pimoroni-pico/micropython/modules/breakout_ltr559/breakout_ltr559.cpp

336 lines
13 KiB
C++
Raw Normal View History

#include "libraries/breakout_ltr559/breakout_ltr559.hpp"
#include <cstdio>
#define MP_OBJ_TO_PTR2(o, t) ((t *)(uintptr_t)(o))
// SDA/SCL on even/odd pins, I2C0/I2C1 on even/odd pairs of pins.
#define IS_VALID_SCL(i2c, pin) (((pin) & 1) == 1 && (((pin) & 2) >> 1) == (i2c))
#define IS_VALID_SDA(i2c, pin) (((pin) & 1) == 0 && (((pin) & 2) >> 1) == (i2c))
using namespace pimoroni;
extern "C" {
#include "breakout_ltr559.h"
#include "pimoroni_i2c.h"
/***** I2C Struct *****/
typedef struct _PimoroniI2C_obj_t {
mp_obj_base_t base;
I2C *i2c;
} _PimoroniI2C_obj_t;
/***** Variables Struct *****/
typedef struct _breakout_ltr559_BreakoutLTR559_obj_t {
mp_obj_base_t base;
BreakoutLTR559 *breakout;
} breakout_ltr559_BreakoutLTR559_obj_t;
/***** Print *****/
void BreakoutLTR559_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
(void)kind; //Unused input parameter
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(self_in, breakout_ltr559_BreakoutLTR559_obj_t);
BreakoutLTR559* breakout = self->breakout;
mp_print_str(print, "BreakoutLTR559(");
mp_print_str(print, "i2c = ");
mp_obj_print_helper(print, mp_obj_new_int((breakout->get_i2c() == i2c0) ? 0 : 1), PRINT_REPR);
mp_print_str(print, ", address = 0x");
char buf[3];
sprintf(buf, "%02X", breakout->get_address());
mp_print_str(print, buf);
mp_print_str(print, ", sda = ");
mp_obj_print_helper(print, mp_obj_new_int(breakout->get_sda()), PRINT_REPR);
mp_print_str(print, ", scl = ");
mp_obj_print_helper(print, mp_obj_new_int(breakout->get_scl()), PRINT_REPR);
mp_print_str(print, ", int = ");
mp_obj_print_helper(print, mp_obj_new_int(breakout->get_int()), PRINT_REPR);
mp_print_str(print, ")");
}
/***** Constructor *****/
mp_obj_t BreakoutLTR559_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
breakout_ltr559_BreakoutLTR559_obj_t *self = nullptr;
enum { ARG_i2c, ARG_interrupt };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_i2c, MP_ARG_OBJ, {.u_obj = nullptr} },
{ MP_QSTR_interrupt, MP_ARG_INT, {.u_int = PIN_UNUSED} },
};
// Parse args.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if(!MP_OBJ_IS_TYPE(args[ARG_i2c].u_obj, &PimoroniI2C_type)) {
mp_raise_ValueError(MP_ERROR_TEXT("BreakoutLTR559: Bad i2C object"));
return mp_const_none;
}
_PimoroniI2C_obj_t *i2c = (_PimoroniI2C_obj_t *)MP_OBJ_TO_PTR(args[ARG_i2c].u_obj);
self = m_new_obj(breakout_ltr559_BreakoutLTR559_obj_t);
self->base.type = &breakout_ltr559_BreakoutLTR559_type;
self->breakout = new BreakoutLTR559(i2c->i2c, args[ARG_interrupt].u_int);
if(!self->breakout->init()) {
mp_raise_msg(&mp_type_RuntimeError, "BreakoutLTR559: breakout not found when initialising");
}
return MP_OBJ_FROM_PTR(self);
}
mp_obj_t BreakoutLTR559_part_id(mp_obj_t self_in) {
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(self_in, breakout_ltr559_BreakoutLTR559_obj_t);
return mp_obj_new_int(self->breakout->part_id());
}
mp_obj_t BreakoutLTR559_revision_id(mp_obj_t self_in) {
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(self_in, breakout_ltr559_BreakoutLTR559_obj_t);
return mp_obj_new_int(self->breakout->revision_id());
}
mp_obj_t BreakoutLTR559_manufacturer_id(mp_obj_t self_in) {
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(self_in, breakout_ltr559_BreakoutLTR559_obj_t);
return mp_obj_new_int(self->breakout->manufacturer_id());
}
mp_obj_t BreakoutLTR559_get_reading(mp_obj_t self_in) {
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(self_in, breakout_ltr559_BreakoutLTR559_obj_t);
if(self->breakout->get_reading()) {
const ltr559_reading& data = self->breakout->data;
mp_obj_t tuple[7];
tuple[PROXIMITY] = mp_obj_new_int(data.proximity);
tuple[ALS_0] = mp_obj_new_int(data.als0);
tuple[ALS_1] = mp_obj_new_int(data.als1);
tuple[INTEGRATION_TIME] = mp_obj_new_int(data.integration_time);
tuple[GAIN] = mp_obj_new_int(data.gain);
tuple[RATIO] = mp_obj_new_float(data.ratio);
tuple[LUX] = mp_obj_new_int(data.lux);
return mp_obj_new_tuple(7, tuple);
}
return mp_const_none;
}
mp_obj_t BreakoutLTR559_interrupts(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_light, ARG_proximity };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_light, MP_ARG_REQUIRED | MP_ARG_BOOL },
{ MP_QSTR_proximity, MP_ARG_REQUIRED | MP_ARG_BOOL },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, breakout_ltr559_BreakoutLTR559_obj_t);
self->breakout->interrupts(args[ARG_light].u_bool, args[ARG_proximity].u_bool);
return mp_const_none;
}
mp_obj_t BreakoutLTR559_proximity_led(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_current, ARG_duty_cycle, ARG_pulse_freq, ARG_num_pulses };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_current, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_duty_cycle, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_pulse_freq, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_num_pulses, MP_ARG_REQUIRED | MP_ARG_INT },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, breakout_ltr559_BreakoutLTR559_obj_t);
int current = args[ARG_current].u_int;
int duty_cycle = args[ARG_duty_cycle].u_int;
int pulse_freq = args[ARG_pulse_freq].u_int;
int num_pulses = args[ARG_num_pulses].u_int;
if(current < 0 || current > 255)
mp_raise_ValueError("current out of range. Expected 0 to 255");
else if(duty_cycle < 0 || duty_cycle > 255)
mp_raise_ValueError("duty_cycle out of range. Expected 0 to 255");
else if(pulse_freq < 0 || pulse_freq > 255)
mp_raise_ValueError("pulse_freq out of range. Expected 0 to 255");
else if(num_pulses < 0 || num_pulses > 255)
mp_raise_ValueError("num_pulses out of range. Expected 0 to 255");
else
self->breakout->proximity_led(current, duty_cycle, pulse_freq, num_pulses);
return mp_const_none;
}
mp_obj_t BreakoutLTR559_light_control(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_active, ARG_gain };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_active, MP_ARG_REQUIRED | MP_ARG_BOOL },
{ MP_QSTR_gain, MP_ARG_REQUIRED | MP_ARG_INT },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, breakout_ltr559_BreakoutLTR559_obj_t);
int gain = args[ARG_gain].u_int;
if(gain < 0 || gain > 255)
mp_raise_ValueError("gain out of range. Expected 0 to 255");
else
self->breakout->light_control(args[ARG_active].u_bool, gain);
return mp_const_none;
}
mp_obj_t BreakoutLTR559_proximity_control(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_active, ARG_saturation_indicator };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_active, MP_ARG_REQUIRED | MP_ARG_BOOL },
{ MP_QSTR_saturation_indicator, MP_ARG_REQUIRED | MP_ARG_BOOL },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, breakout_ltr559_BreakoutLTR559_obj_t);
self->breakout->proximity_control(args[ARG_active].u_bool, args[ARG_saturation_indicator].u_bool);
return mp_const_none;
}
mp_obj_t BreakoutLTR559_light_threshold(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_lower, ARG_upper };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_lower, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_upper, MP_ARG_REQUIRED | MP_ARG_INT },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, breakout_ltr559_BreakoutLTR559_obj_t);
int lower = args[ARG_lower].u_int;
int upper = args[ARG_upper].u_int;
if(lower < 0 || lower > 65535)
mp_raise_ValueError("lower out of range. Expected 0 to 65535");
else if(upper < 0 || upper > 65535)
mp_raise_ValueError("upper out of range. Expected 0 to 65535");
else
self->breakout->light_threshold(lower, upper);
return mp_const_none;
}
mp_obj_t BreakoutLTR559_proximity_threshold(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_lower, ARG_upper };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_lower, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_upper, MP_ARG_REQUIRED | MP_ARG_INT },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, breakout_ltr559_BreakoutLTR559_obj_t);
int lower = args[ARG_lower].u_int;
int upper = args[ARG_upper].u_int;
if(lower < 0 || lower > 65535)
mp_raise_ValueError("lower out of range. Expected 0 to 65535");
else if(upper < 0 || upper > 65535)
mp_raise_ValueError("upper out of range. Expected 0 to 65535");
else
self->breakout->proximity_threshold(lower, upper);
return mp_const_none;
}
mp_obj_t BreakoutLTR559_light_measurement_rate(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_integration_time, ARG_rate };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_integration_time, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_rate, MP_ARG_REQUIRED | MP_ARG_INT },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, breakout_ltr559_BreakoutLTR559_obj_t);
int integration_time = args[ARG_integration_time].u_int;
int rate = args[ARG_rate].u_int;
if(integration_time < 0 || integration_time > 65535)
mp_raise_ValueError("integration_time out of range. Expected 0 to 65535");
else if(rate < 0 || rate > 65535)
mp_raise_ValueError("rate out of range. Expected 0 to 65535");
else
self->breakout->light_measurement_rate(integration_time, rate);
return mp_const_none;
}
mp_obj_t BreakoutLTR559_proximity_measurement_rate(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_rate };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_rate, MP_ARG_REQUIRED | MP_ARG_INT },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, breakout_ltr559_BreakoutLTR559_obj_t);
int rate = args[ARG_rate].u_int;
if(rate < 0 || rate > 65535)
mp_raise_ValueError("rate out of range. Expected 0 to 65535");
else
self->breakout->proximity_measurement_rate(rate);
return mp_const_none;
}
mp_obj_t BreakoutLTR559_proximity_offset(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_offset };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_offset, MP_ARG_REQUIRED | MP_ARG_INT },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
breakout_ltr559_BreakoutLTR559_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, breakout_ltr559_BreakoutLTR559_obj_t);
int offset = args[ARG_offset].u_int;
if(offset < 0 || offset > 65535)
mp_raise_ValueError("offset out of range. Expected 0 to 65535");
else
self->breakout->proximity_offset(offset);
return mp_const_none;
}
}