168 lines
6.5 KiB
Plaintext
168 lines
6.5 KiB
Plaintext
|
;
|
||
|
; Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
|
||
|
;
|
||
|
; SPDX-License-Identifier: BSD-3-Clause
|
||
|
;
|
||
|
|
||
|
; These programs implement full-duplex SPI, with a SCK period of 4 clock
|
||
|
; cycles. A different program is provided for each value of CPHA, and CPOL is
|
||
|
; achieved using the hardware GPIO inversion available in the IO controls.
|
||
|
;
|
||
|
; Transmit-only SPI can go twice as fast -- see the ST7789 example!
|
||
|
|
||
|
|
||
|
.program spi_cpha0
|
||
|
.side_set 1
|
||
|
|
||
|
; Pin assignments:
|
||
|
; - SCK is side-set pin 0
|
||
|
; - MOSI is OUT pin 0
|
||
|
; - MISO is IN pin 0
|
||
|
;
|
||
|
; Autopush and autopull must be enabled, and the serial frame size is set by
|
||
|
; configuring the push/pull threshold. Shift left/right is fine, but you must
|
||
|
; justify the data yourself. This is done most conveniently for frame sizes of
|
||
|
; 8 or 16 bits by using the narrow store replication and narrow load byte
|
||
|
; picking behaviour of RP2040's IO fabric.
|
||
|
|
||
|
; Clock phase = 0: data is captured on the leading edge of each SCK pulse, and
|
||
|
; transitions on the trailing edge, or some time before the first leading edge.
|
||
|
|
||
|
out pins, 1 side 0 [1] ; Stall here on empty (sideset proceeds even if
|
||
|
in pins, 1 side 1 [1] ; instruction stalls, so we stall with SCK low)
|
||
|
|
||
|
.program spi_cpha1
|
||
|
.side_set 1
|
||
|
|
||
|
; Clock phase = 1: data transitions on the leading edge of each SCK pulse, and
|
||
|
; is captured on the trailing edge.
|
||
|
|
||
|
out x, 1 side 0 ; Stall here on empty (keep SCK deasserted)
|
||
|
mov pins, x side 1 [1] ; Output data, assert SCK (mov pins uses OUT mapping)
|
||
|
in pins, 1 side 0 ; Input data, deassert SCK
|
||
|
|
||
|
% c-sdk {
|
||
|
#include "hardware/gpio.h"
|
||
|
static inline void pio_spi_init(PIO pio, uint sm, uint prog_offs, uint n_bits,
|
||
|
float clkdiv, bool cpha, bool cpol, uint pin_sck, uint pin_mosi, uint pin_miso) {
|
||
|
pio_sm_config c = cpha ? spi_cpha1_program_get_default_config(prog_offs) : spi_cpha0_program_get_default_config(prog_offs);
|
||
|
sm_config_set_out_pins(&c, pin_mosi, 1);
|
||
|
sm_config_set_in_pins(&c, pin_miso);
|
||
|
sm_config_set_sideset_pins(&c, pin_sck);
|
||
|
// Only support MSB-first in this example code (shift to left, auto push/pull, threshold=nbits)
|
||
|
sm_config_set_out_shift(&c, false, true, n_bits);
|
||
|
sm_config_set_in_shift(&c, false, true, n_bits);
|
||
|
sm_config_set_clkdiv(&c, clkdiv);
|
||
|
|
||
|
// MOSI, SCK output are low, MISO is input
|
||
|
pio_sm_set_pins_with_mask(pio, sm, 0, (1u << pin_sck) | (1u << pin_mosi));
|
||
|
pio_sm_set_pindirs_with_mask(pio, sm, (1u << pin_sck) | (1u << pin_mosi), (1u << pin_sck) | (1u << pin_mosi) | (1u << pin_miso));
|
||
|
pio_gpio_init(pio, pin_mosi);
|
||
|
pio_gpio_init(pio, pin_miso);
|
||
|
pio_gpio_init(pio, pin_sck);
|
||
|
|
||
|
// The pin muxes can be configured to invert the output (among other things
|
||
|
// and this is a cheesy way to get CPOL=1
|
||
|
gpio_set_outover(pin_sck, cpol ? GPIO_OVERRIDE_INVERT : GPIO_OVERRIDE_NORMAL);
|
||
|
// SPI is synchronous, so bypass input synchroniser to reduce input delay.
|
||
|
hw_set_bits(&pio->input_sync_bypass, 1u << pin_miso);
|
||
|
|
||
|
pio_sm_init(pio, sm, prog_offs, &c);
|
||
|
pio_sm_set_enabled(pio, sm, true);
|
||
|
}
|
||
|
%}
|
||
|
|
||
|
; SPI with Chip Select
|
||
|
; -----------------------------------------------------------------------------
|
||
|
;
|
||
|
; For your amusement, here are some SPI programs with an automatic chip select
|
||
|
; (asserted once data appears in TX FIFO, deasserts when FIFO bottoms out, has
|
||
|
; a nice front/back porch).
|
||
|
;
|
||
|
; The number of bits per FIFO entry is configured via the Y register
|
||
|
; and the autopush/pull threshold. From 2 to 32 bits.
|
||
|
;
|
||
|
; Pin assignments:
|
||
|
; - SCK is side-set bit 0
|
||
|
; - CSn is side-set bit 1
|
||
|
; - MOSI is OUT bit 0 (host-to-device)
|
||
|
; - MISO is IN bit 0 (device-to-host)
|
||
|
;
|
||
|
; This program only supports one chip select -- use GPIO if more are needed
|
||
|
;
|
||
|
; Provide a variation for each possibility of CPHA; for CPOL we can just
|
||
|
; invert SCK in the IO muxing controls (downstream from PIO)
|
||
|
|
||
|
|
||
|
; CPHA=0: data is captured on the leading edge of each SCK pulse (including
|
||
|
; the first pulse), and transitions on the trailing edge
|
||
|
|
||
|
.program spi_cpha0_cs
|
||
|
.side_set 2
|
||
|
|
||
|
.wrap_target
|
||
|
bitloop:
|
||
|
out pins, 1 side 0x0 [1]
|
||
|
in pins, 1 side 0x1
|
||
|
jmp x-- bitloop side 0x1
|
||
|
|
||
|
out pins, 1 side 0x0
|
||
|
mov x, y side 0x0 ; Reload bit counter from Y
|
||
|
in pins, 1 side 0x1
|
||
|
jmp !osre bitloop side 0x1 ; Fall-through if TXF empties
|
||
|
|
||
|
nop side 0x0 [1] ; CSn back porch
|
||
|
public entry_point: ; Must set X,Y to n-2 before starting!
|
||
|
pull ifempty side 0x2 [1] ; Block with CSn high (minimum 2 cycles)
|
||
|
.wrap ; Note ifempty to avoid time-of-check race
|
||
|
|
||
|
; CPHA=1: data transitions on the leading edge of each SCK pulse, and is
|
||
|
; captured on the trailing edge
|
||
|
|
||
|
.program spi_cpha1_cs
|
||
|
.side_set 2
|
||
|
|
||
|
.wrap_target
|
||
|
bitloop:
|
||
|
out pins, 1 side 0x1 [1]
|
||
|
in pins, 1 side 0x0
|
||
|
jmp x-- bitloop side 0x0
|
||
|
|
||
|
out pins, 1 side 0x1
|
||
|
mov x, y side 0x1
|
||
|
in pins, 1 side 0x0
|
||
|
jmp !osre bitloop side 0x0
|
||
|
|
||
|
public entry_point: ; Must set X,Y to n-2 before starting!
|
||
|
pull ifempty side 0x2 [1] ; Block with CSn high (minimum 2 cycles)
|
||
|
nop side 0x0 [1]; CSn front porch
|
||
|
.wrap
|
||
|
|
||
|
% c-sdk {
|
||
|
#include "hardware/gpio.h"
|
||
|
static inline void pio_spi_cs_init(PIO pio, uint sm, uint prog_offs, uint n_bits, float clkdiv, bool cpha, bool cpol,
|
||
|
uint pin_sck, uint pin_mosi, uint pin_miso) {
|
||
|
pio_sm_config c = cpha ? spi_cpha1_cs_program_get_default_config(prog_offs) : spi_cpha0_cs_program_get_default_config(prog_offs);
|
||
|
sm_config_set_out_pins(&c, pin_mosi, 1);
|
||
|
sm_config_set_in_pins(&c, pin_miso);
|
||
|
sm_config_set_sideset_pins(&c, pin_sck);
|
||
|
sm_config_set_out_shift(&c, false, true, n_bits);
|
||
|
sm_config_set_in_shift(&c, false, true, n_bits);
|
||
|
sm_config_set_clkdiv(&c, clkdiv);
|
||
|
|
||
|
pio_sm_set_pins_with_mask(pio, sm, (2u << pin_sck), (3u << pin_sck) | (1u << pin_mosi));
|
||
|
pio_sm_set_pindirs_with_mask(pio, sm, (3u << pin_sck) | (1u << pin_mosi), (3u << pin_sck) | (1u << pin_mosi) | (1u << pin_miso));
|
||
|
pio_gpio_init(pio, pin_mosi);
|
||
|
pio_gpio_init(pio, pin_miso);
|
||
|
pio_gpio_init(pio, pin_sck);
|
||
|
pio_gpio_init(pio, pin_sck + 1);
|
||
|
gpio_set_outover(pin_sck, cpol ? GPIO_OVERRIDE_INVERT : GPIO_OVERRIDE_NORMAL);
|
||
|
hw_set_bits(&pio->input_sync_bypass, 1u << pin_miso);
|
||
|
|
||
|
uint entry_point = prog_offs + (cpha ? spi_cpha1_cs_offset_entry_point : spi_cpha0_cs_offset_entry_point);
|
||
|
pio_sm_init(pio, sm, entry_point, &c);
|
||
|
pio_sm_exec(pio, sm, pio_encode_set(pio_x, n_bits - 2));
|
||
|
pio_sm_exec(pio, sm, pio_encode_set(pio_y, n_bits - 2));
|
||
|
pio_sm_set_enabled(pio, sm, true);
|
||
|
}
|
||
|
%}
|