pimoroni-pico/examples/pico_display_2/demo.cpp

127 lines
3.3 KiB
C++
Raw Normal View History

#include <string.h>
#include <math.h>
#include <vector>
#include <cstdlib>
#include "pico_display_2.hpp"
#include "generic_st7789.hpp"
#include "rgbled.hpp"
#include "button.hpp"
using namespace pimoroni;
const bool ROTATE_180 = false;
// Swap WIDTH and HEIGHT to rotate 90 degrees
ST7789Generic pico_display(240, 240);
RGBLED led(PicoDisplay2::LED_R, PicoDisplay2::LED_G, PicoDisplay2::LED_B);
Button button_a(PicoDisplay2::A);
Button button_b(PicoDisplay2::B);
Button button_x(PicoDisplay2::X);
Button button_y(PicoDisplay2::Y);
// HSV Conversion expects float inputs in the range of 0.00-1.00 for each channel
// Outputs are rgb in the range 0-255 for each channel
void from_hsv(float h, float s, float v, uint8_t &r, uint8_t &g, uint8_t &b) {
float i = floor(h * 6.0f);
float f = h * 6.0f - i;
v *= 255.0f;
uint8_t p = v * (1.0f - s);
uint8_t q = v * (1.0f - f * s);
uint8_t t = v * (1.0f - (1.0f - f) * s);
switch (int(i) % 6) {
case 0: r = v; g = t; b = p; break;
case 1: r = q; g = v; b = p; break;
case 2: r = p; g = v; b = t; break;
case 3: r = p; g = q; b = v; break;
case 4: r = t; g = p; b = v; break;
case 5: r = v; g = p; b = q; break;
}
}
int main() {
pico_display.configure_display(ROTATE_180);
pico_display.set_backlight(255);
struct pt {
float x;
float y;
uint8_t r;
float dx;
float dy;
uint16_t pen;
};
std::vector<pt> shapes;
for(int i = 0; i < 100; i++) {
pt shape;
shape.x = rand() % pico_display.bounds.w;
shape.y = rand() % pico_display.bounds.h;
shape.r = (rand() % 10) + 3;
shape.dx = float(rand() % 255) / 64.0f;
shape.dy = float(rand() % 255) / 64.0f;
shape.pen = pico_display.create_pen(rand() % 255, rand() % 255, rand() % 255);
shapes.push_back(shape);
}
Point text_location(0, 0);
Pen BG = pico_display.create_pen(120, 40, 60);
Pen WHITE = pico_display.create_pen(255, 255, 255);
while(true) {
if(button_a.raw()) text_location.x -= 1;
if(button_b.raw()) text_location.x += 1;
if(button_x.raw()) text_location.y -= 1;
if(button_y.raw()) text_location.y += 1;
pico_display.set_pen(BG);
pico_display.clear();
for(auto &shape : shapes) {
shape.x += shape.dx;
shape.y += shape.dy;
if((shape.x - shape.r) < 0) {
shape.dx *= -1;
shape.x = shape.r;
}
if((shape.x + shape.r) >= pico_display.bounds.w) {
shape.dx *= -1;
shape.x = pico_display.bounds.w - shape.r;
}
if((shape.y - shape.r) < 0) {
shape.dy *= -1;
shape.y = shape.r;
}
if((shape.y + shape.r) >= pico_display.bounds.h) {
shape.dy *= -1;
shape.y = pico_display.bounds.h - shape.r;
}
pico_display.set_pen(shape.pen);
pico_display.circle(Point(shape.x, shape.y), shape.r);
}
// Since HSV takes a float from 0.0 to 1.0 indicating hue,
// then we can divide millis by the number of milliseconds
// we want a full colour cycle to take. 5000 = 5 sec.
uint8_t r = 0, g = 0, b = 0;
from_hsv((float)millis() / 5000.0f, 1.0f, 0.5f + sinf(millis() / 100.0f / 3.14159f) * 0.5f, r, g, b);
led.set_rgb(r, g, b);
pico_display.set_pen(WHITE);
pico_display.text("Hello World", text_location, 320);
// update screen
pico_display.update();
}
return 0;
}