pimoroni-pico/examples/interstate75/interstate75_balls_demo.cpp

124 lines
3.4 KiB
C++
Raw Normal View History

#include <math.h>
#include "pico/stdlib.h"
#include "libraries/pico_graphics/pico_graphics.hpp"
#include "drivers/hub75/hub75.hpp"
using namespace pimoroni;
const uint8_t QTY_BALLS = 10;
//If the display looks streaky or corrupted then uncomment one of the other initalisers
//Works with our 32x32 panels https://shop.pimoroni.com/products/rgb-led-matrix-panel?variant=35962488650 https://shop.pimoroni.com/products/rgb-led-matrix-panel?variant=19321740999
//Hub75 hub75(32, 32, nullptr, PANEL_GENERIC, false);
//or using 2 of these panels
//Hub75 hub75(64, 32, nullptr, PANEL_GENERIC, false);
//and 64x32 panel https://shop.pimoroni.com/products/rgb-led-matrix-panel?variant=42312764298
//Hub75 hub75(64, 32, nullptr, PANEL_GENERIC, false);
//or using 2 of these panels
//Hub75 hub75(128, 32, nullptr, PANEL_GENERIC, false);
//Works with our 64x64 panel https://shop.pimoroni.com/products/rgb-led-matrix-panel?variant=3029531983882
Hub75 hub75(64, 64, nullptr, PANEL_FM6126A, false);
//or using 2 of these panels
//Hub75 hub75(128, 64, nullptr, PANEL_GENERIC, false);
PicoGraphics_PenRGB888 graphics(hub75.width, hub75.height, nullptr);
// Callback for the dma interrupt (required)
void __isr dma_complete() {
hub75.dma_complete();
}
// HSV Conversion expects float inputs in the range of 0.00-1.00 for each channel
// Outputs are rgb in the range 0-255 for each channel
void from_hsv(float h, float s, float v, uint8_t &r, uint8_t &g, uint8_t &b) {
float i = floor(h * 6.0f);
float f = h * 6.0f - i;
v *= 255.0f;
uint8_t p = v * (1.0f - s);
uint8_t q = v * (1.0f - f * s);
uint8_t t = v * (1.0f - (1.0f - f) * s);
switch (int(i) % 6) {
case 0: r = v; g = t; b = p; break;
case 1: r = q; g = v; b = p; break;
case 2: r = p; g = v; b = t; break;
case 3: r = p; g = q; b = v; break;
case 4: r = t; g = p; b = v; break;
case 5: r = v; g = p; b = q; break;
}
}
int main() {
hub75.start(dma_complete);
struct pt {
float x;
float y;
uint8_t r;
float dx;
float dy;
Pen pen;
};
std::vector<pt> shapes;
for(uint8_t i = 0; i < QTY_BALLS; i++) {
pt shape;
shape.x = rand() % graphics.bounds.w;
shape.y = rand() % graphics.bounds.h;
shape.r = (rand() % 5) + 2;
shape.dx = float(rand() % 255) / 128.0f;
shape.dy = float(rand() % 255) / 128.0f;
shape.pen = graphics.create_pen(rand() % 255, rand() % 255, rand() % 255);
shapes.push_back(shape);
}
Point text_location(0, 0);
Pen BG = graphics.create_pen(0, 0, 0);
Pen WHITE = graphics.create_pen(200, 200, 200);
while(true) {
graphics.set_pen(BG);
graphics.clear();
for(auto &shape : shapes) {
shape.x += shape.dx;
shape.y += shape.dy;
if((shape.x - shape.r) < 0) {
shape.dx *= -1;
shape.x = shape.r;
}
if((shape.x + shape.r) >= graphics.bounds.w) {
shape.dx *= -1;
shape.x = graphics.bounds.w - shape.r;
}
if((shape.y - shape.r) < 0) {
shape.dy *= -1;
shape.y = shape.r;
}
if((shape.y + shape.r) >= graphics.bounds.h) {
shape.dy *= -1;
shape.y = graphics.bounds.h - shape.r;
}
graphics.set_pen(shape.pen);
graphics.circle(Point(shape.x, shape.y), shape.r);
}
graphics.set_pen(WHITE);
graphics.text("Hello World", text_location, false, 1.0f);
// update screen
hub75.update(&graphics);
sleep_ms(1000 / 30);
}
return 0;
}