pimoroni-pico/drivers/pcf85063a/pcf85063a.cpp

188 lines
5.6 KiB
C++
Raw Normal View History

2022-07-29 10:59:24 +01:00
#include "pcf85063a.hpp"
#include <chrono>
#include <cstdio>
// binary coded decimal conversion helper functions
uint8_t bcd_encode(uint v) {
uint v10 = v / 10, v1 = v - (v10 * 10); return v1 | (v10 << 4); }
int8_t bcd_decode(uint v) {
uint v10 = (v >> 4) & 0x0f, v1 = v & 0x0f; return v1 + (v10 * 10); }
namespace pimoroni {
void PCF85063A::init() {
if(interrupt != PIN_UNUSED) {
gpio_set_function(interrupt, GPIO_FUNC_SIO);
gpio_set_dir(interrupt, GPIO_IN);
gpio_set_pulls(interrupt, false, true);
}
}
void PCF85063A::reset() {
// magic soft reset command
i2c->reg_write_uint8(address, Registers::CONTROL_1, 0x58);
// read the oscillator status bit until it is cleared
uint8_t status = 0x80;
while(status & 0x80) {
// attempt to clear oscillator stop flag, then read it back
i2c->reg_write_uint8(address, Registers::OSCILLATOR_STATUS, 0x00);
status = i2c->reg_read_uint8(address, Registers::OSCILLATOR_STATUS);
}
}
// i2c helper methods
i2c_inst_t* PCF85063A::get_i2c() const {
return i2c->get_i2c();
}
int PCF85063A::get_address() const {
return address;
}
int PCF85063A::get_sda() const {
return i2c->get_sda();
}
int PCF85063A::get_scl() const {
return i2c->get_scl();
}
int PCF85063A::get_int() const {
return interrupt;
}
datetime_t PCF85063A::get_datetime() {
static uint8_t result[7] = {0};
i2c->read_bytes(address, Registers::SECONDS, result, 7);
datetime_t dt = {
.year = (int16_t)(bcd_decode(result[6]) + 2000), // offset year
.month = ( int8_t) bcd_decode(result[5]),
.day = ( int8_t) bcd_decode(result[3]),
.dotw = ( int8_t) bcd_decode(result[4]),
.hour = ( int8_t) bcd_decode(result[2]),
.min = ( int8_t) bcd_decode(result[1]),
.sec = ( int8_t) bcd_decode(result[0] & 0x7f) // mask out status bit
};
return dt;
}
void PCF85063A::set_datetime(datetime_t *t) {
static uint8_t data[7] = {
bcd_encode((uint)t->sec),
bcd_encode((uint)t->min),
bcd_encode((uint)t->hour),
bcd_encode((uint)t->day),
bcd_encode((uint)t->dotw),
bcd_encode((uint)t->month),
bcd_encode((uint)t->year - 2000) // offset year
};
i2c->write_bytes(address, Registers::SECONDS, data, 7);
}
void PCF85063A::set_alarm(int second, int minute, int hour, int day) {
uint8_t alarm[5] = {
uint8_t(second != PARAM_UNUSED ? bcd_encode(second) : 0x80),
uint8_t(minute != PARAM_UNUSED ? bcd_encode(minute) : 0x80),
uint8_t(hour != PARAM_UNUSED ? bcd_encode( hour) : 0x80),
uint8_t(day != PARAM_UNUSED ? bcd_encode( day) : 0x80),
uint8_t(0x80)
};
i2c->write_bytes(address, Registers::SECOND_ALARM, alarm, 5);
}
void PCF85063A::set_weekday_alarm(
int second, int minute, int hour, DayOfWeek dotw) {
uint8_t alarm[5] = {
uint8_t(second != PARAM_UNUSED ? bcd_encode(second) : 0x80),
uint8_t(minute != PARAM_UNUSED ? bcd_encode(minute) : 0x80),
uint8_t(hour != PARAM_UNUSED ? bcd_encode( hour) : 0x80),
uint8_t(0x80),
uint8_t(dotw != DayOfWeek::NONE ? bcd_encode( dotw) : 0x80)
};
i2c->write_bytes(address, Registers::SECOND_ALARM, alarm, 5);
}
void PCF85063A::enable_alarm_interrupt(bool enable) {
uint8_t bits = i2c->reg_read_uint8(address, Registers::CONTROL_2);
bits = enable ? (bits | 0x80) : (bits & ~0x80);
bits |= 0x40; // ensure alarm flag isn't reset
i2c->reg_write_uint8(address, Registers::CONTROL_2, bits);
}
bool PCF85063A::read_alarm_flag() {
uint8_t bits = i2c->reg_read_uint8(address, Registers::CONTROL_2);
return bits & 0x40;
}
void PCF85063A::clear_alarm_flag() {
uint8_t bits = i2c->reg_read_uint8(address, Registers::CONTROL_2);
bits &= ~0x40;
i2c->reg_write_uint8(address, Registers::CONTROL_2, bits);
}
void PCF85063A::unset_alarm() {
uint8_t dummy[5] = {0};
i2c->write_bytes(address, Registers::SECOND_ALARM, dummy, 5);
}
void PCF85063A::set_timer(uint8_t ticks, TimerTickPeriod ttp) {
uint8_t bits = i2c->reg_read_uint8(address, Registers::TIMER_MODE);
uint8_t timer[2] = {
ticks,
uint8_t((bits & ~0x18) | (ttp << 3) | 0x04) // mask out current ttp and set new + enable
};
i2c->write_bytes(address, Registers::TIMER_VALUE, timer, 2);
}
void PCF85063A::enable_timer_interrupt(bool enable, bool flag_only) {
uint8_t bits = i2c->reg_read_uint8(address, Registers::TIMER_MODE);
bits = (bits & ~0x03) | (enable ? 0x02 : 0x00) | (flag_only ? 0x01 : 0x00);
i2c->reg_write_uint8(address, Registers::TIMER_MODE, bits);
}
bool PCF85063A::read_timer_flag() {
uint8_t bits = i2c->reg_read_uint8(address, Registers::CONTROL_2);
return bits & 0x08;
}
void PCF85063A::clear_timer_flag() {
uint8_t bits = i2c->reg_read_uint8(address, Registers::CONTROL_2);
bits &= ~0x08;
i2c->reg_write_uint8(address, Registers::CONTROL_2, bits);
}
void PCF85063A::unset_timer() {
uint8_t bits = i2c->reg_read_uint8(address, Registers::TIMER_MODE);
bits &= ~0x04;
i2c->reg_write_uint8(address, Registers::TIMER_MODE, bits);
}
// set the speed of (or turn off) the clock output
void PCF85063A::set_clock_output(ClockOut co) {
uint8_t bits = i2c->reg_read_uint8(address, Registers::CONTROL_2);
bits = (bits & ~0x07) | uint8_t(co);
i2c->reg_write_uint8(
address, Registers::CONTROL_2, bits);
}
void PCF85063A::set_byte(uint8_t v) {
i2c->reg_write_uint8(address, Registers::RAM_BYTE, v);
}
uint8_t PCF85063A::get_byte() {
return i2c->reg_read_uint8(address, Registers::RAM_BYTE);
}
}