This library offers convenient functions for interacting with your new [Pimoroni Automation 2040W](https://shop.pimoroni.com/products/automation-2040-w), an all-in-one, Pico W powered industrial/automation controller with 2.4GHz wireless connectivity, relays and a plethora of inputs and outputs.
The `Automation2040W` class deals with the initialisation of each of the board's functions. To create one, import the `automation` module, then define a new `board` variable:
```python
import automation
board = automation.Automation2040W()
```
From here, all features of Automation 2040W can be accessed by calling functions on `board`. In addition, when using Qwiic / Stemma QT devices, the I2C channel to use can be accessed with `board.i2c`.
### User Switches and LEDs
Automation 2040W has two handy switches onboard, with neighbouring LEDs, offering a tactile way to interact with your program and be notified of actions that need attention.
To read one of the switches, call `.switch_pressed(switch)`, where `switch` is a value from `0` to `.NUM_SWITCHES - 1`. This returns `True` when the specified switch is pressed, and `False` otherwise.
To set a switch's neighbouring LED, call `.switch_led(switch, brightness)`, where `switch` is a value from `0` to `.NUM_SWITCHES - 1`, and `brightness` is either `True`, `False`, or a number from `0.0` to `100.0`.
To make it easier to use a specific switch or it's LED, the `automation` module contains these handy constants:
*`SWITCH_A` = `0`
*`SWITCH_B` = `1`
### Connectivity LED
In addition to the Switch LEDs, Automation 2040W has a user-controllable connectivity LED near the top-right of the board.
To set this led, call `.conn_led(brightness)`, where `brightness` is either `True`, `False`, or a number from `0.0` to `100.0`.
### Actuating the Relays
Three relays are featured on Automation 2040W. By default these are in a released state, which connects the terminal labelled `NC` to `COM`. By actuating them, a connection from `NO` to `COM` can be made instead.
A relay can be actuated by calling `.actuate_relay(relay)`, or released by calling `.release_relay(relay)`. Additionally the actuated state can be set by providing a boolean to the `actuate` parameter of `.relay(relay, actuate)`.
The state of each relay can be read by calling `.relay(relay)`. This returns `True` if the relay is actuated, and `False` if it is released. The actuation state is also reflected by LEDs that neighbour each relay.
For all these functions, `relay` is a value from `0` to `.NUM_RELAYS - 1`. To control a specific relay, the `automation` module contains these handy constants:
An output can be controlled by calling `.output(output, value)`, where `output` is a value from `0` to `.NUM_OUTPUTS - 1`, and `value` is `True`, `False` or a number between `0.0` and `100.0`
The state of an output can be read by calling `.output(output)`, where `output` is a value from `0` to `.NUM_OUTPUTS - 1`. This returns `True` if the output is on by any percent, or `False` if it is off. The state is also reflected by LEDs that neighbour each output terminal.
If you prefer to know the current PWM setting of an output as a percentage, this can be accessed by calling `.output_precent(output)`, where `output` is a value from `0` to `.NUM_OUTPUTS - 1`. This will return a float between `0.0` and `100.0`.
#### Changing the frequency
The PWM frequency of the output can be set by calling `.change_output_freq(output, freq)`, where `output` is a value from `0` to `.NUM_OUTPUTS - 1` and `freq` is a frequency in Hz between `10.0` and `1000.0`. Values outside of this range will cause a `ValueError`.
Automation 2040W has four buffered digital inputs. These can be read by calling `.read_input(input)`, where `input` is a value from `0` to `.NUM_INPUTS - 1`.
Automation 2040W has three analog inputs, capable of reading up to 40V. The voltage on these can be read by calling `.read_adc(adc)`, where `adc` is a value from `0` to `.NUM_ADCS - 1`.
To read a specific adc, the `automation` module contains these handy constants:
*`ADC_1` = `0`
*`ADC_2` = `1`
*`ADC_3` = `2`
### Extra GPIOs
On the left hand side of Automation 2040W are three GPIO pins. These are 3.3V logic only, and are connected to GP0, GP1, and GP2 of the Pico W. These pins can be referenced in code using `0`, `1`, and `2`, or by one of these handy constants on the `automation` module:
If there is a need to put Automation 2040W back into a known safe-state, without resorting to the hardware reset switch, then `.reset()` can be called. This deactivates all outputs, releases all relays, and turns off all user-controllable LEDs.