pimoroni-pico/examples/motor2040/motor2040_position_control.cpp

153 lines
4.5 KiB
C++
Raw Normal View History

#include <cstdio>
#include "pico/stdlib.h"
#include "motor2040.hpp"
#include "button.hpp"
#include "pid.hpp"
/*
An example of how to move a motor smoothly between random positions,
with the help of it's attached encoder and PID control.
Press "Boot" to exit the program.
*/
using namespace motor;
using namespace encoder;
// The pins of the motor being profiled
const pin_pair MOTOR_PINS = motor2040::MOTOR_A;
// The pins of the encoder attached to the profiled motor
const pin_pair ENCODER_PINS = motor2040::ENCODER_A;
// The gear ratio of the motor
constexpr float GEAR_RATIO = 50.0f;
// The counts per revolution of the motor's output shaft
constexpr float COUNTS_PER_REV = MMME_CPR * GEAR_RATIO;
// The direction to spin the motor in. NORMAL_DIR (0), REVERSED_DIR (1)
const Direction DIRECTION = NORMAL_DIR;
// The scaling to apply to the motor's speed to match its real-world speed
float SPEED_SCALE = 5.4f;
// How many times to update the motor per second
const uint UPDATES = 100;
constexpr float UPDATE_RATE = 1.0f / (float)UPDATES;
// The time to travel between each random value
constexpr float TIME_FOR_EACH_MOVE = 1.0f;
const uint UPDATES_PER_MOVE = TIME_FOR_EACH_MOVE * UPDATES;
// How many of the updates should be printed (i.e. 2 would be every other update)
const uint PRINT_DIVIDER = 4;
// Multipliers for the different printed values, so they appear nicely on the Thonny plotter
constexpr float SPD_PRINT_SCALE = 20.0f; // Driving Speed multipler
// How far from zero to move the motor, in degrees
constexpr float POSITION_EXTENT = 180.0f;
// The interpolating mode between setpoints. STEP (0), LINEAR (1), COSINE (2)
const uint INTERP_MODE = 2;
// PID values
constexpr float POS_KP = 0.14f; // Position proportional (P) gain
constexpr float POS_KI = 0.0f; // Position integral (I) gain
constexpr float POS_KD = 0.002f; // Position derivative (D) gain
// Create a motor and set its direction and speed scale
Motor m = Motor(MOTOR_PINS, DIRECTION, SPEED_SCALE);
// Create an encoder and set its direction and counts per rev, using PIO 0 and State Machine 0
Encoder enc = Encoder(pio0, 0, ENCODER_PINS, PIN_UNUSED, DIRECTION, COUNTS_PER_REV, true);
// Create the user button
Button user_sw(motor2040::USER_SW);
// Create PID object for position control
PID pos_pid = PID(POS_KP, POS_KI, POS_KD, UPDATE_RATE);
int main() {
stdio_init_all();
// Initialise the motor and encoder
m.init();
enc.init();
// Enable the motor
m.enable();
uint update = 0;
uint print_count = 0;
// Set the initial value and create a random end value between the extents
float start_value = 0.0f;
float end_value = (((float)rand() / (float)RAND_MAX) * (POSITION_EXTENT * 2.0f)) - POSITION_EXTENT;
// Continually move the motor until the user button is pressed
while(!user_sw.raw()) {
// Capture the state of the encoder
Encoder::Capture capture = enc.capture();
// Calculate how far along this movement to be
float percent_along = (float)update / (float)UPDATES_PER_MOVE;
switch(INTERP_MODE) {
2022-04-29 00:09:58 +01:00
case 0:
// Move the motor instantly to the end value
pos_pid.setpoint = end_value;
break;
case 2:
// Move the motor between values using cosine
pos_pid.setpoint = (((-cosf(percent_along * (float)M_PI) + 1.0) / 2.0) * (end_value - start_value)) + start_value;
break;
case 1:
default:
// Move the motor linearly between values
pos_pid.setpoint = (percent_along * (end_value - start_value)) + start_value;
}
// Calculate the velocity to move the motor closer to the position setpoint
float vel = pos_pid.calculate(capture.degrees(), capture.degrees_per_second());
// Set the new motor driving speed
m.speed(vel);
// Print out the current motor values and their setpoints, but only on every multiple
if(print_count == 0) {
2022-04-29 00:09:58 +01:00
printf("Pos = %f, ", capture.degrees());
printf("Pos SP = %f, ", pos_pid.setpoint);
printf("Speed = %f\n", m.speed() * SPD_PRINT_SCALE);
}
// Increment the print count, and wrap it
print_count = (print_count + 1) % PRINT_DIVIDER;
update++; // Move along in time
// Have we reached the end of this movement?
if(update >= UPDATES_PER_MOVE) {
2022-04-29 00:09:58 +01:00
update = 0; // Reset the counter
2022-04-29 00:09:58 +01:00
// Set the start as the last end and create a new random end value
start_value = end_value;
end_value = (((float)rand() / (float)RAND_MAX) * (POSITION_EXTENT * 2.0f)) - POSITION_EXTENT;
}
sleep_ms(UPDATE_RATE * 1000.0f);
}
// Disable the motor
m.disable();
}