir, LFS2_MKTAG(0x700, 0x3ff, 0),
LFS2_MKTAG(LFS2_TYPE_STRUCT, id, sizeof(ctz)), &ctz);
if (tag < 0) {
return (int)tag;
}
lfs2_ctz_fromle32(&ctz);
if (lfs2_tag_type3(tag) == LFS2_TYPE_CTZSTRUCT) {
info->size = ctz.size;
} else if (lfs2_tag_type3(tag) == LFS2_TYPE_INLINESTRUCT) {
info->size = lfs2_tag_size(tag);
}
return 0;
}
struct lfs2_dir_find_match {
lfs2_t *lfs2;
const void *name;
lfs2_size_t size;
};
static int lfs2_dir_find_match(void *data,
lfs2_tag_t tag, const void *buffer) {
struct lfs2_dir_find_match *name = data;
lfs2_t *lfs2 = name->lfs2;
const struct lfs2_diskoff *disk = buffer;
// compare with disk
lfs2_size_t diff = lfs2_min(name->size, lfs2_tag_size(tag));
int res = lfs2_bd_cmp(lfs2,
NULL, &lfs2->rcache, diff,
disk->block, disk->off, name->name, diff);
if (res != LFS2_CMP_EQ) {
return res;
}
// only equal if our size is still the same
if (name->size != lfs2_tag_size(tag)) {
return (name->size < lfs2_tag_size(tag)) ? LFS2_CMP_LT : LFS2_CMP_GT;
}
// found a match!
return LFS2_CMP_EQ;
}
static lfs2_stag_t lfs2_dir_find(lfs2_t *lfs2, lfs2_mdir_t *dir,
const char **path, uint16_t *id) {
// we reduce path to a single name if we can find it
const char *name = *path;
if (id) {
*id = 0x3ff;
}
// default to root dir
lfs2_stag_t tag = LFS2_MKTAG(LFS2_TYPE_DIR, 0x3ff, 0);
dir->tail[0] = lfs2->root[0];
dir->tail[1] = lfs2->root[1];
while (true) {
nextname:
// skip slashes
name += strspn(name, "/");
lfs2_size_t namelen = strcspn(name, "/");
// skip '.' and root '..'
if ((namelen == 1 && memcmp(name, ".", 1) == 0) ||
(namelen == 2 && memcmp(name, "..", 2) == 0)) {
name += namelen;
goto nextname;
}
// skip if matched by '..' in name
const char *suffix = name + namelen;
lfs2_size_t sufflen;
int depth = 1;
while (true) {
suffix += strspn(suffix, "/");
sufflen = strcspn(suffix, "/");
if (sufflen == 0) {
break;
}
if (sufflen == 2 && memcmp(suffix, "..", 2) == 0) {
depth -= 1;
if (depth == 0) {
name = suffix + sufflen;
goto nextname;
}
} else {
depth += 1;
}
suffix += sufflen;
}
// found path
if (name[0] == '\0') {
return tag;
}
// update what we've found so far
*path = name;
// only continue if we hit a directory
if (lfs2_tag_type3(tag) != LFS2_TYPE_DIR) {
return LFS2_ERR_NOTDIR;
}
// grab the entry data
if (lfs2_tag_id(tag) != 0x3ff) {
lfs2_stag_t res = lfs2_dir_get(lfs2, dir, LFS2_MKTAG(0x700, 0x3ff, 0),
LFS2_MKTAG(LFS2_TYPE_STRUCT, lfs2_tag_id(tag), 8), dir->tail);
if (res < 0) {
return res;
}
lfs2_pair_fromle32(dir->tail);
}
// find entry matching name
while (true) {
tag = lfs2_dir_fetchmatch(lfs2, dir, dir->tail,
LFS2_MKTAG(0x780, 0, 0),
LFS2_MKTAG(LFS2_TYPE_NAME, 0, namelen),
// are we last name?
(strchr(name, '/') == NULL) ? id : NULL,
lfs2_dir_find_match, &(struct lfs2_dir_find_match){
lfs2, name, namelen});
if (tag < 0) {
return tag;
}
if (tag) {
break;
}
if (!dir->split) {
return LFS2_ERR_NOENT;
}
}
// to next name
name += namelen;
}
}
// commit logic
struct lfs2_commit {
lfs2_block_t block;
lfs2_off_t off;
lfs2_tag_t ptag;
uint32_t crc;
lfs2_off_t begin;
lfs2_off_t end;
};
#ifndef LFS2_READONLY
static int lfs2_dir_commitprog(lfs2_t *lfs2, struct lfs2_commit *commit,
const void *buffer, lfs2_size_t size) {
int err = lfs2_bd_prog(lfs2,
&lfs2->pcache, &lfs2->rcache, false,
commit->block, commit->off ,
(const uint8_t*)buffer, size);
if (err) {
return err;
}
commit->crc = lfs2_crc(commit->crc, buffer, size);
commit->off += size;
return 0;
}
#endif
#ifndef LFS2_READONLY
static int lfs2_dir_commitattr(lfs2_t *lfs2, struct lfs2_commit *commit,
lfs2_tag_t tag, const void *buffer) {
// check if we fit
lfs2_size_t dsize = lfs2_tag_dsize(tag);
if (commit->off + dsize > commit->end) {
return LFS2_ERR_NOSPC;
}
// write out tag
lfs2_tag_t ntag = lfs2_tobe32((tag & 0x7fffffff) ^ commit->ptag);
int err = lfs2_dir_commitprog(lfs2, commit, &ntag, sizeof(ntag));
if (err) {
return err;
}
if (!(tag & 0x80000000)) {
// from memory
err = lfs2_dir_commitprog(lfs2, commit, buffer, dsize-sizeof(tag));
if (err) {
return err;
}
} else {
// from disk
const struct lfs2_diskoff *disk = buffer;
for (lfs2_off_t i = 0; i < dsize-sizeof(tag); i++) {
// rely on caching to make this efficient
uint8_t dat;
err = lfs2_bd_read(lfs2,
NULL, &lfs2->rcache, dsize-sizeof(tag)-i,
disk->block, disk->off+i, &dat, 1);
if (err) {
return err;
}
err = lfs2_dir_commitprog(lfs2, commit, &dat, 1);
if (err) {
return err;
}
}
}
commit->ptag = tag & 0x7fffffff;
return 0;
}
#endif
#ifndef LFS2_READONLY
static int lfs2_dir_commitcrc(lfs2_t *lfs2, struct lfs2_commit *commit) {
// align to program units
const lfs2_off_t end = lfs2_alignup(commit->off + 2*sizeof(uint32_t),
lfs2->cfg->prog_size);
lfs2_off_t off1 = 0;
uint32_t crc1 = 0;
// create crc tags to fill up remainder of commit, note that
// padding is not crced, which lets fetches skip padding but
// makes committing a bit more complicated
while (commit->off < end) {
lfs2_off_t off = commit->off + sizeof(lfs2_tag_t);
lfs2_off_t noff = lfs2_min(end - off, 0x3fe) + off;
if (noff < end) {
noff = lfs2_min(noff, end - 2*sizeof(uint32_t));
}
// read erased state from next program unit
lfs2_tag_t tag = 0xffffffff;
int err = lfs2_bd_read(lfs2,
NULL, &lfs2->rcache, sizeof(tag),
commit->block, noff, &tag, sizeof(tag));
if (err && err != LFS2_ERR_CORRUPT) {
return err;
}
// build crc tag
bool reset = ~lfs2_frombe32(tag) >> 31;
tag = LFS2_MKTAG(LFS2_TYPE_CRC + reset, 0x3ff, noff - off);
// write out crc
uint32_t footer[2];
footer[0] = lfs2_tobe32(tag ^ commit->ptag);
commit->crc = lfs2_crc(commit->crc, &footer[0], sizeof(footer[0]));
footer[1] = lfs2_tole32(commit->crc);
err = lfs2_bd_prog(lfs2,
&lfs2->pcache, &lfs2->rcache, false,
commit->block, commit->off, &footer, sizeof(footer));
if (err) {
return err;
}
// keep track of non-padding checksum to verify
if (off1 == 0) {
off1 = commit->off + sizeof(uint32_t);
crc1 = commit->crc;
}
commit->off += sizeof(tag)+lfs2_tag_size(tag);
commit->ptag = tag ^ ((lfs2_tag_t)reset << 31);
commit->crc = 0xffffffff; // reset crc for next "commit"
}
// flush buffers
int err = lfs2_bd_sync(lfs2, &lfs2->pcache, &lfs2->rcache, false);
if (err) {
return err;
}
// successful commit, check checksums to make sure
lfs2_off_t off = commit->begin;
lfs2_off_t noff = off1;
while (off < end) {
uint32_t crc = 0xffffffff;
for (lfs2_off_t i = off; i < noff+sizeof(uint32_t); i++) {
// check against written crc, may catch blocks that
// become readonly and match our commit size exactly
if (i == off1 && crc != crc1) {
return LFS2_ERR_CORRUPT;
}
// leave it up to caching to make this efficient
uint8_t dat;
err = lfs2_bd_read(lfs2,
NULL, &lfs2->rcache, noff+sizeof(uint32_t)-i,
commit->block, i, &dat, 1);
if (err) {
return err;
}
crc = lfs2_crc(crc, &dat, 1);
}
// detected write error?
if (crc != 0) {
return LFS2_ERR_CORRUPT;
}
// skip padding
off = lfs2_min(end - noff, 0x3fe) + noff;
if (off < end) {
off = lfs2_min(off, end - 2*sizeof(uint32_t));
}
noff = off + sizeof(uint32_t);
}
return 0;
}
#endif
#ifndef LFS2_READONLY
static int lfs2_dir_alloc(lfs2_t *lfs2, lfs2_mdir_t *dir) {
// allocate pair of dir blocks (backwards, so we write block 1 first)
for (int i = 0; i < 2; i++) {
int err = lfs2_alloc(lfs2, &dir->pair[(i+1)%2]);
if (err) {
return err;
}
}
// zero for reproducibility in case initial block is unreadable
dir->rev = 0;
// rather than clobbering one of the blocks we just pretend
// the revision may be valid
int err = lfs2_bd_read(lfs2,
NULL, &lfs2->rcache, sizeof(dir->rev),
dir->pair[0], 0, &dir->rev, sizeof(dir->rev));
dir->rev = lfs2_fromle32(dir->rev);
if (err && err != LFS2_ERR_CORRUPT) {
return err;
}
// to make sure we don't immediately evict, align the new revision count
// to our block_cycles modulus, see lfs2_dir_compact for why our modulus
// is tweaked this way
if (lfs2->cfg->block_cycles > 0) {
dir->rev = lfs2_alignup(dir->rev, ((lfs2->cfg->block_cycles+1)|1));
}
// set defaults
dir->off = sizeof(dir->rev);
dir->etag = 0xffffffff;
dir->count = 0;
dir->tail[0] = LFS2_BLOCK_NULL;
dir->tail[1] = LFS2_BLOCK_NULL;
dir->erased = false;
dir->split = false;
// don't write out yet, let caller take care of that
return 0;
}
#endif
#ifndef LFS2_READONLY
static int lfs2_dir_drop(lfs2_t *lfs2, lfs2_mdir_t *dir, lfs2_mdir_t *tail) {
// steal state
int err = lfs2_dir_getgstate(lfs2, tail, &lfs2->gdelta);
if (err) {
return err;
}
// steal tail
lfs2_pair_tole32(tail->tail);
err = lfs2_dir_commit(lfs2, dir, LFS2_MKATTRS(
{LFS2_MKTAG(LFS2_TYPE_TAIL + tail->split, 0x3ff, 8), tail->tail}));
lfs2_pair_fromle32(tail->tail);
if (err) {
return err;
}
return 0;
}
#endif
#ifndef LFS2_READONLY
static int lfs2_dir_split(lfs2_t *lfs2,
lfs2_mdir_t *dir, const struct lfs2_mattr *attrs, int attrcount,
lfs2_mdir_t *source, uint16_t split, uint16_t end) {
// create tail metadata pair
lfs2_mdir_t tail;
int err = lfs2_dir_alloc(lfs2, &tail);
if (err) {
return err;
}
tail.split = dir->split;
tail.tail[0] = dir->tail[0];
tail.tail[1] = dir->tail[1];
// note we don't care about LFS2_OK_RELOCATED
int res = lfs2_dir_compact(lfs2, &tail, attrs, attrcount, source, split, end);
if (res < 0) {
return res;
}
dir->tail[0] = tail.pair[0];
dir->tail[1] = tail.pair[1];
dir->split = true;
// update root if needed
if (lfs2_pair_cmp(dir->pair, lfs2->root) == 0 && split == 0) {
lfs2->root[0] = tail.pair[0];
lfs2->root[1] = tail.pair[1];
}
return 0;
}
#endif
#ifndef LFS2_READONLY
static int lfs2_dir_commit_size(void *p, lfs2_tag_t tag, const void *buffer) {
lfs2_size_t *size = p;
(void)buffer;
*size += lfs2_tag_dsize(tag);
return 0;
}
#endif
#ifndef LFS2_READONLY
struct lfs2_dir_commit_commit {
lfs2_t *lfs2;
struct lfs2_commit *commit;
};
#endif
#ifndef LFS2_READONLY
static int lfs2_dir_commit_commit(void *p, lfs2_tag_t tag, const void *buffer) {
struct lfs2_dir_commit_commit *commit = p;
return lfs2_dir_commitattr(commit->lfs2, commit->commit, tag, buffer);
}
#endif
#ifndef LFS2_READONLY
static bool lfs2_dir_needsrelocation(lfs2_t *lfs2, lfs2_mdir_t *dir) {
// If our revision count == n * block_cycles, we should force a relocation,
// this is how littlefs wear-levels at the metadata-pair level. Note that we
// actually use (block_cycles+1)|1, this is to avoid two corner cases:
// 1. block_cycles = 1, which would prevent relocations from terminating
// 2. block_cycles = 2n, which, due to aliasing, would only ever relocate
// one metadata block in the pair, effectively making this useless
return (lfs2->cfg->block_cycles > 0
&& ((dir->rev + 1) % ((lfs2->cfg->block_cycles+1)|1) == 0));
}
#endif
#ifndef LFS2_READONLY
static int lfs2_dir_compact(lfs2_t *lfs2,
lfs2_mdir_t *dir, const struct lfs2_mattr *attrs, int attrcount,
lfs2_mdir_t *source, uint16_t begin, uint16_t end) {
// save some state in case block is bad
bool relocated = false;
bool tired = lfs2_dir_needsrelocation(lfs2, dir);
// increment revision count
dir->rev += 1;
// do not proactively relocate blocks during migrations, this
// can cause a number of failure states such: clobbering the
// v1 superblock if we relocate root, and invalidating directory
// pointers if we relocate the head of a directory. On top of
// this, relocations increase the overall complexity of
// lfs2_migration, which is already a delicate operation.
#ifdef LFS2_MIGRATE
if (lfs2->lfs21) {
tired = false;
}
#endif
if (tired && lfs2_pair_cmp(dir->pair, (const lfs2_block_t[2]){0, 1}) != 0) {
// we're writing too much, time to relocate
goto relocate;
}
// begin loop to commit compaction to blocks until a compact sticks
while (true) {
{
// setup commit state
struct lfs2_commit commit = {
.block = dir->pair[1],
.off = 0,
.ptag = 0xffffffff,
.crc = 0xffffffff,
.begin = 0,
.end = (lfs2->cfg->metadata_max ?
lfs2->cfg->metadata_max : lfs2->cfg->block_size) - 8,
};
// erase block to write to
int err = lfs2_bd_erase(lfs2, dir->pair[1]);
if (err) {
if (err == LFS2_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// write out header
dir->rev = lfs2_tole32(dir->rev);
err = lfs2_dir_commitprog(lfs2, &commit,
&dir->rev, sizeof(dir->rev));
dir->rev = lfs2_fromle32(dir->rev);
if (err) {
if (err == LFS2_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// traverse the directory, this time writing out all unique tags
err = lfs2_dir_traverse(lfs2,
source, 0, 0xffffffff, attrs, attrcount,
LFS2_MKTAG(0x400, 0x3ff, 0),
LFS2_MKTAG(LFS2_TYPE_NAME, 0, 0),
begin, end, -begin,
lfs2_dir_commit_commit, &(struct lfs2_dir_commit_commit){
lfs2, &commit});
if (err) {
if (err == LFS2_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// commit tail, which may be new after last size check
if (!lfs2_pair_isnull(dir->tail)) {
lfs2_pair_tole32(dir->tail);
err = lfs2_dir_commitattr(lfs2, &commit,
LFS2_MKTAG(LFS2_TYPE_TAIL + dir->split, 0x3ff, 8),
dir->tail);
lfs2_pair_fromle32(dir->tail);
if (err) {
if (err == LFS2_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
// bring over gstate?
lfs2_gstate_t delta = {0};
if (!relocated) {
lfs2_gstate_xor(&delta, &lfs2->gdisk);
lfs2_gstate_xor(&delta, &lfs2->gstate);
}
lfs2_gstate_xor(&delta, &lfs2->gdelta);
delta.tag &= ~LFS2_MKTAG(0, 0, 0x3ff);
err = lfs2_dir_getgstate(lfs2, dir, &delta);
if (err) {
return err;
}
if (!lfs2_gstate_iszero(&delta)) {
lfs2_gstate_tole32(&delta);
err = lfs2_dir_commitattr(lfs2, &commit,
LFS2_MKTAG(LFS2_TYPE_MOVESTATE, 0x3ff,
sizeof(delta)), &delta);
if (err) {
if (err == LFS2_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
// complete commit with crc
err = lfs2_dir_commitcrc(lfs2, &commit);
if (err) {
if (err == LFS2_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// successful compaction, swap dir pair to indicate most recent
LFS2_ASSERT(commit.off % lfs2->cfg->prog_size == 0);
lfs2_pair_swap(dir->pair);
dir->count = end - begin;
dir->off = commit.off;
dir->etag = commit.ptag;
// update gstate
lfs2->gdelta = (lfs2_gstate_t){0};
if (!relocated) {
lfs2->gdisk = lfs2->gstate;
}
}
break;
relocate:
// commit was corrupted, drop caches and prepare to relocate block
relocated = true;
lfs2_cache_drop(lfs2, &lfs2->pcache);
if (!tired) {
LFS2_DEBUG("Bad block at 0x%"PRIx32, dir->pair[1]);
}
// can't relocate superblock, filesystem is now frozen
if (lfs2_pair_cmp(dir->pair, (const lfs2_block_t[2]){0, 1}) == 0) {
LFS2_WARN("Superblock 0x%"PRIx32" has become unwritable",
dir->pair[1]);
return LFS2_ERR_NOSPC;
}
// relocate half of pair
int err = lfs2_alloc(lfs2, &dir->pair[1]);
if (err && (err != LFS2_ERR_NOSPC || !tired)) {
return err;
}
tired = false;
continue;
}
return relocated ? LFS2_OK_RELOCATED : 0;
}
#endif
#ifndef LFS2_READONLY
static int lfs2_dir_splittingcompact(lfs2_t *lfs2, lfs2_mdir_t *dir,
const struct lfs2_mattr *attrs, int attrcount,
lfs2_mdir_t *source, uint16_t begin, uint16_t end) {
while (true) {
// find size of first split, we do this by halving the split until
// the metadata is guaranteed to fit
//
// Note that this isn't a true binary search, we never increase the
// split size. This may result in poorly distributed metadata but isn't
// worth the extra code size or performance hit to fix.
lfs2_size_t split = begin;
while (end - split > 1) {
lfs2_size_t size = 0;
int err = lfs2_dir_traverse(lfs2,
source, 0, 0xffffffff, attrs, attrcount,
LFS2_MKTAG(0x400, 0x3ff, 0),
LFS2_MKTAG(LFS2_TYPE_NAME, 0, 0),
split, end, -split,
lfs2_dir_commit_size, &size);
if (err) {
return err;
}
// space is complicated, we need room for tail, crc, gstate,
// cleanup delete, and we cap at half a block to give room
// for metadata updates.
if (end - split < 0xff
&& size <= lfs2_min(lfs2->cfg->block_size - 36,
lfs2_alignup(
(lfs2->cfg->metadata_max
? lfs2->cfg->metadata_max
: lfs2->cfg->block_size)/2,
lfs2->cfg->prog_size))) {
break;
}
split = split + ((end - split) / 2);
}
if (split == begin) {
// no split needed
break;
}
// split into two metadata pairs and continue
int err = lfs2_dir_split(lfs2, dir, attrs, attrcount,
source, split, end);
if (err && err != LFS2_ERR_NOSPC) {
return err;
}
if (err) {
// we can't allocate a new block, try to compact with degraded
// performance
LFS2_WARN("Unable to split {0x%"PRIx32", 0x%"PRIx32"}",
dir->pair[0], dir->pair[1]);
break;
} else {
end = split;
}
}
if (lfs2_dir_needsrelocation(lfs2, dir)
&& lfs2_pair_cmp(dir->pair, (const lfs2_block_t[2]){0, 1}) == 0) {
// oh no! we're writing too much to the superblock,
// should we expand?
lfs2_ssize_t size = lfs2_fs_rawsize(lfs2);
if (size < 0) {
return size;
}
// do we have extra space? littlefs can't reclaim this space
// by itself, so expand cautiously
if ((lfs2_size_t)size < lfs2->cfg->block_count/2) {
LFS2_DEBUG("Expanding superblock at rev %"PRIu32, dir->rev);
int err = lfs2_dir_split(lfs2, dir, attrs, attrcount,
source, begin, end);
if (err && err != LFS2_ERR_NOSPC) {
return err;
}
if (err) {
// welp, we tried, if we ran out of space there's not much
// we can do, we'll error later if we've become frozen
LFS2_WARN("Unable to expand superblock");
} else {
end = begin;
}
}
}
return lfs2_dir_compact(lfs2, dir, attrs, attrcount, source, begin, end);
}
#endif
#ifndef LFS2_READONLY
static int lfs2_dir_relocatingcommit(lfs2_t *lfs2, lfs2_mdir_t *dir,
const lfs2_block_t pair[2],
const struct lfs2_mattr *attrs, int attrcount,
lfs2_mdir_t *pdir) {
int state = 0;
// calculate changes to the directory
bool hasdelete = false;
for (int i = 0; i < attrcount; i++) {
if (lfs2_tag_type3(attrs[i].tag) == LFS2_TYPE_CREATE) {
dir->count += 1;
} else if (lfs2_tag_type3(attrs[i].tag) == LFS2_TYPE_DELETE) {
LFS2_ASSERT(dir->count > 0);
dir->count -= 1;
hasdelete = true;
} else if (lfs2_tag_type1(attrs[i].tag) == LFS2_TYPE_TAIL) {
dir->tail[0] = ((lfs2_block_t*)attrs[i].buffer)[0];
dir->tail[1] = ((lfs2_block_t*)attrs[i].buffer)[1];
dir->split = (lfs2_tag_chunk(attrs[i].tag) & 1);
lfs2_pair_fromle32(dir->tail);
}
}
// should we actually drop the directory block?
if (hasdelete && dir->count == 0) {
LFS2_ASSERT(pdir);
int err = lfs2_fs_pred(lfs2, dir->pair, pdir);
if (err && err != LFS2_ERR_NOENT) {
return err;
}
if (err != LFS2_ERR_NOENT && pdir->split) {
state = LFS2_OK_DROPPED;
goto fixmlist;
}
}
if (dir->erased) {
// try to commit
struct lfs2_commit commit = {
.block = dir->pair[0],
.off = dir->off,
.ptag = dir->etag,
.crc = 0xffffffff,
.begin = dir->off,
.end = (lfs2->cfg->metadata_max ?
lfs2->cfg->metadata_max : lfs2->cfg->block_size) - 8,
};
// traverse attrs that need to be written out
lfs2_pair_tole32(dir->tail);
int err = lfs2_dir_traverse(lfs2,
dir, dir->off, dir->etag, attrs, attrcount,
0, 0, 0, 0, 0,
lfs2_dir_commit_commit, &(struct lfs2_dir_commit_commit){
lfs2, &commit});
lfs2_pair_fromle32(dir->tail);
if (err) {
if (err == LFS2_ERR_NOSPC || err == LFS2_ERR_CORRUPT) {
goto compact;
}
return err;
}
// commit any global diffs if we have any
lfs2_gstate_t delta = {0};
lfs2_gstate_xor(&delta, &lfs2->gstate);
lfs2_gstate_xor(&delta, &lfs2->gdisk);
lfs2_gstate_xor(&delta, &lfs2->gdelta);
delta.tag &= ~LFS2_MKTAG(0, 0, 0x3ff);
if (!lfs2_gstate_iszero(&delta)) {
err = lfs2_dir_getgstate(lfs2, dir, &delta);
if (err) {
return err;
}
lfs2_gstate_tole32(&delta);
err = lfs2_dir_commitattr(lfs2, &commit,
LFS2_MKTAG(LFS2_TYPE_MOVESTATE, 0x3ff,
sizeof(delta)), &delta);
if (err) {
if (err == LFS2_ERR_NOSPC || err == LFS2_ERR_CORRUPT) {
goto compact;
}
return err;
}
}
// finalize commit with the crc
err = lfs2_dir_commitcrc(lfs2, &commit);
if (err) {
if (err == LFS2_ERR_NOSPC || err == LFS2_ERR_CORRUPT) {
goto compact;
}
return err;
}
// successful commit, update dir
LFS2_ASSERT(commit.off % lfs2->cfg->prog_size == 0);
dir->off = commit.off;
dir->etag = commit.ptag;
// and update gstate
lfs2->gdisk = lfs2->gstate;
lfs2->gdelta = (lfs2_gstate_t){0};
goto fixmlist;
}
compact:
// fall back to compaction
lfs2_cache_drop(lfs2, &lfs2->pcache);
state = lfs2_dir_splittingcompact(lfs2, dir, attrs, attrcount,
dir, 0, dir->count);
if (state < 0) {
return state;
}
goto fixmlist;
fixmlist:;
// this complicated bit of logic is for fixing up any active
// metadata-pairs that we may have affected
//
// note we have to make two passes since the mdir passed to
// lfs2_dir_commit could also be in this list, and even then
// we need to copy the pair so they don't get clobbered if we refetch
// our mdir.
lfs2_block_t oldpair[2] = {pair[0], pair[1]};
for (struct lfs2_mlist *d = lfs2->mlist; d; d = d->next) {
if (lfs2_pair_cmp(d->m.pair, oldpair) == 0) {
d->m = *dir;
if (d->m.pair != pair) {
for (int i = 0; i < attrcount; i++) {
if (lfs2_tag_type3(attrs[i].tag) == LFS2_TYPE_DELETE &&
d->id == lfs2_tag_id(attrs[i].tag)) {
d->m.pair[0] = LFS2_BLOCK_NULL;
d->m.pair[1] = LFS2_BLOCK_NULL;
} else if (lfs2_tag_type3(attrs[i].tag) == LFS2_TYPE_DELETE &&
d->id > lfs2_tag_id(attrs[i].tag)) {
d->id -= 1;
if (d->type == LFS2_TYPE_DIR) {
((lfs2_dir_t*)d)->pos -= 1;
}
} else if (lfs2_tag_type3(attrs[i].tag) == LFS2_TYPE_CREATE &&
d->id >= lfs2_tag_id(attrs[i].tag)) {
d->id += 1;
if (d->type == LFS2_TYPE_DIR) {
((lfs2_dir_t*)d)->pos += 1;
}
}
}
}
while (d->id >= d->m.count && d->m.split) {
// we split and id is on tail now
d->id -= d->m.count;
int err = lfs2_dir_fetch(lfs2, &d->m, d->m.tail);
if (err) {
return err;
}
}
}
}
return state;
}
#endif
#ifndef LFS2_READONLY
static int lfs2_dir_orphaningcommit(lfs2_t *lfs2, lfs2_mdir_t *dir,
const struct lfs2_mattr *attrs, int attrcount) {
// check for any inline files that aren't RAM backed and
// forcefully evict them, needed for filesystem consistency
for (lfs2_file_t *f = (lfs2_file_t*)lfs2->mlist; f; f = f->next) {
if (dir != &f->m && lfs2_pair_cmp(f->m.pair, dir->pair) == 0 &&
f->type == LFS2_TYPE_REG && (f->flags & LFS2_F_INLINE) &&
f->ctz.size > lfs2->cfg->cache_size) {
int err = lfs2_file_outline(lfs2, f);
if (err) {
return err;
}
err = lfs2_file_flush(lfs2, f);
if (err) {
return err;
}
}
}
lfs2_block_t lpair[2] = {dir->pair[0], dir->pair[1]};
lfs2_mdir_t ldir = *dir;
lfs2_mdir_t pdir;
int state = lfs2_dir_relocatingcommit(lfs2, &ldir, dir->pair,
attrs, attrcount, &pdir);
if (state < 0) {
return state;
}
// update if we're not in mlist, note we may have already been
// updated if we are in mlist
if (lfs2_pair_cmp(dir->pair, lpair) == 0) {
*dir = ldir;
}
// commit was successful, but may require other changes in the
// filesystem, these would normally be tail recursive, but we have
// flattened them here avoid unbounded stack usage
// need to drop?
if (state == LFS2_OK_DROPPED) {
// steal state
int err = lfs2_dir_getgstate(lfs2, dir, &lfs2->gdelta);
if (err) {
return err;
}
// steal tail, note that this can't create a recursive drop
lpair[0] = pdir.pair[0];
lpair[1] = pdir.pair[1];
lfs2_pair_tole32(dir->tail);
state = lfs2_dir_relocatingcommit(lfs2, &pdir, lpair, LFS2_MKATTRS(
{LFS2_MKTAG(LFS2_TYPE_TAIL + dir->split, 0x3ff, 8),
dir->tail}),
NULL);
lfs2_pair_fromle32(dir->tail);
if (state < 0) {
return state;
}
ldir = pdir;
}
// need to relocate?
bool orphans = false;
while (state == LFS2_OK_RELOCATED) {
LFS2_DEBUG("Relocating {0x%"PRIx32", 0x%"PRIx32"} "
"-> {0x%"PRIx32", 0x%"PRIx32"}",
lpair[0], lpair[1], ldir.pair[0], ldir.pair[1]);
state = 0;
// update internal root
if (lfs2_pair_cmp(lpair, lfs2->root) == 0) {
lfs2->root[0] = ldir.pair[0];
lfs2->root[1] = ldir.pair[1];
}
// update internally tracked dirs
for (struct lfs2_mlist *d = lfs2->mlist; d; d = d->next) {
if (lfs2_pair_cmp(lpair, d->m.pair) == 0) {
d->m.pair[0] = ldir.pair[0];
d->m.pair[1] = ldir.pair[1];
}
if (d->type == LFS2_TYPE_DIR &&
lfs2_pair_cmp(lpair, ((lfs2_dir_t*)d)->head) == 0) {
((lfs2_dir_t*)d)->head[0] = ldir.pair[0];
((lfs2_dir_t*)d)->head[1] = ldir.pair[1];
}
}
// find parent
lfs2_stag_t tag = lfs2_fs_parent(lfs2, lpair, &pdir);
if (tag < 0 && tag != LFS2_ERR_NOENT) {
return tag;
}
bool hasparent = (tag != LFS2_ERR_NOENT);
if (tag != LFS2_ERR_NOENT) {
// note that if we have a parent, we must have a pred, so this will
// always create an orphan
int err = lfs2_fs_preporphans(lfs2, +1);
if (err) {
return err;
}
// fix pending move in this pair? this looks like an optimization but
// is in fact _required_ since relocating may outdate the move.
uint16_t moveid = 0x3ff;
if (lfs2_gstate_hasmovehere(&lfs2->gstate, pdir.pair)) {
moveid = lfs2_tag_id(lfs2->gstate.tag);
LFS2_DEBUG("Fixing move while relocating "
"{0x%"PRIx32", 0x%"PRIx32"} 0x%"PRIx16"\n",
pdir.pair[0], pdir.pair[1], moveid);
lfs2_fs_prepmove(lfs2, 0x3ff, NULL);
if (moveid < lfs2_tag_id(tag)) {
tag -= LFS2_MKTAG(0, 1, 0);
}
}
lfs2_block_t ppair[2] = {pdir.pair[0], pdir.pair[1]};
lfs2_pair_tole32(ldir.pair);
state = lfs2_dir_relocatingcommit(lfs2, &pdir, ppair, LFS2_MKATTRS(
{LFS2_MKTAG_IF(moveid != 0x3ff,
LFS2_TYPE_DELETE, moveid, 0), NULL},
{tag, ldir.pair}),
NULL);
lfs2_pair_fromle32(ldir.pair);
if (state < 0) {
return state;
}
if (state == LFS2_OK_RELOCATED) {
lpair[0] = ppair[0];
lpair[1] = ppair[1];
ldir = pdir;
orphans = true;
continue;
}
}
// find pred
int err = lfs2_fs_pred(lfs2, lpair, &pdir);
if (err && err != LFS2_ERR_NOENT) {
return err;
}
LFS2_ASSERT(!(hasparent && err == LFS2_ERR_NOENT));
// if we can't find dir, it must be new
if (err != LFS2_ERR_NOENT) {
if (lfs2_gstate_hasorphans(&lfs2->gstate)) {
// next step, clean up orphans
err = lfs2_fs_preporphans(lfs2, -hasparent);
if (err) {
return err;
}
}
// fix pending move in this pair? this looks like an optimization
// but is in fact _required_ since relocating may outdate the move.
uint16_t moveid = 0x3ff;
if (lfs2_gstate_hasmovehere(&lfs2->gstate, pdir.pair)) {
moveid = lfs2_tag_id(lfs2->gstate.tag);
LFS2_DEBUG("Fixing move while relocating "
"{0x%"PRIx32", 0x%"PRIx32"} 0x%"PRIx16"\n",
pdir.pair[0], pdir.pair[1], moveid);
lfs2_fs_prepmove(lfs2, 0x3ff, NULL);
}
// replace bad pair, either we clean up desync, or no desync occured
lpair[0] = pdir.pair[0];
lpair[1] = pdir.pair[1];
lfs2_pair_tole32(ldir.pair);
state = lfs2_dir_relocatingcommit(lfs2, &pdir, lpair, LFS2_MKATTRS(
{LFS2_MKTAG_IF(moveid != 0x3ff,
LFS2_TYPE_DELETE, moveid, 0), NULL},
{LFS2_MKTAG(LFS2_TYPE_TAIL + pdir.split, 0x3ff, 8),
ldir.pair}),
NULL);
lfs2_pair_fromle32(ldir.pair);
if (state < 0) {
return state;
}
ldir = pdir;
}
}
return orphans ? LFS2_OK_ORPHANED : 0;
}
#endif
#ifndef LFS2_READONLY
static int lfs2_dir_commit(lfs2_t *lfs2, lfs2_mdir_t *dir,
const struct lfs2_mattr *attrs, int attrcount) {
int orphans = lfs2_dir_orphaningcommit(lfs2, dir, attrs, attrcount);
if (orphans < 0) {
return orphans;
}
if (orphans) {
// make sure we've removed all orphans, this is a noop if there
// are none, but if we had nested blocks failures we may have
// created some
int err = lfs2_fs_deorphan(lfs2, false);
if (err) {
return err;
}
}
return 0;
}
#endif
/// Top level directory operations ///
#ifndef LFS2_READONLY
static int lfs2_rawmkdir(lfs2_t *lfs2, const char *path) {
// deorphan if we haven't yet, needed at most once after poweron
int err = lfs2_fs_forceconsistency(lfs2);
if (err) {
return err;
}
struct lfs2_mlist cwd;
cwd.next = lfs2->mlist;
uint16_t id;
err = lfs2_dir_find(lfs2, &cwd.m, &path, &id);
if (!(err == LFS2_ERR_NOENT && id != 0x3ff)) {
return (err < 0) ? err : LFS2_ERR_EXIST;
}
// check that name fits
lfs2_size_t nlen = strlen(path);
if (nlen > lfs2->name_max) {
return LFS2_ERR_NAMETOOLONG;
}
// build up new directory
lfs2_alloc_ack(lfs2);
lfs2_mdir_t dir;
err = lfs2_dir_alloc(lfs2, &dir);
if (err) {
return err;
}
// find end of list
lfs2_mdir_t pred = cwd.m;
while (pred.split) {
err = lfs2_dir_fetch(lfs2, &pred, pred.tail);
if (err) {
return err;
}
}
// setup dir
lfs2_pair_tole32(pred.tail);
err = lfs2_dir_commit(lfs2, &dir, LFS2_MKATTRS(
{LFS2_MKTAG(LFS2_TYPE_SOFTTAIL, 0x3ff, 8), pred.tail}));
lfs2_pair_fromle32(pred.tail);
if (err) {
return err;
}
// current block not end of list?
if (cwd.m.split) {
// update tails, this creates a desync
err = lfs2_fs_preporphans(lfs2, +1);
if (err) {
return err;
}
// it's possible our predecessor has to be relocated, and if
// our parent is our predecessor's predecessor, this could have
// caused our parent to go out of date, fortunately we can hook
// ourselves into littlefs to catch this
cwd.type = 0;
cwd.id = 0;
lfs2->mlist = &cwd;
lfs2_pair_tole32(dir.pair);
err = lfs2_dir_commit(lfs2, &pred, LFS2_MKATTRS(
{LFS2_MKTAG(LFS2_TYPE_SOFTTAIL, 0x3ff, 8), dir.pair}));
lfs2_pair_fromle32(dir.pair);
if (err) {
lfs2->mlist = cwd.next;
return err;
}
lfs2->mlist = cwd.next;
err = lfs2_fs_preporphans(lfs2, -1);
if (err) {
return err;
}
}
// now insert into our parent block
lfs2_pair_tole32(dir.pair);
err = lfs2_dir_commit(lfs2, &cwd.m, LFS2_MKATTRS(
{LFS2_MKTAG(LFS2_TYPE_CREATE, id, 0), NULL},
{LFS2_MKTAG(LFS2_TYPE_DIR, id, nlen), path},
{LFS2_MKTAG(LFS2_TYPE_DIRSTRUCT, id, 8), dir.pair},
{LFS2_MKTAG_IF(!cwd.m.split,
LFS2_TYPE_SOFTTAIL, 0x3ff, 8), dir.pair}));
lfs2_pair_fromle32(dir.pair);
if (err) {
return err;
}
return 0;
}
#endif
static int lfs2_dir_rawopen(lfs2_t *lfs2, lfs2_dir_t *dir, const char *path) {
lfs2_stag_t tag = lfs2_dir_find(lfs2, &dir->m, &path, NULL);
if (tag < 0) {
return tag;
}
if (lfs2_tag_type3(tag) != LFS2_TYPE_DIR) {
return LFS2_ERR_NOTDIR;
}
lfs2_block_t pair[2];
if (lfs2_tag_id(tag) == 0x3ff) {
// handle root dir separately
pair[0] = lfs2->root[0];
pair[1] = lfs2->root[1];
} else {
// get dir pair from parent
lfs2_stag_t res = lfs2_dir_get(lfs2, &dir->m, LFS2_MKTAG(0x700, 0x3ff, 0),
LFS2_MKTAG(LFS2_TYPE_STRUCT, lfs2_tag_id(tag), 8), pair);
if (res < 0) {
return res;
}
lfs2_pair_fromle32(pair);
}
// fetch first pair
int err = lfs2_dir_fetch(lfs2, &dir->m, pair);
if (err) {
return err;
}
// setup entry
dir->head[0] = dir->m.pair[0];
dir->head[1] = dir->m.pair[1];
dir->id = 0;
dir->pos = 0;
// add to list of mdirs
dir->type = LFS2_TYPE_DIR;
lfs2_mlist_append(lfs2, (struct lfs2_mlist *)dir);
return 0;
}
static int lfs2_dir_rawclose(lfs2_t *lfs2, lfs2_dir_t *dir) {
// remove from list of mdirs
lfs2_mlist_remove(lfs2, (struct lfs2_mlist *)dir);
return 0;
}
static int lfs2_dir_rawread(lfs2_t *lfs2, lfs2_dir_t *dir, struct lfs2_info *info) {
memset(info, 0, sizeof(*info));
// special offset for '.' and '..'
if (dir->pos == 0) {
info->type = LFS2_TYPE_DIR;
strcpy(info->name, ".");
dir->pos += 1;
return true;
} else if (dir->pos == 1) {
info->type = LFS2_TYPE_DIR;
strcpy(info->name, "..");
dir->pos += 1;
return true;
}
while (true) {
if (dir->id == dir->m.count) {
if (!dir->m.split) {
return false;
}
int err = lfs2_dir_fetch(lfs2, &dir->m, dir->m.tail);
if (err) {
return err;
}
dir->id = 0;
}
int err = lfs2_dir_getinfo(lfs2, &dir->m, dir->id, info);
if (err && err != LFS2_ERR_NOENT) {
return err;
}
dir->id += 1;
if (err != LFS2_ERR_NOENT) {
break;
}
}
dir->pos += 1;
return true;
}
static int lfs2_dir_rawseek(lfs2_t *lfs2, lfs2_dir_t *dir, lfs2_off_t off) {
// simply walk from head dir
int err = lfs2_dir_rawrewind(lfs2, dir);
if (err) {
return err;
}
// first two for ./..
dir->pos = lfs2_min(2, off);
off -= dir->pos;
// skip superblock entry
dir->id = (off > 0 && lfs2_pair_cmp(dir->head, lfs2->root) == 0);
while (off > 0) {
int diff = lfs2_min(dir->m.count - dir->id, off);
dir->id += diff;
dir->pos += diff;
off -= diff;
if (dir->id == dir->m.count) {
if (!dir->m.split) {
return LFS2_ERR_INVAL;
}
err = lfs2_dir_fetch(lfs2, &dir->m, dir->m.tail);
if (err) {
return err;
}
dir->id = 0;
}
}
return 0;
}
static lfs2_soff_t lfs2_dir_rawtell(lfs2_t *lfs2, lfs2_dir_t *dir) {
(void)lfs2;
return dir->pos;
}
static int lfs2_dir_rawrewind(lfs2_t *lfs2, lfs2_dir_t *dir) {
// reload the head dir
int err = lfs2_dir_fetch(lfs2, &dir->m, dir->head);
if (err) {
return err;
}
dir->id = 0;
dir->pos = 0;
return 0;
}
/// File index list operations ///
static int lfs2_ctz_index(lfs2_t *lfs2, lfs2_off_t *off) {
lfs2_off_t size = *off;
lfs2_off_t b = lfs2->cfg->block_size - 2*4;
lfs2_off_t i = size / b;
if (i == 0) {
return 0;
}
i = (size - 4*(lfs2_popc(i-1)+2)) / b;
*off = size - b*i - 4*lfs2_popc(i);
return i;
}
static int lfs2_ctz_find(lfs2_t *lfs2,
const lfs2_cache_t *pcache, lfs2_cache_t *rcache,
lfs2_block_t head, lfs2_size_t size,
lfs2_size_t pos, lfs2_block_t *block, lfs2_off_t *off) {
if (size == 0) {
*block = LFS2_BLOCK_NULL;
*off = 0;
return 0;
}
lfs2_off_t current = lfs2_ctz_index(lfs2, &(lfs2_off_t){size-1});
lfs2_off_t target = lfs2_ctz_index(lfs2, &pos);
while (current > target) {
lfs2_size_t skip = lfs2_min(
lfs2_npw2(current-target+1) - 1,
lfs2_ctz(current));
int err = lfs2_bd_read(lfs2,
pcache, rcache, sizeof(head),
head, 4*skip, &head, sizeof(head));
head = lfs2_fromle32(head);
if (err) {
return err;
}
current -= 1 << skip;
}
*block = head;
*off = pos;
return 0;
}
#ifndef LFS2_READONLY
static int lfs2_ctz_extend(lfs2_t *lfs2,
lfs2_cache_t *pcache, lfs2_cache_t *rcache,
lfs2_block_t head, lfs2_size_t size,
lfs2_block_t *block, lfs2_off_t *off) {
while (true) {
// go ahead and grab a block
lfs2_block_t nblock;
int err = lfs2_alloc(lfs2, &nblock);
if (err) {
return err;
}
{
err = lfs2_bd_erase(lfs2, nblock);
if (err) {
if (err == LFS2_ERR_CORRUPT) {
goto relocate;
}
return err;
}
if (size == 0) {
*block = nblock;
*off = 0;
return 0;
}
lfs2_size_t noff = size - 1;
lfs2_off_t index = lfs2_ctz_index(lfs2, &noff);
noff = noff + 1;
// just copy out the last block if it is incomplete
if (noff != lfs2->cfg->block_size) {
for (lfs2_off_t i = 0; i < noff; i++) {
uint8_t data;
err = lfs2_bd_read(lfs2,
NULL, rcache, noff-i,
head, i, &data, 1);
if (err) {
return err;
}
err = lfs2_bd_prog(lfs2,
pcache, rcache, true,
nblock, i, &data, 1);
if (err) {
if (err == LFS2_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
*block = nblock;
*off = noff;
return 0;
}
// append block
index += 1;
lfs2_size_t skips = lfs2_ctz(index) + 1;
lfs2_block_t nhead = head;
for (lfs2_off_t i = 0; i < skips; i++) {
nhead = lfs2_tole32(nhead);
err = lfs2_bd_prog(lfs2, pcache, rcache, true,
nblock, 4*i, &nhead, 4);
nhead = lfs2_fromle32(nhead);
if (err) {
if (err == LFS2_ERR_CORRUPT) {
goto relocate;
}
return err;
}
if (i != skips-1) {
err = lfs2_bd_read(lfs2,
NULL, rcache, sizeof(nhead),
nhead, 4*i, &nhead, sizeof(nhead));
nhead = lfs2_fromle32(nhead);
if (err) {
return err;
}
}
}
*block = nblock;
*off = 4*skips;
return 0;
}
relocate:
LFS2_DEBUG("Bad block at 0x%"PRIx32, nblock);
// just clear cache and try a new block
lfs2_cache_drop(lfs2, pcache);
}
}
#endif
static int lfs2_ctz_traverse(lfs2_t *lfs2,
const lfs2_cache_t *pcache, lfs2_cache_t *rcache,
lfs2_block_t head, lfs2_size_t size,
int (*cb)(void*, lfs2_block_t), void *data) {
if (size == 0) {
return 0;
}
lfs2_off_t index = lfs2_ctz_index(lfs2, &(lfs2_off_t){size-1});
while (true) {
int err = cb(data, head);
if (err) {
return err;
}
if (index == 0) {
return 0;
}
lfs2_block_t heads[2];
int count = 2 - (index & 1);
err = lfs2_bd_read(lfs2,
pcache, rcache, count*sizeof(head),
head, 0, &heads, count*sizeof(head));
heads[0] = lfs2_fromle32(heads[0]);
heads[1] = lfs2_fromle32(heads[1]);
if (err) {
return err;
}
for (int i = 0; i < count-1; i++) {
err = cb(data, heads[i]);
if (err) {
return err;
}
}
head = heads[count-1];
index -= count;
}
}
/// Top level file operations ///
static int lfs2_file_rawopencfg(lfs2_t *lfs2, lfs2_file_t *file,
const char *path, int flags,
const struct lfs2_file_config *cfg) {
#ifndef LFS2_READONLY
// deorphan if we haven't yet, needed at most once after poweron
if ((flags & LFS2_O_WRONLY) == LFS2_O_WRONLY) {
int err = lfs2_fs_forceconsistency(lfs2);
if (err) {
return err;
}
}
#else
LFS2_ASSERT((flags & LFS2_O_RDONLY) == LFS2_O_RDONLY);
#endif
// setup simple file details
int err;
file->cfg = cfg;
file->flags = flags;
file->pos = 0;
file->off = 0;
file->cache.buffer = NULL;
// allocate entry for file if it doesn't exist
lfs2_stag_t tag = lfs2_dir_find(lfs2, &file->m, &path, &file->id);
if (tag < 0 && !(tag == LFS2_ERR_NOENT && file->id != 0x3ff)) {
err = tag;
goto cleanup;
}
// get id, add to list of mdirs to catch update changes
file->type = LFS2_TYPE_REG;
lfs2_mlist_append(lfs2, (struct lfs2_mlist *)file);
#ifdef LFS2_READONLY
if (tag == LFS2_ERR_NOENT) {
err = LFS2_ERR_NOENT;
goto cleanup;
#else
if (tag == LFS2_ERR_NOENT) {
if (!(flags & LFS2_O_CREAT)) {
err = LFS2_ERR_NOENT;
goto cleanup;
}
// check that name fits
lfs2_size_t nlen = strlen(path);
if (nlen > lfs2->name_max) {
err = LFS2_ERR_NAMETOOLONG;
goto cleanup;
}
// get next slot and create entry to remember name
err = lfs2_dir_commit(lfs2, &file->m, LFS2_MKATTRS(
{LFS2_MKTAG(LFS2_TYPE_CREATE, file->id, 0), NULL},
{LFS2_MKTAG(LFS2_TYPE_REG, file->id, nlen), path},
{LFS2_MKTAG(LFS2_TYPE_INLINESTRUCT, file->id, 0), NULL}));
// it may happen that the file name doesn't fit in the metadata blocks, e.g., a 256 byte file name will
// not fit in a 128 byte block.
err = (err == LFS2_ERR_NOSPC) ? LFS2_ERR_NAMETOOLONG : err;
if (err) {
goto cleanup;
}
tag = LFS2_MKTAG(LFS2_TYPE_INLINESTRUCT, 0, 0);
} else if (flags & LFS2_O_EXCL) {
err = LFS2_ERR_EXIST;
goto cleanup;
#endif
} else if (lfs2_tag_type3(tag) != LFS2_TYPE_REG) {
err = LFS2_ERR_ISDIR;
goto cleanup;
#ifndef LFS2_READONLY
} else if (flags & LFS2_O_TRUNC) {
// truncate if requested
tag = LFS2_MKTAG(LFS2_TYPE_INLINESTRUCT, file->id, 0);
file->flags |= LFS2_F_DIRTY;
#endif
} else {
// try to load what's on disk, if it's inlined we'll fix it later
tag = lfs2_dir_get(lfs2, &file->m, LFS2_MKTAG(0x700, 0x3ff, 0),
LFS2_MKTAG(LFS2_TYPE_STRUCT, file->id, 8), &file->ctz);
if (tag < 0) {
err = tag;
goto cleanup;
}
lfs2_ctz_fromle32(&file->ctz);
}
// fetch attrs
for (unsigned i = 0; i < file->cfg->attr_count; i++) {
// if opened for read / read-write operations
if ((file->flags & LFS2_O_RDONLY) == LFS2_O_RDONLY) {
lfs2_stag_t res = lfs2_dir_get(lfs2, &file->m,
LFS2_MKTAG(0x7ff, 0x3ff, 0),
LFS2_MKTAG(LFS2_TYPE_USERATTR + file->cfg->attrs[i].type,
file->id, file->cfg->attrs[i].size),
file->cfg->attrs[i].buffer);
if (res < 0 && res != LFS2_ERR_NOENT) {
err = res;
goto cleanup;
}
}
#ifndef LFS2_READONLY
// if opened for write / read-write operations
if ((file->flags & LFS2_O_WRONLY) == LFS2_O_WRONLY) {
if (file->cfg->attrs[i].size > lfs2->attr_max) {
err = LFS2_ERR_NOSPC;
goto cleanup;
}
file->flags |= LFS2_F_DIRTY;
}
#endif
}
// allocate buffer if needed
if (file->cfg->buffer) {
file->cache.buffer = file->cfg->buffer;
} else {
file->cache.buffer = lfs2_malloc(lfs2->cfg->cache_size);
if (!file->cache.buffer) {
err = LFS2_ERR_NOMEM;
goto cleanup;
}
}
// zero to avoid information leak
lfs2_cache_zero(lfs2, &file->cache);
if (lfs2_tag_type3(tag) == LFS2_TYPE_INLINESTRUCT) {
// load inline files
file->ctz.head = LFS2_BLOCK_INLINE;
file->ctz.size = lfs2_tag_size(tag);
file->flags |= LFS2_F_INLINE;
file->cache.block = file->ctz.head;
file->cache.off = 0;
file->cache.size = lfs2->cfg->cache_size;
// don't always read (may be new/trunc file)
if (file->ctz.size > 0) {
lfs2_stag_t res = lfs2_dir_get(lfs2, &file->m,
LFS2_MKTAG(0x700, 0x3ff, 0),
LFS2_MKTAG(LFS2_TYPE_STRUCT, file->id,
lfs2_min(file->cache.size, 0x3fe)),
file->cache.buffer);
if (res < 0) {
err = res;
goto cleanup;
}
}
}
return 0;
cleanup:
// clean up lingering resources
#ifndef LFS2_READONLY
file->flags |= LFS2_F_ERRED;
#endif
lfs2_file_rawclose(lfs2, file);
return err;
}
#ifndef LFS2_NO_MALLOC
static int lfs2_file_rawopen(lfs2_t *lfs2, lfs2_file_t *file,
const char *path, int flags) {
static const struct lfs2_file_config defaults = {0};
int err = lfs2_file_rawopencfg(lfs2, file, path, flags, &defaults);
return err;
}
#endif
static int lfs2_file_rawclose(lfs2_t *lfs2, lfs2_file_t *file) {
#ifndef LFS2_READONLY
int err = lfs2_file_rawsync(lfs2, file);
#else
int err = 0;
#endif
// remove from list of mdirs
lfs2_mlist_remove(lfs2, (struct lfs2_mlist*)file);
// clean up memory
if (!file->cfg->buffer) {
lfs2_free(file->cache.buffer);
}
return err;
}
#ifndef LFS2_READONLY
static int lfs2_file_relocate(lfs2_t *lfs2, lfs2_file_t *file) {
while (true) {
// just relocate what exists into new block
lfs2_block_t nblock;
int err = lfs2_alloc(lfs2, &nblock);
if (err) {
return err;
}
err = lfs2_bd_erase(lfs2, nblock);
if (err) {
if (err == LFS2_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// either read from dirty cache or disk
for (lfs2_off_t i = 0; i < file->off; i++) {
uint8_t data;
if (file->flags & LFS2_F_INLINE) {
err = lfs2_dir_getread(lfs2, &file->m,
// note we evict inline files before they can be dirty
NULL, &file->cache, file->off-i,
LFS2_MKTAG(0xfff, 0x1ff, 0),
LFS2_MKTAG(LFS2_TYPE_INLINESTRUCT, file->id, 0),
i, &data, 1);
if (err) {
return err;
}
} else {
err = lfs2_bd_read(lfs2,
&file->cache, &lfs2->rcache, file->off-i,
file->block, i, &data, 1);
if (err) {
return err;
}
}
err = lfs2_bd_prog(lfs2,
&lfs2->pcache, &lfs2->rcache, true,
nblock, i, &data, 1);
if (err) {
if (err == LFS2_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
// copy over new state of file
memcpy(file->cache.buffer, lfs2->pcache.buffer, lfs2->cfg->cache_size);
file->cache.block = lfs2->pcache.block;
file->cache.off = lfs2->pcache.off;
file->cache.size = lfs2->pcache.size;
lfs2_cache_zero(lfs2, &lfs2->pcache);
file->block = nblock;
file->flags |= LFS2_F_WRITING;
return 0;
relocate:
LFS2_DEBUG("Bad block at 0x%"PRIx32, nblock);
// just clear cache and try a new block
lfs2_cache_drop(lfs2, &lfs2->pcache);
}
}
#endif
#ifndef LFS2_READONLY
static int lfs2_file_outline(lfs2_t *lfs2, lfs2_file_t *file) {
file->off = file->pos;
lfs2_alloc_ack(lfs2);
int err = lfs2_file_relocate(lfs2, file);
if (err) {
return err;
}
file->flags &= ~LFS2_F_INLINE;
return 0;
}
#endif
static int lfs2_file_flush(lfs2_t *lfs2, lfs2_file_t *file) {
if (file->flags & LFS2_F_READING) {
if (!(file->flags & LFS2_F_INLINE)) {
lfs2_cache_drop(lfs2, &file->cache);
}
file->flags &= ~LFS2_F_READING;
}
#ifndef LFS2_READONLY
if (file->flags & LFS2_F_WRITING) {
lfs2_off_t pos = file->pos;
if (!(file->flags & LFS2_F_INLINE)) {
// copy over anything after current branch
lfs2_file_t orig = {
.ctz.head = file->ctz.head,
.ctz.size = file->ctz.size,
.flags = LFS2_O_RDONLY,
.pos = file->pos,
.cache = lfs2->rcache,
};
lfs2_cache_drop(lfs2, &lfs2->rcache);
while (file->pos < file->ctz.size) {
// copy over a byte at a time, leave it up to caching
// to make this efficient
uint8_t data;
lfs2_ssize_t res = lfs2_file_flushedread(lfs2, &orig, &data, 1);
if (res < 0) {
return res;
}
res = lfs2_file_flushedwrite(lfs2, file, &data, 1);
if (res < 0) {
return res;
}
// keep our reference to the rcache in sync
if (lfs2->rcache.block != LFS2_BLOCK_NULL) {
lfs2_cache_drop(lfs2, &orig.cache);
lfs2_cache_drop(lfs2, &lfs2->rcache);
}
}
// write out what we have
while (true) {
int err = lfs2_bd_flush(lfs2, &file->cache, &lfs2->rcache, true);
if (err) {
if (err == LFS2_ERR_CORRUPT) {
goto relocate;
}
return err;
}
break;
relocate:
LFS2_DEBUG("Bad block at 0x%"PRIx32, file->block);
err = lfs2_file_relocate(lfs2, file);
if (err) {
return err;
}
}
} else {
file->pos = lfs2_max(file->pos, file->ctz.size);
}
// actual file updates
file->ctz.head = file->block;
file->ctz.size = file->pos;
file->flags &= ~LFS2_F_WRITING;
file->flags |= LFS2_F_DIRTY;
file->pos = pos;
}
#endif
return 0;
}
#ifndef LFS2_READONLY
static int lfs2_file_rawsync(lfs2_t *lfs2, lfs2_file_t *file) {
if (file->flags & LFS2_F_ERRED) {
// it's not safe to do anything if our file errored
return 0;
}
int err = lfs2_file_flush(lfs2, file);
if (err) {
file->flags |= LFS2_F_ERRED;
return err;
}
if ((file->flags & LFS2_F_DIRTY) &&
!lfs2_pair_isnull(file->m.pair)) {
// update dir entry
uint16_t type;
const void *buffer;
lfs2_size_t size;
struct lfs2_ctz ctz;
if (file->flags & LFS2_F_INLINE) {
// inline the whole file
type = LFS2_TYPE_INLINESTRUCT;
buffer = file->cache.buffer;
size = file->ctz.size;
} else {
// update the ctz reference
type = LFS2_TYPE_CTZSTRUCT;
// copy ctz so alloc will work during a relocate
ctz = file->ctz;
lfs2_ctz_tole32(&ctz);
buffer = &ctz;
size = sizeof(ctz);
}
// commit file data and attributes
err = lfs2_dir_commit(lfs2, &file->m, LFS2_MKATTRS(
{LFS2_MKTAG(type, file->id, size), buffer},
{LFS2_MKTAG(LFS2_FROM_USERATTRS, file->id,
file->cfg->attr_count), file->cfg->attrs}));
if (err) {
file->flags |= LFS2_F_ERRED;
return err;
}
file->flags &= ~LFS2_F_DIRTY;
}
return 0;
}
#endif
static lfs2_ssize_t lfs2_file_flushedread(lfs2_t *lfs2, lfs2_file_t *file,
void *buffer, lfs2_size_t size) {
uint8_t *data = buffer;
lfs2_size_t nsize = size;
if (file->pos >= file->ctz.size) {
// eof if past end
return 0;
}
size = lfs2_min(size, file->ctz.size - file->pos);
nsize = size;
while (nsize > 0) {
// check if we need a new block
if (!(file->flags & LFS2_F_READING) ||
file->off == lfs2->cfg->block_size) {
if (!(file->flags & LFS2_F_INLINE)) {
int err = lfs2_ctz_find(lfs2, NULL, &file->cache,
file->ctz.head, file->ctz.size,
file->pos, &file->block, &file->off);
if (err) {
return err;
}
} else {
file->block = LFS2_BLOCK_INLINE;
file->off = file->pos;
}
file->flags |= LFS2_F_READING;
}
// read as much as we can in current block
lfs2_size_t diff = lfs2_min(nsize, lfs2->cfg->block_size - file->off);
if (file->flags & LFS2_F_INLINE) {
int err = lfs2_dir_getread(lfs2, &file->m,
NULL, &file->cache, lfs2->cfg->block_size,
LFS2_MKTAG(0xfff, 0x1ff, 0),
LFS2_MKTAG(LFS2_TYPE_INLINESTRUCT, file->id, 0),
file->off, data, diff);
if (err) {
return err;
}
} else {
int err = lfs2_bd_read(lfs2,
NULL, &file->cache, lfs2->cfg->block_size,
file->block, file->off, data, diff);
if (err) {
return err;
}
}
file->pos += diff;
file->off += diff;
data += diff;
nsize -= diff;
}
return size;
}
static lfs2_ssize_t lfs2_file_rawread(lfs2_t *lfs2, lfs2_file_t *file,
void *buffer, lfs2_size_t size) {
LFS2_ASSERT((file->flags & LFS2_O_RDONLY) == LFS2_O_RDONLY);
#ifndef LFS2_READONLY
if (file->flags & LFS2_F_WRITING) {
// flush out any writes
int err = lfs2_file_flush(lfs2, file);
if (err) {
return err;
}
}
#endif
return lfs2_file_flushedread(lfs2, file, buffer, size);
}
#ifndef LFS2_READONLY
static lfs2_ssize_t lfs2_file_flushedwrite(lfs2_t *lfs2, lfs2_file_t *file,
const void *buffer, lfs2_size_t size) {
const uint8_t *data = buffer;
lfs2_size_t nsize = size;
if ((file->flags & LFS2_F_INLINE) &&
lfs2_max(file->pos+nsize, file->ctz.size) >
lfs2_min(0x3fe, lfs2_min(
lfs2->cfg->cache_size,
(lfs2->cfg->metadata_max ?
lfs2->cfg->metadata_max : lfs2->cfg->block_size) / 8))) {
// inline file doesn't fit anymore
int err = lfs2_file_outline(lfs2, file);
if (err) {
file->flags |= LFS2_F_ERRED;
return err;
}
}
while (nsize > 0) {
// check if we need a new block
if (!(file->flags & LFS2_F_WRITING) ||
file->off == lfs2->cfg->block_size) {
if (!(file->flags & LFS2_F_INLINE)) {
if (!(file->flags & LFS2_F_WRITING) && file->pos > 0) {
// find out which block we're extending from
int err = lfs2_ctz_find(lfs2, NULL, &file->cache,
file->ctz.head, file->ctz.size,
file->pos-1, &file->block, &file->off);
if (err) {
file->flags |= LFS2_F_ERRED;
return err;
}
// mark cache as dirty since we may have read data into it
lfs2_cache_zero(lfs2, &file->cache);
}
// extend file with new blocks
lfs2_alloc_ack(lfs2);
int err = lfs2_ctz_extend(lfs2, &file->cache, &lfs2->rcache,
file->block, file->pos,
&file->block, &file->off);
if (err) {
file->flags |= LFS2_F_ERRED;
return err;
}
} else {
file->block = LFS2_BLOCK_INLINE;
file->off = file->pos;
}
file->flags |= LFS2_F_WRITING;
}
// program as much as we can in current block
lfs2_size_t diff = lfs2_min(nsize, lfs2->cfg->block_size - file->off);
while (true) {
int err = lfs2_bd_prog(lfs2, &file->cache, &lfs2->rcache, true,
file->block, file->off, data, diff);
if (err) {
if (err == LFS2_ERR_CORRUPT) {
goto relocate;
}
file->flags |= LFS2_F_ERRED;
return err;
}
break;
relocate:
err = lfs2_file_relocate(lfs2, file);
if (err) {
file->flags |= LFS2_F_ERRED;
return err;
}
}
file->pos += diff;
file->off += diff;
data += diff;
nsize -= diff;
lfs2_alloc_ack(lfs2);
}
return size;
}
static lfs2_ssize_t lfs2_file_rawwrite(lfs2_t *lfs2, lfs2_file_t *file,
const void *buffer, lfs2_size_t size) {
LFS2_ASSERT((file->flags & LFS2_O_WRONLY) == LFS2_O_WRONLY);
if (file->flags & LFS2_F_READING) {
// drop any reads
int err = lfs2_file_flush(lfs2, file);
if (err) {
return err;
}
}
if ((file->flags & LFS2_O_APPEND) && file->pos < file->ctz.size) {
file->pos = file->ctz.size;
}
if (file->pos + size > lfs2->file_max) {
// Larger than file limit?
return LFS2_ERR_FBIG;
}
if (!(file->flags & LFS2_F_WRITING) && file->pos > file->ctz.size) {
// fill with zeros
lfs2_off_t pos = file->pos;
file->pos = file->ctz.size;
while (file->pos < pos) {
lfs2_ssize_t res = lfs2_file_flushedwrite(lfs2, file, &(uint8_t){0}, 1);
if (res < 0) {
return res;
}
}
}
lfs2_ssize_t nsize = lfs2_file_flushedwrite(lfs2, file, buffer, size);
if (nsize < 0) {
return nsize;
}
file->flags &= ~LFS2_F_ERRED;
return nsize;
}
#endif
static lfs2_soff_t lfs2_file_rawseek(lfs2_t *lfs2, lfs2_file_t *file,
lfs2_soff_t off, int whence) {
// find new pos
lfs2_off_t npos = file->pos;
if (whence == LFS2_SEEK_SET) {
npos = off;
} else if (whence == LFS2_SEEK_CUR) {
if ((lfs2_soff_t)file->pos + off < 0) {
return LFS2_ERR_INVAL;
} else {
npos = file->pos + off;
}
} else if (whence == LFS2_SEEK_END) {
lfs2_soff_t res = lfs2_file_rawsize(lfs2, file) + off;
if (res < 0) {
return LFS2_ERR_INVAL;
} else {
npos = res;
}
}
if (npos > lfs2->file_max) {
// file position out of range
return LFS2_ERR_INVAL;
}
if (file->pos == npos) {
// noop - position has not changed
return npos;
}
// if we're only reading and our new offset is still in the file's cache
// we can avoid flushing and needing to reread the data
if (
#ifndef LFS2_READONLY
!(file->flags & LFS2_F_WRITING)
#else
true
#endif
) {
int oindex = lfs2_ctz_index(lfs2, &(lfs2_off_t){file->pos});
lfs2_off_t noff = npos;
int nindex = lfs2_ctz_index(lfs2, &noff);
if (oindex == nindex
&& noff >= file->cache.off
&& noff < file->cache.off + file->cache.size) {
file->pos = npos;
file->off = noff;
return npos;
}
}
// write out everything beforehand, may be noop if rdonly
int err = lfs2_file_flush(lfs2, file);
if (err) {
return err;
}
// update pos
file->pos = npos;
return npos;
}
#ifndef LFS2_READONLY
static int lfs2_file_rawtruncate(lfs2_t *lfs2, lfs2_file_t *file, lfs2_off_t size) {
LFS2_ASSERT((file->flags & LFS2_O_WRONLY) == LFS2_O_WRONLY);
if (size > LFS2_FILE_MAX) {
return LFS2_ERR_INVAL;
}
lfs2_off_t pos = file->pos;
lfs2_off_t oldsize = lfs2_file_rawsize(lfs2, file);
if (size < oldsize) {
// need to flush since directly changing metadata
int err = lfs2_file_flush(lfs2, file);
if (err) {
return err;
}
// lookup new head in ctz skip list
err = lfs2_ctz_find(lfs2, NULL, &file->cache,
file->ctz.head, file->ctz.size,
size, &file->block, &file->off);
if (err) {
return err;
}
// need to set pos/block/off consistently so seeking back to
// the old position does not get confused
file->pos = size;
file->ctz.head = file->block;
file->ctz.size = size;
file->flags |= LFS2_F_DIRTY | LFS2_F_READING;
} else if (size > oldsize) {
// flush+seek if not already at end
lfs2_soff_t res = lfs2_file_rawseek(lfs2, file, 0, LFS2_SEEK_END);
if (res < 0) {
return (int)res;
}
// fill with zeros
while (file->pos < size) {
res = lfs2_file_rawwrite(lfs2, file, &(uint8_t){0}, 1);
if (res < 0) {
return (int)res;
}
}
}
// restore pos
lfs2_soff_t res = lfs2_file_rawseek(lfs2, file, pos, LFS2_SEEK_SET);
if (res < 0) {
return (int)res;
}
return 0;
}
#endif
static lfs2_soff_t lfs2_file_rawtell(lfs2_t *lfs2, lfs2_file_t *file) {
(void)lfs2;
return file->pos;
}
static int lfs2_file_rawrewind(lfs2_t *lfs2, lfs2_file_t *file) {
lfs2_soff_t res = lfs2_file_rawseek(lfs2, file, 0, LFS2_SEEK_SET);
if (res < 0) {
return (int)res;
}
return 0;
}
static lfs2_soff_t lfs2_file_rawsize(lfs2_t *lfs2, lfs2_file_t *file) {
(void)lfs2;
#ifndef LFS2_READONLY
if (file->flags & LFS2_F_WRITING) {
return lfs2_max(file->pos, file->ctz.size);
}
#endif
return file->ctz.size;
}
/// General fs operations ///
static int lfs2_rawstat(lfs2_t *lfs2, const char *path, struct lfs2_info *info) {
lfs2_mdir_t cwd;
lfs2_stag_t tag = lfs2_dir_find(lfs2, &cwd, &path, NULL);
if (tag < 0) {
return (int)tag;
}
return lfs2_dir_getinfo(lfs2, &cwd, lfs2_tag_id(tag), info);
}
#ifndef LFS2_READONLY
static int lfs2_rawremove(lfs2_t *lfs2, const char *path) {
// deorphan if we haven't yet, needed at most once after poweron
int err = lfs2_fs_forceconsistency(lfs2);
if (err) {
return err;
}
lfs2_mdir_t cwd;
lfs2_stag_t tag = lfs2_dir_find(lfs2, &cwd, &path, NULL);
if (tag < 0 || lfs2_tag_id(tag) == 0x3ff) {
return (tag < 0) ? (int)tag : LFS2_ERR_INVAL;
}
struct lfs2_mlist dir;
dir.next = lfs2->mlist;
if (lfs2_tag_type3(tag) == LFS2_TYPE_DIR) {
// must be empty before removal
lfs2_block_t pair[2];
lfs2_stag_t res = lfs2_dir_get(lfs2, &cwd, LFS2_MKTAG(0x700, 0x3ff, 0),
LFS2_MKTAG(LFS2_TYPE_STRUCT, lfs2_tag_id(tag), 8), pair);
if (res < 0) {
return (int)res;
}
lfs2_pair_fromle32(pair);
err = lfs2_dir_fetch(lfs2, &dir.m, pair);
if (err) {
return err;
}
if (dir.m.count > 0 || dir.m.split) {
return LFS2_ERR_NOTEMPTY;
}
// mark fs as orphaned
err = lfs2_fs_preporphans(lfs2, +1);
if (err) {
return err;
}
// I know it's crazy but yes, dir can be changed by our parent's
// commit (if predecessor is child)
dir.type = 0;
dir.id = 0;
lfs2->mlist = &dir;
}
// delete the entry
err = lfs2_dir_commit(lfs2, &cwd, LFS2_MKATTRS(
{LFS2_MKTAG(LFS2_TYPE_DELETE, lfs2_tag_id(tag), 0), NULL}));
if (err) {
lfs2->mlist = dir.next;
return err;
}
lfs2->mlist = dir.next;
if (lfs2_tag_type3(tag) == LFS2_TYPE_DIR) {
// fix orphan
err = lfs2_fs_preporphans(lfs2, -1);
if (err) {
return err;
}
err = lfs2_fs_pred(lfs2, dir.m.pair, &cwd);
if (err) {
return err;
}
err = lfs2_dir_drop(lfs2, &cwd, &dir.m);
if (err) {
return err;
}
}
return 0;
}
#endif
#ifndef LFS2_READONLY
static int lfs2_rawrename(lfs2_t *lfs2, const char *oldpath, const char *newpath) {
// deorphan if we haven't yet, needed at most once after poweron
int err = lfs2_fs_forceconsistency(lfs2);
if (err) {
return err;
}
// find old entry
lfs2_mdir_t oldcwd;
lfs2_stag_t oldtag = lfs2_dir_find(lfs2, &oldcwd, &oldpath, NULL);
if (oldtag < 0 || lfs2_tag_id(oldtag) == 0x3ff) {
return (oldtag < 0) ? (int)oldtag : LFS2_ERR_INVAL;
}
// find new entry
lfs2_mdir_t newcwd;
uint16_t newid;
lfs2_stag_t prevtag = lfs2_dir_find(lfs2, &newcwd, &newpath, &newid);
if ((prevtag < 0 || lfs2_tag_id(prevtag) == 0x3ff) &&
!(prevtag == LFS2_ERR_NOENT && newid != 0x3ff)) {
return (prevtag < 0) ? (int)prevtag : LFS2_ERR_INVAL;
}
// if we're in the same pair there's a few special cases...
bool samepair = (lfs2_pair_cmp(oldcwd.pair, newcwd.pair) == 0);
uint16_t newoldid = lfs2_tag_id(oldtag);
struct lfs2_mlist prevdir;
prevdir.next = lfs2->mlist;
if (prevtag == LFS2_ERR_NOENT) {
// check that name fits
lfs2_size_t nlen = strlen(newpath);
if (nlen > lfs2->name_max) {
return LFS2_ERR_NAMETOOLONG;
}
// there is a small chance we are being renamed in the same
// directory/ to an id less than our old id, the global update
// to handle this is a bit messy
if (samepair && newid <= newoldid) {
newoldid += 1;
}
} else if (lfs2_tag_type3(prevtag) != lfs2_tag_type3(oldtag)) {
return LFS2_ERR_ISDIR;
} else if (samepair && newid == newoldid) {
// we're renaming to ourselves??
return 0;
} else if (lfs2_tag_type3(prevtag) == LFS2_TYPE_DIR) {
// must be empty before removal
lfs2_block_t prevpair[2];
lfs2_stag_t res = lfs2_dir_get(lfs2, &newcwd, LFS2_MKTAG(0x700, 0x3ff, 0),
LFS2_MKTAG(LFS2_TYPE_STRUCT, newid, 8), prevpair);
if (res < 0) {
return (int)res;
}
lfs2_pair_fromle32(prevpair);
// must be empty before removal
err = lfs2_dir_fetch(lfs2, &prevdir.m, prevpair);
if (err) {
return err;
}
if (prevdir.m.count > 0 || prevdir.m.split) {
return LFS2_ERR_NOTEMPTY;
}
// mark fs as orphaned
err = lfs2_fs_preporphans(lfs2, +1);
if (err) {
return err;
}
// I know it's crazy but yes, dir can be changed by our parent's
// commit (if predecessor is child)
prevdir.type = 0;
prevdir.id = 0;
lfs2->mlist = &prevdir;
}
if (!samepair) {
lfs2_fs_prepmove(lfs2, newoldid, oldcwd.pair);
}
// move over all attributes
err = lfs2_dir_commit(lfs2, &newcwd, LFS2_MKATTRS(
{LFS2_MKTAG_IF(prevtag != LFS2_ERR_NOENT,
LFS2_TYPE_DELETE, newid, 0), NULL},
{LFS2_MKTAG(LFS2_TYPE_CREATE, newid, 0), NULL},
{LFS2_MKTAG(lfs2_tag_type3(oldtag), newid, strlen(newpath)), newpath},
{LFS2_MKTAG(LFS2_FROM_MOVE, newid, lfs2_tag_id(oldtag)), &oldcwd},
{LFS2_MKTAG_IF(samepair,
LFS2_TYPE_DELETE, newoldid, 0), NULL}));
if (err) {
lfs2->mlist = prevdir.next;
return err;
}
// let commit clean up after move (if we're different! otherwise move
// logic already fixed it for us)
if (!samepair && lfs2_gstate_hasmove(&lfs2->gstate)) {
// prep gstate and delete move id
lfs2_fs_prepmove(lfs2, 0x3ff, NULL);
err = lfs2_dir_commit(lfs2, &oldcwd, LFS2_MKATTRS(
{LFS2_MKTAG(LFS2_TYPE_DELETE, lfs2_tag_id(oldtag), 0), NULL}));
if (err) {
lfs2->mlist = prevdir.next;
return err;
}
}
lfs2->mlist = prevdir.next;
if (prevtag != LFS2_ERR_NOENT
&& lfs2_tag_type3(prevtag) == LFS2_TYPE_DIR) {
// fix orphan
err = lfs2_fs_preporphans(lfs2, -1);
if (err) {
return err;
}
err = lfs2_fs_pred(lfs2, prevdir.m.pair, &newcwd);
if (err) {
return err;
}
err = lfs2_dir_drop(lfs2, &newcwd, &prevdir.m);
if (err) {
return err;
}
}
return 0;
}
#endif
static lfs2_ssize_t lfs2_rawgetattr(lfs2_t *lfs2, const char *path,
uint8_t type, void *buffer, lfs2_size_t size) {
lfs2_mdir_t cwd;
lfs2_stag_t tag = lfs2_dir_find(lfs2, &cwd, &path, NULL);
if (tag < 0) {
return tag;
}
uint16_t id = lfs2_tag_id(tag);
if (id == 0x3ff) {
// special case for root
id = 0;
int err = lfs2_dir_fetch(lfs2, &cwd, lfs2->root);
if (err) {
return err;
}
}
tag = lfs2_dir_get(lfs2, &cwd, LFS2_MKTAG(0x7ff, 0x3ff, 0),
LFS2_MKTAG(LFS2_TYPE_USERATTR + type,
id, lfs2_min(size, lfs2->attr_max)),
buffer);
if (tag < 0) {
if (tag == LFS2_ERR_NOENT) {
return LFS2_ERR_NOATTR;
}
return tag;
}
return lfs2_tag_size(tag);
}
#ifndef LFS2_READONLY
static int lfs2_commitattr(lfs2_t *lfs2, const char *path,
uint8_t type, const void *buffer, lfs2_size_t size) {
lfs2_mdir_t cwd;
lfs2_stag_t tag = lfs2_dir_find(lfs2, &cwd, &path, NULL);
if (tag < 0) {
return tag;
}
uint16_t id = lfs2_tag_id(tag);
if (id == 0x3ff) {
// special case for root
id = 0;
int err = lfs2_dir_fetch(lfs2, &cwd, lfs2->root);
if (err) {
return err;
}
}
return lfs2_dir_commit(lfs2, &cwd, LFS2_MKATTRS(
{LFS2_MKTAG(LFS2_TYPE_USERATTR + type, id, size), buffer}));
}
#endif
#ifndef LFS2_READONLY
static int lfs2_rawsetattr(lfs2_t *lfs2, const char *path,
uint8_t type, const void *buffer, lfs2_size_t size) {
if (size > lfs2->attr_max) {
return LFS2_ERR_NOSPC;
}
return lfs2_commitattr(lfs2, path, type, buffer, size);
}
#endif
#ifndef LFS2_READONLY
static int lfs2_rawremoveattr(lfs2_t *lfs2, const char *path, uint8_t type) {
return lfs2_commitattr(lfs2, path, type, NULL, 0x3ff);
}
#endif
/// Filesystem operations ///
static int lfs2_init(lfs2_t *lfs2, const struct lfs2_config *cfg) {
lfs2->cfg = cfg;
int err = 0;
// validate that the lfs2-cfg sizes were initiated properly before
// performing any arithmetic logics with them
LFS2_ASSERT(lfs2->cfg->read_size != 0);
LFS2_ASSERT(lfs2->cfg->prog_size != 0);
LFS2_ASSERT(lfs2->cfg->cache_size != 0);
// check that block size is a multiple of cache size is a multiple
// of prog and read sizes
LFS2_ASSERT(lfs2->cfg->cache_size % lfs2->cfg->read_size == 0);
LFS2_ASSERT(lfs2->cfg->cache_size % lfs2->cfg->prog_size == 0);
LFS2_ASSERT(lfs2->cfg->block_size % lfs2->cfg->cache_size == 0);
// check that the block size is large enough to fit ctz pointers
LFS2_ASSERT(4*lfs2_npw2(0xffffffff / (lfs2->cfg->block_size-2*4))
<= lfs2->cfg->block_size);
// block_cycles = 0 is no longer supported.
//
// block_cycles is the number of erase cycles before littlefs evicts
// metadata logs as a part of wear leveling. Suggested values are in the
// range of 100-1000, or set block_cycles to -1 to disable block-level
// wear-leveling.
LFS2_ASSERT(lfs2->cfg->block_cycles != 0);
// setup read cache
if (lfs2->cfg->read_buffer) {
lfs2->rcache.buffer = lfs2->cfg->read_buffer;
} else {
lfs2->rcache.buffer = lfs2_malloc(lfs2->cfg->cache_size);
if (!lfs2->rcache.buffer) {
err = LFS2_ERR_NOMEM;
goto cleanup;
}
}
// setup program cache
if (lfs2->cfg->prog_buffer) {
lfs2->pcache.buffer = lfs2->cfg->prog_buffer;
} else {
lfs2->pcache.buffer = lfs2_malloc(lfs2->cfg->cache_size);
if (!lfs2->pcache.buffer) {
err = LFS2_ERR_NOMEM;
goto cleanup;
}
}
// zero to avoid information leaks
lfs2_cache_zero(lfs2, &lfs2->rcache);
lfs2_cache_zero(lfs2, &lfs2->pcache);
// setup lookahead, must be multiple of 64-bits, 32-bit aligned
LFS2_ASSERT(lfs2->cfg->lookahead_size > 0);
LFS2_ASSERT(lfs2->cfg->lookahead_size % 8 == 0 &&
(uintptr_t)lfs2->cfg->lookahead_buffer % 4 == 0);
if (lfs2->cfg->lookahead_buffer) {
lfs2->free.buffer = lfs2->cfg->lookahead_buffer;
} else {
lfs2->free.buffer = lfs2_malloc(lfs2->cfg->lookahead_size);
if (!lfs2->free.buffer) {
err = LFS2_ERR_NOMEM;
goto cleanup;
}
}
// check that the size limits are sane
LFS2_ASSERT(lfs2->cfg->name_max <= LFS2_NAME_MAX);
lfs2->name_max = lfs2->cfg->name_max;
if (!lfs2->name_max) {
lfs2->name_max = LFS2_NAME_MAX;
}
LFS2_ASSERT(lfs2->cfg->file_max <= LFS2_FILE_MAX);
lfs2->file_max = lfs2->cfg->file_max;
if (!lfs2->file_max) {
lfs2->file_max = LFS2_FILE_MAX;
}
LFS2_ASSERT(lfs2->cfg->attr_max <= LFS2_ATTR_MAX);
lfs2->attr_max = lfs2->cfg->attr_max;
if (!lfs2->attr_max) {
lfs2->attr_max = LFS2_ATTR_MAX;
}
LFS2_ASSERT(lfs2->cfg->metadata_max <= lfs2->cfg->block_size);
// setup default state
lfs2->root[0] = LFS2_BLOCK_NULL;
lfs2->root[1] = LFS2_BLOCK_NULL;
lfs2->mlist = NULL;
lfs2->seed = 0;
lfs2->gdisk = (lfs2_gstate_t){0};
lfs2->gstate = (lfs2_gstate_t){0};
lfs2->gdelta = (lfs2_gstate_t){0};
#ifdef LFS2_MIGRATE
lfs2->lfs21 = NULL;
#endif
return 0;
cleanup:
lfs2_deinit(lfs2);
return err;
}
static int lfs2_deinit(lfs2_t *lfs2) {
// free allocated memory
if (!lfs2->cfg->read_buffer) {
lfs2_free(lfs2->rcache.buffer);
}
if (!lfs2->cfg->prog_buffer) {
lfs2_free(lfs2->pcache.buffer);
}
if (!lfs2->cfg->lookahead_buffer) {
lfs2_free(lfs2->free.buffer);
}
return 0;
}
#ifndef LFS2_READONLY
static int lfs2_rawformat(lfs2_t *lfs2, const struct lfs2_config *cfg) {
int err = 0;
{
err = lfs2_init(lfs2, cfg);
if (err) {
return err;
}
// create free lookahead
memset(lfs2->free.buffer, 0, lfs2->cfg->lookahead_size);
lfs2->free.off = 0;
lfs2->free.size = lfs2_min(8*lfs2->cfg->lookahead_size,
lfs2->cfg->block_count);
lfs2->free.i = 0;
lfs2_alloc_ack(lfs2);
// create root dir
lfs2_mdir_t root;
err = lfs2_dir_alloc(lfs2, &root);
if (err) {
goto cleanup;
}
// write one superblock
lfs2_superblock_t superblock = {
.version = LFS2_DISK_VERSION,
.block_size = lfs2->cfg->block_size,
.block_count = lfs2->cfg->block_count,
.name_max = lfs2->name_max,
.file_max = lfs2->file_max,
.attr_max = lfs2->attr_max,
};
lfs2_superblock_tole32(&superblock);
err = lfs2_dir_commit(lfs2, &root, LFS2_MKATTRS(
{LFS2_MKTAG(LFS2_TYPE_CREATE, 0, 0), NULL},
{LFS2_MKTAG(LFS2_TYPE_SUPERBLOCK, 0, 8), "littlefs"},
{LFS2_MKTAG(LFS2_TYPE_INLINESTRUCT, 0, sizeof(superblock)),
&superblock}));
if (err) {
goto cleanup;
}
// force compaction to prevent accidentally mounting any
// older version of littlefs that may live on disk
root.erased = false;
err = lfs2_dir_commit(lfs2, &root, NULL, 0);
if (err) {
goto cleanup;
}
// sanity check that fetch works
err = lfs2_dir_fetch(lfs2, &root, (const lfs2_block_t[2]){0, 1});
if (err) {
goto cleanup;
}
}
cleanup:
lfs2_deinit(lfs2);
return err;
}
#endif
static int lfs2_rawmount(lfs2_t *lfs2, const struct lfs2_config *cfg) {
int err = lfs2_init(lfs2, cfg);
if (err) {
return err;
}
// scan directory blocks for superblock and any global updates
lfs2_mdir_t dir = {.tail = {0, 1}};
lfs2_block_t cycle = 0;
while (!lfs2_pair_isnull(dir.tail)) {
if (cycle >= lfs2->cfg->block_count/2) {
// loop detected
err = LFS2_ERR_CORRUPT;
goto cleanup;
}
cycle += 1;
// fetch next block in tail list
lfs2_stag_t tag = lfs2_dir_fetchmatch(lfs2, &dir, dir.tail,
LFS2_MKTAG(0x7ff, 0x3ff, 0),
LFS2_MKTAG(LFS2_TYPE_SUPERBLOCK, 0, 8),
NULL,
lfs2_dir_find_match, &(struct lfs2_dir_find_match){
lfs2, "littlefs", 8});
if (tag < 0) {
err = tag;
goto cleanup;
}
// has superblock?
if (tag && !lfs2_tag_isdelete(tag)) {
// update root
lfs2->root[0] = dir.pair[0];
lfs2->root[1] = dir.pair[1];
// grab superblock
lfs2_superblock_t superblock;
tag = lfs2_dir_get(lfs2, &dir, LFS2_MKTAG(0x7ff, 0x3ff, 0),
LFS2_MKTAG(LFS2_TYPE_INLINESTRUCT, 0, sizeof(superblock)),
&superblock);
if (tag < 0) {
err = tag;
goto cleanup;
}
lfs2_superblock_fromle32(&superblock);
// check version
uint16_t major_version = (0xffff & (superblock.version >> 16));
uint16_t minor_version = (0xffff & (superblock.version >> 0));
if ((major_version != LFS2_DISK_VERSION_MAJOR ||
minor_version > LFS2_DISK_VERSION_MINOR)) {
LFS2_ERROR("Invalid version v%"PRIu16".%"PRIu16,
major_version, minor_version);
err = LFS2_ERR_INVAL;
goto cleanup;
}
// check superblock configuration
if (superblock.name_max) {
if (superblock.name_max > lfs2->name_max) {
LFS2_ERROR("Unsupported name_max (%"PRIu32" > %"PRIu32")",
superblock.name_max, lfs2->name_max);
err = LFS2_ERR_INVAL;
goto cleanup;
}
lfs2->name_max = superblock.name_max;
}
if (superblock.file_max) {
if (superblock.file_max > lfs2->file_max) {
LFS2_ERROR("Unsupported file_max (%"PRIu32" > %"PRIu32")",
superblock.file_max, lfs2->file_max);
err = LFS2_ERR_INVAL;
goto cleanup;
}
lfs2->file_max = superblock.file_max;
}
if (superblock.attr_max) {
if (superblock.attr_max > lfs2->attr_max) {
LFS2_ERROR("Unsupported attr_max (%"PRIu32" > %"PRIu32")",
superblock.attr_max, lfs2->attr_max);
err = LFS2_ERR_INVAL;
goto cleanup;
}
lfs2->attr_max = superblock.attr_max;
}
if (superblock.block_count != lfs2->cfg->block_count) {
LFS2_ERROR("Invalid block count (%"PRIu32" != %"PRIu32")",
superblock.block_count, lfs2->cfg->block_count);
err = LFS2_ERR_INVAL;
goto cleanup;
}
if (superblock.block_size != lfs2->cfg->block_size) {
LFS2_ERROR("Invalid block size (%"PRIu32" != %"PRIu32")",
superblock.block_count, lfs2->cfg->block_count);
err = LFS2_ERR_INVAL;
goto cleanup;
}
}
// has gstate?
err = lfs2_dir_getgstate(lfs2, &dir, &lfs2->gstate);
if (err) {
goto cleanup;
}
}
// found superblock?
if (lfs2_pair_isnull(lfs2->root)) {
err = LFS2_ERR_INVAL;
goto cleanup;
}
// update littlefs with gstate
if (!lfs2_gstate_iszero(&lfs2->gstate)) {
LFS2_DEBUG("Found pending gstate 0x%08"PRIx32"%08"PRIx32"%08"PRIx32,
lfs2->gstate.tag,
lfs2->gstate.pair[0],
lfs2->gstate.pair[1]);
}
lfs2->gstate.tag += !lfs2_tag_isvalid(lfs2->gstate.tag);
lfs2->gdisk = lfs2->gstate;
// setup free lookahead, to distribute allocations uniformly across
// boots, we start the allocator at a random location
lfs2->free.off = lfs2->seed % lfs2->cfg->block_count;
lfs2_alloc_drop(lfs2);
return 0;
cleanup:
lfs2_rawunmount(lfs2);
return err;
}
static int lfs2_rawunmount(lfs2_t *lfs2) {
return lfs2_deinit(lfs2);
}
/// Filesystem filesystem operations ///
int lfs2_fs_rawtraverse(lfs2_t *lfs2,
int (*cb)(void *data, lfs2_block_t block), void *data,
bool includeorphans) {
// iterate over metadata pairs
lfs2_mdir_t dir = {.tail = {0, 1}};
#ifdef LFS2_MIGRATE
// also consider v1 blocks during migration
if (lfs2->lfs21) {
int err = lfs21_traverse(lfs2, cb, data);
if (err) {
return err;
}
dir.tail[0] = lfs2->root[0];
dir.tail[1] = lfs2->root[1];
}
#endif
lfs2_block_t cycle = 0;
while (!lfs2_pair_isnull(dir.tail)) {
if (cycle >= lfs2->cfg->block_count/2) {
// loop detected
return LFS2_ERR_CORRUPT;
}
cycle += 1;
for (int i = 0; i < 2; i++) {
int err = cb(data, dir.tail[i]);
if (err) {
return err;
}
}
// iterate through ids in directory
int err = lfs2_dir_fetch(lfs2, &dir, dir.tail);
if (err) {
return err;
}
for (uint16_t id = 0; id < dir.count; id++) {
struct lfs2_ctz ctz;
lfs2_stag_t tag = lfs2_dir_get(lfs2, &dir, LFS2_MKTAG(0x700, 0x3ff, 0),
LFS2_MKTAG(LFS2_TYPE_STRUCT, id, sizeof(ctz)), &ctz);
if (tag < 0) {
if (tag == LFS2_ERR_NOENT) {
continue;
}
return tag;
}
lfs2_ctz_fromle32(&ctz);
if (lfs2_tag_type3(tag) == LFS2_TYPE_CTZSTRUCT) {
err = lfs2_ctz_traverse(lfs2, NULL, &lfs2->rcache,
ctz.head, ctz.size, cb, data);
if (err) {
return err;
}
} else if (includeorphans &&
lfs2_tag_type3(tag) == LFS2_TYPE_DIRSTRUCT) {
for (int i = 0; i < 2; i++) {
err = cb(data, (&ctz.head)[i]);
if (err) {
return err;
}
}
}
}
}
#ifndef LFS2_READONLY
// iterate over any open files
for (lfs2_file_t *f = (lfs2_file_t*)lfs2->mlist; f; f = f->next) {
if (f->type != LFS2_TYPE_REG) {
continue;
}
if ((f->flags & LFS2_F_DIRTY) && !(f->flags & LFS2_F_INLINE)) {
int err = lfs2_ctz_traverse(lfs2, &f->cache, &lfs2->rcache,
f->ctz.head, f->ctz.size, cb, data);
if (err) {
return err;
}
}
if ((f->flags & LFS2_F_WRITING) && !(f->flags & LFS2_F_INLINE)) {
int err = lfs2_ctz_traverse(lfs2, &f->cache, &lfs2->rcache,
f->block, f->pos, cb, data);
if (err) {
return err;
}
}
}
#endif
return 0;
}
#ifndef LFS2_READONLY
static int lfs2_fs_pred(lfs2_t *lfs2,
const lfs2_block_t pair[2], lfs2_mdir_t *pdir) {
// iterate over all directory directory entries
pdir->tail[0] = 0;
pdir->tail[1] = 1;
lfs2_block_t cycle = 0;
while (!lfs2_pair_isnull(pdir->tail)) {
if (cycle >= lfs2->cfg->block_count/2) {
// loop detected
return LFS2_ERR_CORRUPT;
}
cycle += 1;
if (lfs2_pair_cmp(pdir->tail, pair) == 0) {
return 0;
}
int err = lfs2_dir_fetch(lfs2, pdir, pdir->tail);
if (err) {
return err;
}
}
return LFS2_ERR_NOENT;
}
#endif
#ifndef LFS2_READONLY
struct lfs2_fs_parent_match {
lfs2_t *lfs2;
const lfs2_block_t pair[2];
};
#endif
#ifndef LFS2_READONLY
static int lfs2_fs_parent_match(void *data,
lfs2_tag_t tag, const void *buffer) {
struct lfs2_fs_parent_match *find = data;
lfs2_t *lfs2 = find->lfs2;
const struct lfs2_diskoff *disk = buffer;
(void)tag;
lfs2_block_t child[2];
int err = lfs2_bd_read(lfs2,
&lfs2->pcache, &lfs2->rcache, lfs2->cfg->block_size,
disk->block, disk->off, &child, sizeof(child));
if (err) {
return err;
}
lfs2_pair_fromle32(child);
return (lfs2_pair_cmp(child, find->pair) == 0) ? LFS2_CMP_EQ : LFS2_CMP_LT;
}
#endif
#ifndef LFS2_READONLY
static lfs2_stag_t lfs2_fs_parent(lfs2_t *lfs2, const lfs2_block_t pair[2],
lfs2_mdir_t *parent) {
// use fetchmatch with callback to find pairs
parent->tail[0] = 0;
parent->tail[1] = 1;
lfs2_block_t cycle = 0;
while (!lfs2_pair_isnull(parent->tail)) {
if (cycle >= lfs2->cfg->block_count/2) {
// loop detected
return LFS2_ERR_CORRUPT;
}
cycle += 1;
lfs2_stag_t tag = lfs2_dir_fetchmatch(lfs2, parent, parent->tail,
LFS2_MKTAG(0x7ff, 0, 0x3ff),
LFS2_MKTAG(LFS2_TYPE_DIRSTRUCT, 0, 8),
NULL,
lfs2_fs_parent_match, &(struct lfs2_fs_parent_match){
lfs2, {pair[0], pair[1]}});
if (tag && tag != LFS2_ERR_NOENT) {
return tag;
}
}
return LFS2_ERR_NOENT;
}
#endif
#ifndef LFS2_READONLY
static int lfs2_fs_preporphans(lfs2_t *lfs2, int8_t orphans) {
LFS2_ASSERT(lfs2_tag_size(lfs2->gstate.tag) > 0 || orphans >= 0);
lfs2->gstate.tag += orphans;
lfs2->gstate.tag = ((lfs2->gstate.tag & ~LFS2_MKTAG(0x800, 0, 0)) |
((uint32_t)lfs2_gstate_hasorphans(&lfs2->gstate) << 31));
return 0;
}
#endif
#ifndef LFS2_READONLY
static void lfs2_fs_prepmove(lfs2_t *lfs2,
uint16_t id, const lfs2_block_t pair[2]) {
lfs2->gstate.tag = ((lfs2->gstate.tag & ~LFS2_MKTAG(0x7ff, 0x3ff, 0)) |
((id != 0x3ff) ? LFS2_MKTAG(LFS2_TYPE_DELETE, id, 0) : 0));
lfs2->gstate.pair[0] = (id != 0x3ff) ? pair[0] : 0;
lfs2->gstate.pair[1] = (id != 0x3ff) ? pair[1] : 0;
}
#endif
#ifndef LFS2_READONLY
static int lfs2_fs_demove(lfs2_t *lfs2) {
if (!lfs2_gstate_hasmove(&lfs2->gdisk)) {
return 0;
}
// Fix bad moves
LFS2_DEBUG("Fixing move {0x%"PRIx32", 0x%"PRIx32"} 0x%"PRIx16,
lfs2->gdisk.pair[0],
lfs2->gdisk.pair[1],
lfs2_tag_id(lfs2->gdisk.tag));
// fetch and delete the moved entry
lfs2_mdir_t movedir;
int err = lfs2_dir_fetch(lfs2, &movedir, lfs2->gdisk.pair);
if (err) {
return err;
}
// prep gstate and delete move id
uint16_t moveid = lfs2_tag_id(lfs2->gdisk.tag);
lfs2_fs_prepmove(lfs2, 0x3ff, NULL);
err = lfs2_dir_commit(lfs2, &movedir, LFS2_MKATTRS(
{LFS2_MKTAG(LFS2_TYPE_DELETE, moveid, 0), NULL}));
if (err) {
return err;
}
return 0;
}
#endif
#ifndef LFS2_READONLY
static int lfs2_fs_deorphan(lfs2_t *lfs2, bool powerloss) {
if (!lfs2_gstate_hasorphans(&lfs2->gstate)) {
return 0;
}
int8_t found = 0;
restart:
{
// Fix any orphans
lfs2_mdir_t pdir = {.split = true, .tail = {0, 1}};
lfs2_mdir_t dir;
// iterate over all directory directory entries
while (!lfs2_pair_isnull(pdir.tail)) {
int err = lfs2_dir_fetch(lfs2, &dir, pdir.tail);
if (err) {
return err;
}
// check head blocks for orphans
if (!pdir.split) {
// check if we have a parent
lfs2_mdir_t parent;
lfs2_stag_t tag = lfs2_fs_parent(lfs2, pdir.tail, &parent);
if (tag < 0 && tag != LFS2_ERR_NOENT) {
return tag;
}
// note we only check for full orphans if we may have had a
// power-loss, otherwise orphans are created intentionally
// during operations such as lfs2_mkdir
if (tag == LFS2_ERR_NOENT && powerloss) {
// we are an orphan
LFS2_DEBUG("Fixing orphan {0x%"PRIx32", 0x%"PRIx32"}",
pdir.tail[0], pdir.tail[1]);
// steal state
err = lfs2_dir_getgstate(lfs2, &dir, &lfs2->gdelta);
if (err) {
return err;
}
// steal tail
lfs2_pair_tole32(dir.tail);
int state = lfs2_dir_orphaningcommit(lfs2, &pdir, LFS2_MKATTRS(
{LFS2_MKTAG(LFS2_TYPE_TAIL + dir.split, 0x3ff, 8),
dir.tail}));
lfs2_pair_fromle32(dir.tail);
if (state < 0) {
return state;
}
found += 1;
// did our commit create more orphans?
if (state == LFS2_OK_ORPHANED) {
goto restart;
}
// refetch tail
continue;
}
if (tag != LFS2_ERR_NOENT) {
lfs2_block_t pair[2];
lfs2_stag_t state = lfs2_dir_get(lfs2, &parent,
LFS2_MKTAG(0x7ff, 0x3ff, 0), tag, pair);
if (state < 0) {
return state;
}
lfs2_pair_fromle32(pair);
if (!lfs2_pair_sync(pair, pdir.tail)) {
// we have desynced
LFS2_DEBUG("Fixing half-orphan "
"{0x%"PRIx32", 0x%"PRIx32"} "
"-> {0x%"PRIx32", 0x%"PRIx32"}",
pdir.tail[0], pdir.tail[1], pair[0], pair[1]);
// fix pending move in this pair? this looks like an
// optimization but is in fact _required_ since
// relocating may outdate the move.
uint16_t moveid = 0x3ff;
if (lfs2_gstate_hasmovehere(&lfs2->gstate, pdir.pair)) {
moveid = lfs2_tag_id(lfs2->gstate.tag);
LFS2_DEBUG("Fixing move while fixing orphans "
"{0x%"PRIx32", 0x%"PRIx32"} 0x%"PRIx16"\n",
pdir.pair[0], pdir.pair[1], moveid);
lfs2_fs_prepmove(lfs2, 0x3ff, NULL);
}
lfs2_pair_tole32(pair);
state = lfs2_dir_orphaningcommit(lfs2, &pdir, LFS2_MKATTRS(
{LFS2_MKTAG_IF(moveid != 0x3ff,
LFS2_TYPE_DELETE, moveid, 0), NULL},
{LFS2_MKTAG(LFS2_TYPE_SOFTTAIL, 0x3ff, 8),
pair}));
lfs2_pair_fromle32(pair);
if (state < 0) {
return state;
}
found += 1;
// did our commit create more orphans?
if (state == LFS2_OK_ORPHANED) {
goto restart;
}
// refetch tail
continue;
}
}
}
pdir = dir;
}
}
// mark orphans as fixed
return lfs2_fs_preporphans(lfs2, -lfs2_min(
lfs2_gstate_getorphans(&lfs2->gstate),
found));
}
#endif
#ifndef LFS2_READONLY
static int lfs2_fs_forceconsistency(lfs2_t *lfs2) {
int err = lfs2_fs_demove(lfs2);
if (err) {
return err;
}
err = lfs2_fs_deorphan(lfs2, true);
if (err) {
return err;
}
return 0;
}
#endif
static int lfs2_fs_size_count(void *p, lfs2_block_t block) {
(void)block;
lfs2_size_t *size = p;
*size += 1;
return 0;
}
static lfs2_ssize_t lfs2_fs_rawsize(lfs2_t *lfs2) {
lfs2_size_t size = 0;
int err = lfs2_fs_rawtraverse(lfs2, lfs2_fs_size_count, &size, false);
if (err) {
return err;
}
return size;
}
#ifdef LFS2_MIGRATE
////// Migration from littelfs v1 below this //////
/// Version info ///
// Software library version
// Major (top-nibble), incremented on backwards incompatible changes
// Minor (bottom-nibble), incremented on feature additions
#define LFS21_VERSION 0x00010007
#define LFS21_VERSION_MAJOR (0xffff & (LFS21_VERSION >> 16))
#define LFS21_VERSION_MINOR (0xffff & (LFS21_VERSION >> 0))
// Version of On-disk data structures
// Major (top-nibble), incremented on backwards incompatible changes
// Minor (bottom-nibble), incremented on feature additions
#define LFS21_DISK_VERSION 0x00010001
#define LFS21_DISK_VERSION_MAJOR (0xffff & (LFS21_DISK_VERSION >> 16))
#define LFS21_DISK_VERSION_MINOR (0xffff & (LFS21_DISK_VERSION >> 0))
/// v1 Definitions ///
// File types
enum lfs21_type {
LFS21_TYPE_REG = 0x11,
LFS21_TYPE_DIR = 0x22,
LFS21_TYPE_SUPERBLOCK = 0x2e,
};
typedef struct lfs21 {
lfs2_block_t root[2];
} lfs21_t;
typedef struct lfs21_entry {
lfs2_off_t off;
struct lfs21_disk_entry {
uint8_t type;
uint8_t elen;
uint8_t alen;
uint8_t nlen;
union {
struct {
lfs2_block_t head;
lfs2_size_t size;
} file;
lfs2_block_t dir[2];
} u;
} d;
} lfs21_entry_t;
typedef struct lfs21_dir {
struct lfs21_dir *next;
lfs2_block_t pair[2];
lfs2_off_t off;
lfs2_block_t head[2];
lfs2_off_t pos;
struct lfs21_disk_dir {
uint32_t rev;
lfs2_size_t size;
lfs2_block_t tail[2];
} d;
} lfs21_dir_t;
typedef struct lfs21_superblock {
lfs2_off_t off;
struct lfs21_disk_superblock {
uint8_t type;
uint8_t elen;
uint8_t alen;
uint8_t nlen;
lfs2_block_t root[2];
uint32_t block_size;
uint32_t block_count;
uint32_t version;
char magic[8];
} d;
} lfs21_superblock_t;
/// Low-level wrappers v1->v2 ///
static void lfs21_crc(uint32_t *crc, const void *buffer, size_t size) {
*crc = lfs2_crc(*crc, buffer, size);
}
static int lfs21_bd_read(lfs2_t *lfs2, lfs2_block_t block,
lfs2_off_t off, void *buffer, lfs2_size_t size) {
// if we ever do more than writes to alternating pairs,
// this may need to consider pcache
return lfs2_bd_read(lfs2, &lfs2->pcache, &lfs2->rcache, size,
block, off, buffer, size);
}
static int lfs21_bd_crc(lfs2_t *lfs2, lfs2_block_t block,
lfs2_off_t off, lfs2_size_t size, uint32_t *crc) {
for (lfs2_off_t i = 0; i < size; i++) {
uint8_t c;
int err = lfs21_bd_read(lfs2, block, off+i, &c, 1);
if (err) {
return err;
}
lfs21_crc(crc, &c, 1);
}
return 0;
}
/// Endian swapping functions ///
static void lfs21_dir_fromle32(struct lfs21_disk_dir *d) {
d->rev = lfs2_fromle32(d->rev);
d->size = lfs2_fromle32(d->size);
d->tail[0] = lfs2_fromle32(d->tail[0]);
d->tail[1] = lfs2_fromle32(d->tail[1]);
}
static void lfs21_dir_tole32(struct lfs21_disk_dir *d) {
d->rev = lfs2_tole32(d->rev);
d->size = lfs2_tole32(d->size);
d->tail[0] = lfs2_tole32(d->tail[0]);
d->tail[1] = lfs2_tole32(d->tail[1]);
}
static void lfs21_entry_fromle32(struct lfs21_disk_entry *d) {
d->u.dir[0] = lfs2_fromle32(d->u.dir[0]);
d->u.dir[1] = lfs2_fromle32(d->u.dir[1]);
}
static void lfs21_entry_tole32(struct lfs21_disk_entry *d) {
d->u.dir[0] = lfs2_tole32(d->u.dir[0]);
d->u.dir[1] = lfs2_tole32(d->u.dir[1]);
}
static void lfs21_superblock_fromle32(struct lfs21_disk_superblock *d) {
d->root[0] = lfs2_fromle32(d->root[0]);
d->root[1] = lfs2_fromle32(d->root[1]);
d->block_size = lfs2_fromle32(d->block_size);
d->block_count = lfs2_fromle32(d->block_count);
d->version = lfs2_fromle32(d->version);
}
///// Metadata pair and directory operations ///
static inline lfs2_size_t lfs21_entry_size(const lfs21_entry_t *entry) {
return 4 + entry->d.elen + entry->d.alen + entry->d.nlen;
}
static int lfs21_dir_fetch(lfs2_t *lfs2,
lfs21_dir_t *dir, const lfs2_block_t pair[2]) {
// copy out pair, otherwise may be aliasing dir
const lfs2_block_t tpair[2] = {pair[0], pair[1]};
bool valid = false;
// check both blocks for the most recent revision
for (int i = 0; i < 2; i++) {
struct lfs21_disk_dir test;
int err = lfs21_bd_read(lfs2, tpair[i], 0, &test, sizeof(test));
lfs21_dir_fromle32(&test);
if (err) {
if (err == LFS2_ERR_CORRUPT) {
continue;
}
return err;
}
if (valid && lfs2_scmp(test.rev, dir->d.rev) < 0) {
continue;
}
if ((0x7fffffff & test.size) < sizeof(test)+4 ||
(0x7fffffff & test.size) > lfs2->cfg->block_size) {
continue;
}
uint32_t crc = 0xffffffff;
lfs21_dir_tole32(&test);
lfs21_crc(&crc, &test, sizeof(test));
lfs21_dir_fromle32(&test);
err = lfs21_bd_crc(lfs2, tpair[i], sizeof(test),
(0x7fffffff & test.size) - sizeof(test), &crc);
if (err) {
if (err == LFS2_ERR_CORRUPT) {
continue;
}
return err;
}
if (crc != 0) {
continue;
}
valid = true;
// setup dir in case it's valid
dir->pair[0] = tpair[(i+0) % 2];
dir->pair[1] = tpair[(i+1) % 2];
dir->off = sizeof(dir->d);
dir->d = test;
}
if (!valid) {
LFS2_ERROR("Corrupted dir pair at {0x%"PRIx32", 0x%"PRIx32"}",
tpair[0], tpair[1]);
return LFS2_ERR_CORRUPT;
}
return 0;
}
static int lfs21_dir_next(lfs2_t *lfs2, lfs21_dir_t *dir, lfs21_entry_t *entry) {
while (dir->off + sizeof(entry->d) > (0x7fffffff & dir->d.size)-4) {
if (!(0x80000000 & dir->d.size)) {
entry->off = dir->off;
return LFS2_ERR_NOENT;
}
int err = lfs21_dir_fetch(lfs2, dir, dir->d.tail);
if (err) {
return err;
}
dir->off = sizeof(dir->d);
dir->pos += sizeof(dir->d) + 4;
}
int err = lfs21_bd_read(lfs2, dir->pair[0], dir->off,
&entry->d, sizeof(entry->d));
lfs21_entry_fromle32(&entry->d);
if (err) {
return err;
}
entry->off = dir->off;
dir->off += lfs21_entry_size(entry);
dir->pos += lfs21_entry_size(entry);
return 0;
}
/// littlefs v1 specific operations ///
int lfs21_traverse(lfs2_t *lfs2, int (*cb)(void*, lfs2_block_t), void *data) {
if (lfs2_pair_isnull(lfs2->lfs21->root)) {
return 0;
}
// iterate over metadata pairs
lfs21_dir_t dir;
lfs21_entry_t entry;
lfs2_block_t cwd[2] = {0, 1};
while (true) {
for (int i = 0; i < 2; i++) {
int err = cb(data, cwd[i]);
if (err) {
return err;
}
}
int err = lfs21_dir_fetch(lfs2, &dir, cwd);
if (err) {
return err;
}
// iterate over contents
while (dir.off + sizeof(entry.d) <= (0x7fffffff & dir.d.size)-4) {
err = lfs21_bd_read(lfs2, dir.pair[0], dir.off,
&entry.d, sizeof(entry.d));
lfs21_entry_fromle32(&entry.d);
if (err) {
return err;
}
dir.off += lfs21_entry_size(&entry);
if ((0x70 & entry.d.type) == (0x70 & LFS21_TYPE_REG)) {
err = lfs2_ctz_traverse(lfs2, NULL, &lfs2->rcache,
entry.d.u.file.head, entry.d.u.file.size, cb, data);
if (err) {
return err;
}
}
}
// we also need to check if we contain a threaded v2 directory
lfs2_mdir_t dir2 = {.split=true, .tail={cwd[0], cwd[1]}};
while (dir2.split) {
err = lfs2_dir_fetch(lfs2, &dir2, dir2.tail);
if (err) {
break;
}
for (int i = 0; i < 2; i++) {
err = cb(data, dir2.pair[i]);
if (err) {
return err;
}
}
}
cwd[0] = dir.d.tail[0];
cwd[1] = dir.d.tail[1];
if (lfs2_pair_isnull(cwd)) {
break;
}
}
return 0;
}
static int lfs21_moved(lfs2_t *lfs2, const void *e) {
if (lfs2_pair_isnull(lfs2->lfs21->root)) {
return 0;
}
// skip superblock
lfs21_dir_t cwd;
int err = lfs21_dir_fetch(lfs2, &cwd, (const lfs2_block_t[2]){0, 1});
if (err) {
return err;
}
// iterate over all directory directory entries
lfs21_entry_t entry;
while (!lfs2_pair_isnull(cwd.d.tail)) {
err = lfs21_dir_fetch(lfs2, &cwd, cwd.d.tail);
if (err) {
return err;
}
while (true) {
err = lfs21_dir_next(lfs2, &cwd, &entry);
if (err && err != LFS2_ERR_NOENT) {
return err;
}
if (err == LFS2_ERR_NOENT) {
break;
}
if (!(0x80 & entry.d.type) &&
memcmp(&entry.d.u, e, sizeof(entry.d.u)) == 0) {
return true;
}
}
}
return false;
}
/// Filesystem operations ///
static int lfs21_mount(lfs2_t *lfs2, struct lfs21 *lfs21,
const struct lfs2_config *cfg) {
int err = 0;
{
err = lfs2_init(lfs2, cfg);
if (err) {
return err;
}
lfs2->lfs21 = lfs21;
lfs2->lfs21->root[0] = LFS2_BLOCK_NULL;
lfs2->lfs21->root[1] = LFS2_BLOCK_NULL;
// setup free lookahead
lfs2->free.off = 0;
lfs2->free.size = 0;
lfs2->free.i = 0;
lfs2_alloc_ack(lfs2);
// load superblock
lfs21_dir_t dir;
lfs21_superblock_t superblock;
err = lfs21_dir_fetch(lfs2, &dir, (const lfs2_block_t[2]){0, 1});
if (err && err != LFS2_ERR_CORRUPT) {
goto cleanup;
}
if (!err) {
err = lfs21_bd_read(lfs2, dir.pair[0], sizeof(dir.d),
&superblock.d, sizeof(superblock.d));
lfs21_superblock_fromle32(&superblock.d);
if (err) {
goto cleanup;
}
lfs2->lfs21->root[0] = superblock.d.root[0];
lfs2->lfs21->root[1] = superblock.d.root[1];
}
if (err || memcmp(superblock.d.magic, "littlefs", 8) != 0) {
LFS2_ERROR("Invalid superblock at {0x%"PRIx32", 0x%"PRIx32"}",
0, 1);
err = LFS2_ERR_CORRUPT;
goto cleanup;
}
uint16_t major_version = (0xffff & (superblock.d.version >> 16));
uint16_t minor_version = (0xffff & (superblock.d.version >> 0));
if ((major_version != LFS21_DISK_VERSION_MAJOR ||
minor_version > LFS21_DISK_VERSION_MINOR)) {
LFS2_ERROR("Invalid version v%d.%d", major_version, minor_version);
err = LFS2_ERR_INVAL;
goto cleanup;
}
return 0;
}
cleanup:
lfs2_deinit(lfs2);
return err;
}
static int lfs21_unmount(lfs2_t *lfs2) {
return lfs2_deinit(lfs2);
}
/// v1 migration ///
static int lfs2_rawmigrate(lfs2_t *lfs2, const struct lfs2_config *cfg) {
struct lfs21 lfs21;
int err = lfs21_mount(lfs2, &lfs21, cfg);
if (err) {
return err;
}
{
// iterate through each directory, copying over entries
// into new directory
lfs21_dir_t dir1;
lfs2_mdir_t dir2;
dir1.d.tail[0] = lfs2->lfs21->root[0];
dir1.d.tail[1] = lfs2->lfs21->root[1];
while (!lfs2_pair_isnull(dir1.d.tail)) {
// iterate old dir
err = lfs21_dir_fetch(lfs2, &dir1, dir1.d.tail);
if (err) {
goto cleanup;
}
// create new dir and bind as temporary pretend root
err = lfs2_dir_alloc(lfs2, &dir2);
if (err) {
goto cleanup;
}
dir2.rev = dir1.d.rev;
dir1.head[0] = dir1.pair[0];
dir1.head[1] = dir1.pair[1];
lfs2->root[0] = dir2.pair[0];
lfs2->root[1] = dir2.pair[1];
err = lfs2_dir_commit(lfs2, &dir2, NULL, 0);
if (err) {
goto cleanup;
}
while (true) {
lfs21_entry_t entry1;
err = lfs21_dir_next(lfs2, &dir1, &entry1);
if (err && err != LFS2_ERR_NOENT) {
goto cleanup;
}
if (err == LFS2_ERR_NOENT) {
break;
}
// check that entry has not been moved
if (entry1.d.type & 0x80) {
int moved = lfs21_moved(lfs2, &entry1.d.u);
if (moved < 0) {
err = moved;
goto cleanup;
}
if (moved) {
continue;
}
entry1.d.type &= ~0x80;
}
// also fetch name
char name[LFS2_NAME_MAX+1];
memset(name, 0, sizeof(name));
err = lfs21_bd_read(lfs2, dir1.pair[0],
entry1.off + 4+entry1.d.elen+entry1.d.alen,
name, entry1.d.nlen);
if (err) {
goto cleanup;
}
bool isdir = (entry1.d.type == LFS21_TYPE_DIR);
// create entry in new dir
err = lfs2_dir_fetch(lfs2, &dir2, lfs2->root);
if (err) {
goto cleanup;
}
uint16_t id;
err = lfs2_dir_find(lfs2, &dir2, &(const char*){name}, &id);
if (!(err == LFS2_ERR_NOENT && id != 0x3ff)) {
err = (err < 0) ? err : LFS2_ERR_EXIST;
goto cleanup;
}
lfs21_entry_tole32(&entry1.d);
err = lfs2_dir_commit(lfs2, &dir2, LFS2_MKATTRS(
{LFS2_MKTAG(LFS2_TYPE_CREATE, id, 0), NULL},
{LFS2_MKTAG_IF_ELSE(isdir,
LFS2_TYPE_DIR, id, entry1.d.nlen,
LFS2_TYPE_REG, id, entry1.d.nlen),
name},
{LFS2_MKTAG_IF_ELSE(isdir,
LFS2_TYPE_DIRSTRUCT, id, sizeof(entry1.d.u),
LFS2_TYPE_CTZSTRUCT, id, sizeof(entry1.d.u)),
&entry1.d.u}));
lfs21_entry_fromle32(&entry1.d);
if (err) {
goto cleanup;
}
}
if (!lfs2_pair_isnull(dir1.d.tail)) {
// find last block and update tail to thread into fs
err = lfs2_dir_fetch(lfs2, &dir2, lfs2->root);
if (err) {
goto cleanup;
}
while (dir2.split) {
err = lfs2_dir_fetch(lfs2, &dir2, dir2.tail);
if (err) {
goto cleanup;
}
}
lfs2_pair_tole32(dir2.pair);
err = lfs2_dir_commit(lfs2, &dir2, LFS2_MKATTRS(
{LFS2_MKTAG(LFS2_TYPE_SOFTTAIL, 0x3ff, 8), dir1.d.tail}));
lfs2_pair_fromle32(dir2.pair);
if (err) {
goto cleanup;
}
}
// Copy over first block to thread into fs. Unfortunately
// if this fails there is not much we can do.
LFS2_DEBUG("Migrating {0x%"PRIx32", 0x%"PRIx32"} "
"-> {0x%"PRIx32", 0x%"PRIx32"}",
lfs2->root[0], lfs2->root[1], dir1.head[0], dir1.head[1]);
err = lfs2_bd_erase(lfs2, dir1.head[1]);
if (err) {
goto cleanup;
}
err = lfs2_dir_fetch(lfs2, &dir2, lfs2->root);
if (err) {
goto cleanup;
}
for (lfs2_off_t i = 0; i < dir2.off; i++) {
uint8_t dat;
err = lfs2_bd_read(lfs2,
NULL, &lfs2->rcache, dir2.off,
dir2.pair[0], i, &dat, 1);
if (err) {
goto cleanup;
}
err = lfs2_bd_prog(lfs2,
&lfs2->pcache, &lfs2->rcache, true,
dir1.head[1], i, &dat, 1);
if (err) {
goto cleanup;
}
}
err = lfs2_bd_flush(lfs2, &lfs2->pcache, &lfs2->rcache, true);
if (err) {
goto cleanup;
}
}
// Create new superblock. This marks a successful migration!
err = lfs21_dir_fetch(lfs2, &dir1, (const lfs2_block_t[2]){0, 1});
if (err) {
goto cleanup;
}
dir2.pair[0] = dir1.pair[0];
dir2.pair[1] = dir1.pair[1];
dir2.rev = dir1.d.rev;
dir2.off = sizeof(dir2.rev);
dir2.etag = 0xffffffff;
dir2.count = 0;
dir2.tail[0] = lfs2->lfs21->root[0];
dir2.tail[1] = lfs2->lfs21->root[1];
dir2.erased = false;
dir2.split = true;
lfs2_superblock_t superblock = {
.version = LFS2_DISK_VERSION,
.block_size = lfs2->cfg->block_size,
.block_count = lfs2->cfg->block_count,
.name_max = lfs2->name_max,
.file_max = lfs2->file_max,
.attr_max = lfs2->attr_max,
};
lfs2_superblock_tole32(&superblock);
err = lfs2_dir_commit(lfs2, &dir2, LFS2_MKATTRS(
{LFS2_MKTAG(LFS2_TYPE_CREATE, 0, 0), NULL},
{LFS2_MKTAG(LFS2_TYPE_SUPERBLOCK, 0, 8), "littlefs"},
{LFS2_MKTAG(LFS2_TYPE_INLINESTRUCT, 0, sizeof(superblock)),
&superblock}));
if (err) {
goto cleanup;
}
// sanity check that fetch works
err = lfs2_dir_fetch(lfs2, &dir2, (const lfs2_block_t[2]){0, 1});
if (err) {
goto cleanup;
}
// force compaction to prevent accidentally mounting v1
dir2.erased = false;
err = lfs2_dir_commit(lfs2, &dir2, NULL, 0);
if (err) {
goto cleanup;
}
}
cleanup:
lfs21_unmount(lfs2);
return err;
}
#endif
/// Public API wrappers ///
// Here we can add tracing/thread safety easily
// Thread-safe wrappers if enabled
#ifdef LFS2_THREADSAFE
#define LFS2_LOCK(cfg) cfg->lock(cfg)
#define LFS2_UNLOCK(cfg) cfg->unlock(cfg)
#else
#define LFS2_LOCK(cfg) ((void)cfg, 0)
#define LFS2_UNLOCK(cfg) ((void)cfg)
#endif
// Public API
#ifndef LFS2_READONLY
int lfs2_format(lfs2_t *lfs2, const struct lfs2_config *cfg) {
int err = LFS2_LOCK(cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_format(%p, %p {.context=%p, "
".read=%p, .prog=%p, .erase=%p, .sync=%p, "
".read_size=%"PRIu32", .prog_size=%"PRIu32", "
".block_size=%"PRIu32", .block_count=%"PRIu32", "
".block_cycles=%"PRIu32", .cache_size=%"PRIu32", "
".lookahead_size=%"PRIu32", .read_buffer=%p, "
".prog_buffer=%p, .lookahead_buffer=%p, "
".name_max=%"PRIu32", .file_max=%"PRIu32", "
".attr_max=%"PRIu32"})",
(void*)lfs2, (void*)cfg, cfg->context,
(void*)(uintptr_t)cfg->read, (void*)(uintptr_t)cfg->prog,
(void*)(uintptr_t)cfg->erase, (void*)(uintptr_t)cfg->sync,
cfg->read_size, cfg->prog_size, cfg->block_size, cfg->block_count,
cfg->block_cycles, cfg->cache_size, cfg->lookahead_size,
cfg->read_buffer, cfg->prog_buffer, cfg->lookahead_buffer,
cfg->name_max, cfg->file_max, cfg->attr_max);
err = lfs2_rawformat(lfs2, cfg);
LFS2_TRACE("lfs2_format -> %d", err);
LFS2_UNLOCK(cfg);
return err;
}
#endif
int lfs2_mount(lfs2_t *lfs2, const struct lfs2_config *cfg) {
int err = LFS2_LOCK(cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_mount(%p, %p {.context=%p, "
".read=%p, .prog=%p, .erase=%p, .sync=%p, "
".read_size=%"PRIu32", .prog_size=%"PRIu32", "
".block_size=%"PRIu32", .block_count=%"PRIu32", "
".block_cycles=%"PRIu32", .cache_size=%"PRIu32", "
".lookahead_size=%"PRIu32", .read_buffer=%p, "
".prog_buffer=%p, .lookahead_buffer=%p, "
".name_max=%"PRIu32", .file_max=%"PRIu32", "
".attr_max=%"PRIu32"})",
(void*)lfs2, (void*)cfg, cfg->context,
(void*)(uintptr_t)cfg->read, (void*)(uintptr_t)cfg->prog,
(void*)(uintptr_t)cfg->erase, (void*)(uintptr_t)cfg->sync,
cfg->read_size, cfg->prog_size, cfg->block_size, cfg->block_count,
cfg->block_cycles, cfg->cache_size, cfg->lookahead_size,
cfg->read_buffer, cfg->prog_buffer, cfg->lookahead_buffer,
cfg->name_max, cfg->file_max, cfg->attr_max);
err = lfs2_rawmount(lfs2, cfg);
LFS2_TRACE("lfs2_mount -> %d", err);
LFS2_UNLOCK(cfg);
return err;
}
int lfs2_unmount(lfs2_t *lfs2) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_unmount(%p)", (void*)lfs2);
err = lfs2_rawunmount(lfs2);
LFS2_TRACE("lfs2_unmount -> %d", err);
LFS2_UNLOCK(lfs2->cfg);
return err;
}
#ifndef LFS2_READONLY
int lfs2_remove(lfs2_t *lfs2, const char *path) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_remove(%p, \"%s\")", (void*)lfs2, path);
err = lfs2_rawremove(lfs2, path);
LFS2_TRACE("lfs2_remove -> %d", err);
LFS2_UNLOCK(lfs2->cfg);
return err;
}
#endif
#ifndef LFS2_READONLY
int lfs2_rename(lfs2_t *lfs2, const char *oldpath, const char *newpath) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_rename(%p, \"%s\", \"%s\")", (void*)lfs2, oldpath, newpath);
err = lfs2_rawrename(lfs2, oldpath, newpath);
LFS2_TRACE("lfs2_rename -> %d", err);
LFS2_UNLOCK(lfs2->cfg);
return err;
}
#endif
int lfs2_stat(lfs2_t *lfs2, const char *path, struct lfs2_info *info) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_stat(%p, \"%s\", %p)", (void*)lfs2, path, (void*)info);
err = lfs2_rawstat(lfs2, path, info);
LFS2_TRACE("lfs2_stat -> %d", err);
LFS2_UNLOCK(lfs2->cfg);
return err;
}
lfs2_ssize_t lfs2_getattr(lfs2_t *lfs2, const char *path,
uint8_t type, void *buffer, lfs2_size_t size) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_getattr(%p, \"%s\", %"PRIu8", %p, %"PRIu32")",
(void*)lfs2, path, type, buffer, size);
lfs2_ssize_t res = lfs2_rawgetattr(lfs2, path, type, buffer, size);
LFS2_TRACE("lfs2_getattr -> %"PRId32, res);
LFS2_UNLOCK(lfs2->cfg);
return res;
}
#ifndef LFS2_READONLY
int lfs2_setattr(lfs2_t *lfs2, const char *path,
uint8_t type, const void *buffer, lfs2_size_t size) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_setattr(%p, \"%s\", %"PRIu8", %p, %"PRIu32")",
(void*)lfs2, path, type, buffer, size);
err = lfs2_rawsetattr(lfs2, path, type, buffer, size);
LFS2_TRACE("lfs2_setattr -> %d", err);
LFS2_UNLOCK(lfs2->cfg);
return err;
}
#endif
#ifndef LFS2_READONLY
int lfs2_removeattr(lfs2_t *lfs2, const char *path, uint8_t type) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_removeattr(%p, \"%s\", %"PRIu8")", (void*)lfs2, path, type);
err = lfs2_rawremoveattr(lfs2, path, type);
LFS2_TRACE("lfs2_removeattr -> %d", err);
LFS2_UNLOCK(lfs2->cfg);
return err;
}
#endif
#ifndef LFS2_NO_MALLOC
int lfs2_file_open(lfs2_t *lfs2, lfs2_file_t *file, const char *path, int flags) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_file_open(%p, %p, \"%s\", %x)",
(void*)lfs2, (void*)file, path, flags);
LFS2_ASSERT(!lfs2_mlist_isopen(lfs2->mlist, (struct lfs2_mlist*)file));
err = lfs2_file_rawopen(lfs2, file, path, flags);
LFS2_TRACE("lfs2_file_open -> %d", err);
LFS2_UNLOCK(lfs2->cfg);
return err;
}
#endif
int lfs2_file_opencfg(lfs2_t *lfs2, lfs2_file_t *file,
const char *path, int flags,
const struct lfs2_file_config *cfg) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_file_opencfg(%p, %p, \"%s\", %x, %p {"
".buffer=%p, .attrs=%p, .attr_count=%"PRIu32"})",
(void*)lfs2, (void*)file, path, flags,
(void*)cfg, cfg->buffer, (void*)cfg->attrs, cfg->attr_count);
LFS2_ASSERT(!lfs2_mlist_isopen(lfs2->mlist, (struct lfs2_mlist*)file));
err = lfs2_file_rawopencfg(lfs2, file, path, flags, cfg);
LFS2_TRACE("lfs2_file_opencfg -> %d", err);
LFS2_UNLOCK(lfs2->cfg);
return err;
}
int lfs2_file_close(lfs2_t *lfs2, lfs2_file_t *file) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_file_close(%p, %p)", (void*)lfs2, (void*)file);
LFS2_ASSERT(lfs2_mlist_isopen(lfs2->mlist, (struct lfs2_mlist*)file));
err = lfs2_file_rawclose(lfs2, file);
LFS2_TRACE("lfs2_file_close -> %d", err);
LFS2_UNLOCK(lfs2->cfg);
return err;
}
#ifndef LFS2_READONLY
int lfs2_file_sync(lfs2_t *lfs2, lfs2_file_t *file) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_file_sync(%p, %p)", (void*)lfs2, (void*)file);
LFS2_ASSERT(lfs2_mlist_isopen(lfs2->mlist, (struct lfs2_mlist*)file));
err = lfs2_file_rawsync(lfs2, file);
LFS2_TRACE("lfs2_file_sync -> %d", err);
LFS2_UNLOCK(lfs2->cfg);
return err;
}
#endif
lfs2_ssize_t lfs2_file_read(lfs2_t *lfs2, lfs2_file_t *file,
void *buffer, lfs2_size_t size) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_file_read(%p, %p, %p, %"PRIu32")",
(void*)lfs2, (void*)file, buffer, size);
LFS2_ASSERT(lfs2_mlist_isopen(lfs2->mlist, (struct lfs2_mlist*)file));
lfs2_ssize_t res = lfs2_file_rawread(lfs2, file, buffer, size);
LFS2_TRACE("lfs2_file_read -> %"PRId32, res);
LFS2_UNLOCK(lfs2->cfg);
return res;
}
#ifndef LFS2_READONLY
lfs2_ssize_t lfs2_file_write(lfs2_t *lfs2, lfs2_file_t *file,
const void *buffer, lfs2_size_t size) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_file_write(%p, %p, %p, %"PRIu32")",
(void*)lfs2, (void*)file, buffer, size);
LFS2_ASSERT(lfs2_mlist_isopen(lfs2->mlist, (struct lfs2_mlist*)file));
lfs2_ssize_t res = lfs2_file_rawwrite(lfs2, file, buffer, size);
LFS2_TRACE("lfs2_file_write -> %"PRId32, res);
LFS2_UNLOCK(lfs2->cfg);
return res;
}
#endif
lfs2_soff_t lfs2_file_seek(lfs2_t *lfs2, lfs2_file_t *file,
lfs2_soff_t off, int whence) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_file_seek(%p, %p, %"PRId32", %d)",
(void*)lfs2, (void*)file, off, whence);
LFS2_ASSERT(lfs2_mlist_isopen(lfs2->mlist, (struct lfs2_mlist*)file));
lfs2_soff_t res = lfs2_file_rawseek(lfs2, file, off, whence);
LFS2_TRACE("lfs2_file_seek -> %"PRId32, res);
LFS2_UNLOCK(lfs2->cfg);
return res;
}
#ifndef LFS2_READONLY
int lfs2_file_truncate(lfs2_t *lfs2, lfs2_file_t *file, lfs2_off_t size) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_file_truncate(%p, %p, %"PRIu32")",
(void*)lfs2, (void*)file, size);
LFS2_ASSERT(lfs2_mlist_isopen(lfs2->mlist, (struct lfs2_mlist*)file));
err = lfs2_file_rawtruncate(lfs2, file, size);
LFS2_TRACE("lfs2_file_truncate -> %d", err);
LFS2_UNLOCK(lfs2->cfg);
return err;
}
#endif
lfs2_soff_t lfs2_file_tell(lfs2_t *lfs2, lfs2_file_t *file) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_file_tell(%p, %p)", (void*)lfs2, (void*)file);
LFS2_ASSERT(lfs2_mlist_isopen(lfs2->mlist, (struct lfs2_mlist*)file));
lfs2_soff_t res = lfs2_file_rawtell(lfs2, file);
LFS2_TRACE("lfs2_file_tell -> %"PRId32, res);
LFS2_UNLOCK(lfs2->cfg);
return res;
}
int lfs2_file_rewind(lfs2_t *lfs2, lfs2_file_t *file) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_file_rewind(%p, %p)", (void*)lfs2, (void*)file);
err = lfs2_file_rawrewind(lfs2, file);
LFS2_TRACE("lfs2_file_rewind -> %d", err);
LFS2_UNLOCK(lfs2->cfg);
return err;
}
lfs2_soff_t lfs2_file_size(lfs2_t *lfs2, lfs2_file_t *file) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_file_size(%p, %p)", (void*)lfs2, (void*)file);
LFS2_ASSERT(lfs2_mlist_isopen(lfs2->mlist, (struct lfs2_mlist*)file));
lfs2_soff_t res = lfs2_file_rawsize(lfs2, file);
LFS2_TRACE("lfs2_file_size -> %"PRId32, res);
LFS2_UNLOCK(lfs2->cfg);
return res;
}
#ifndef LFS2_READONLY
int lfs2_mkdir(lfs2_t *lfs2, const char *path) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_mkdir(%p, \"%s\")", (void*)lfs2, path);
err = lfs2_rawmkdir(lfs2, path);
LFS2_TRACE("lfs2_mkdir -> %d", err);
LFS2_UNLOCK(lfs2->cfg);
return err;
}
#endif
int lfs2_dir_open(lfs2_t *lfs2, lfs2_dir_t *dir, const char *path) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_dir_open(%p, %p, \"%s\")", (void*)lfs2, (void*)dir, path);
LFS2_ASSERT(!lfs2_mlist_isopen(lfs2->mlist, (struct lfs2_mlist*)dir));
err = lfs2_dir_rawopen(lfs2, dir, path);
LFS2_TRACE("lfs2_dir_open -> %d", err);
LFS2_UNLOCK(lfs2->cfg);
return err;
}
int lfs2_dir_close(lfs2_t *lfs2, lfs2_dir_t *dir) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_dir_close(%p, %p)", (void*)lfs2, (void*)dir);
err = lfs2_dir_rawclose(lfs2, dir);
LFS2_TRACE("lfs2_dir_close -> %d", err);
LFS2_UNLOCK(lfs2->cfg);
return err;
}
int lfs2_dir_read(lfs2_t *lfs2, lfs2_dir_t *dir, struct lfs2_info *info) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_dir_read(%p, %p, %p)",
(void*)lfs2, (void*)dir, (void*)info);
err = lfs2_dir_rawread(lfs2, dir, info);
LFS2_TRACE("lfs2_dir_read -> %d", err);
LFS2_UNLOCK(lfs2->cfg);
return err;
}
int lfs2_dir_seek(lfs2_t *lfs2, lfs2_dir_t *dir, lfs2_off_t off) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_dir_seek(%p, %p, %"PRIu32")",
(void*)lfs2, (void*)dir, off);
err = lfs2_dir_rawseek(lfs2, dir, off);
LFS2_TRACE("lfs2_dir_seek -> %d", err);
LFS2_UNLOCK(lfs2->cfg);
return err;
}
lfs2_soff_t lfs2_dir_tell(lfs2_t *lfs2, lfs2_dir_t *dir) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_dir_tell(%p, %p)", (void*)lfs2, (void*)dir);
lfs2_soff_t res = lfs2_dir_rawtell(lfs2, dir);
LFS2_TRACE("lfs2_dir_tell -> %"PRId32, res);
LFS2_UNLOCK(lfs2->cfg);
return res;
}
int lfs2_dir_rewind(lfs2_t *lfs2, lfs2_dir_t *dir) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_dir_rewind(%p, %p)", (void*)lfs2, (void*)dir);
err = lfs2_dir_rawrewind(lfs2, dir);
LFS2_TRACE("lfs2_dir_rewind -> %d", err);
LFS2_UNLOCK(lfs2->cfg);
return err;
}
lfs2_ssize_t lfs2_fs_size(lfs2_t *lfs2) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_fs_size(%p)", (void*)lfs2);
lfs2_ssize_t res = lfs2_fs_rawsize(lfs2);
LFS2_TRACE("lfs2_fs_size -> %"PRId32, res);
LFS2_UNLOCK(lfs2->cfg);
return res;
}
int lfs2_fs_traverse(lfs2_t *lfs2, int (*cb)(void *, lfs2_block_t), void *data) {
int err = LFS2_LOCK(lfs2->cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_fs_traverse(%p, %p, %p)",
(void*)lfs2, (void*)(uintptr_t)cb, data);
err = lfs2_fs_rawtraverse(lfs2, cb, data, true);
LFS2_TRACE("lfs2_fs_traverse -> %d", err);
LFS2_UNLOCK(lfs2->cfg);
return err;
}
#ifdef LFS2_MIGRATE
int lfs2_migrate(lfs2_t *lfs2, const struct lfs2_config *cfg) {
int err = LFS2_LOCK(cfg);
if (err) {
return err;
}
LFS2_TRACE("lfs2_migrate(%p, %p {.context=%p, "
".read=%p, .prog=%p, .erase=%p, .sync=%p, "
".read_size=%"PRIu32", .prog_size=%"PRIu32", "
".block_size=%"PRIu32", .block_count=%"PRIu32", "
".block_cycles=%"PRIu32", .cache_size=%"PRIu32", "
".lookahead_size=%"PRIu32", .read_buffer=%p, "
".prog_buffer=%p, .lookahead_buffer=%p, "
".name_max=%"PRIu32", .file_max=%"PRIu32", "
".attr_max=%"PRIu32"})",
(void*)lfs2, (void*)cfg, cfg->context,
(void*)(uintptr_t)cfg->read, (void*)(uintptr_t)cfg->prog,
(void*)(uintptr_t)cfg->erase, (void*)(uintptr_t)cfg->sync,
cfg->read_size, cfg->prog_size, cfg->block_size, cfg->block_count,
cfg->block_cycles, cfg->cache_size, cfg->lookahead_size,
cfg->read_buffer, cfg->prog_buffer, cfg->lookahead_buffer,
cfg->name_max, cfg->file_max, cfg->attr_max);
err = lfs2_rawmigrate(lfs2, cfg);
LFS2_TRACE("lfs2_migrate -> %d", err);
LFS2_UNLOCK(cfg);
return err;
}
#endif