2021-03-29 14:26:43 +01:00
|
|
|
#include <string.h>
|
|
|
|
#include <math.h>
|
|
|
|
#include <vector>
|
|
|
|
#include <cstdlib>
|
|
|
|
|
2021-03-30 13:51:00 +01:00
|
|
|
#include "breakout_roundlcd.hpp"
|
2021-03-29 14:26:43 +01:00
|
|
|
#include "time.h"
|
|
|
|
|
|
|
|
// Place a 1.3 Round SPI LCD in the *front* slot of breakout garden.
|
|
|
|
|
|
|
|
using namespace pimoroni;
|
|
|
|
|
|
|
|
|
2021-03-30 13:51:00 +01:00
|
|
|
uint16_t buffer[BreakoutRoundLCD::WIDTH * BreakoutRoundLCD::HEIGHT];
|
2021-04-20 10:54:10 +01:00
|
|
|
BreakoutRoundLCD display(buffer, BG_SPI_FRONT);
|
2021-03-29 14:26:43 +01:00
|
|
|
|
2021-03-30 13:51:00 +01:00
|
|
|
constexpr float RADIUS = BreakoutRoundLCD::WIDTH / 2;
|
2021-03-29 14:26:43 +01:00
|
|
|
|
|
|
|
Pen from_hsv(float h, float s, float v) {
|
|
|
|
uint8_t r, g, b;
|
|
|
|
|
|
|
|
float i = floor(h * 6.0f);
|
|
|
|
float f = h * 6.0f - i;
|
|
|
|
v *= 255.0f;
|
|
|
|
uint8_t p = v * (1.0f - s);
|
|
|
|
uint8_t q = v * (1.0f - f * s);
|
|
|
|
uint8_t t = v * (1.0f - (1.0f - f) * s);
|
|
|
|
|
|
|
|
switch (int(i) % 6) {
|
|
|
|
case 0: r = v; g = t; b = p; break;
|
|
|
|
case 1: r = q; g = v; b = p; break;
|
|
|
|
case 2: r = p; g = v; b = t; break;
|
|
|
|
case 3: r = p; g = q; b = v; break;
|
|
|
|
case 4: r = t; g = p; b = v; break;
|
|
|
|
case 5: r = v; g = p; b = q; break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return display.create_pen(r, g, b);
|
|
|
|
}
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
display.init();
|
2021-04-19 16:36:31 +01:00
|
|
|
display.set_backlight(255);
|
2021-03-29 14:26:43 +01:00
|
|
|
|
|
|
|
uint32_t steps = 70;
|
|
|
|
float angle_step = 0.5f;
|
|
|
|
|
|
|
|
while(1) {
|
|
|
|
absolute_time_t at = get_absolute_time();
|
2021-04-05 11:05:33 +01:00
|
|
|
uint64_t t = to_us_since_boot(at) / 100000;
|
2021-03-29 14:26:43 +01:00
|
|
|
float angle = (t % 360) * M_PI / 180.0f;
|
|
|
|
|
|
|
|
display.set_pen(0, 0, 0);
|
|
|
|
display.clear();
|
|
|
|
display.set_pen(255, 255, 255);
|
|
|
|
|
|
|
|
for(auto step = 0u; step < steps; step++) {
|
|
|
|
auto distance = RADIUS / steps * step;
|
|
|
|
distance += step * 0.2f;
|
|
|
|
|
|
|
|
angle += angle_step;
|
|
|
|
|
|
|
|
unsigned int x = RADIUS + (distance * cosf(angle));
|
|
|
|
unsigned int y = RADIUS + (distance * sinf(angle));
|
|
|
|
|
|
|
|
auto l = 2.0 + (((sin((t / 2.0f) + angle) + 1) / 2.0f) * 8.0f);
|
|
|
|
|
|
|
|
auto p = from_hsv((t / 10.0f) + distance / 120.0f, 1.0, 1.0);
|
|
|
|
|
|
|
|
display.set_pen(p);
|
|
|
|
display.circle(Point(x, y), l);
|
|
|
|
}
|
|
|
|
|
|
|
|
display.update();
|
2021-04-19 16:36:31 +01:00
|
|
|
sleep_ms(10);
|
2021-03-29 14:26:43 +01:00
|
|
|
}
|
|
|
|
}
|