pimoroni-pico/micropython/modules/badger2040/badger2040.cpp

622 lines
21 KiB
C++

#include <cstdio>
#include "hardware/watchdog.h"
#include "badger2040.hpp"
#include "micropython/modules/util.hpp"
extern "C" {
#include "badger2040.h"
#include "py/builtin.h"
#include "py/mpthread.h"
extern uint32_t runtime_wakeup_gpio_state;
const uint32_t BUTTON_MASK = 0b11111 << 11;
static bool _Badger2040_wake_state_any() {
return (runtime_wakeup_gpio_state & BUTTON_MASK) > 0;
}
static bool _Badger2040_wake_state_get(uint32_t pin) {
return runtime_wakeup_gpio_state & BUTTON_MASK & (0b1 << pin);
}
static bool _Badger2040_wake_state_get_once(uint32_t pin) {
uint32_t mask = 0b1 << pin;
bool value = runtime_wakeup_gpio_state & BUTTON_MASK & mask;
runtime_wakeup_gpio_state &= ~mask;
return value;
}
std::string mp_obj_to_string_r(const mp_obj_t &obj) {
if(mp_obj_is_str_or_bytes(obj)) {
GET_STR_DATA_LEN(obj, str, str_len);
return (const char*)str;
}
else if(mp_obj_is_float(obj))
mp_raise_TypeError("can't convert 'float' object to str implicitly");
else if(mp_obj_is_int(obj))
mp_raise_TypeError("can't convert 'int' object to str implicitly");
else if(mp_obj_is_bool(obj))
mp_raise_TypeError("can't convert 'bool' object to str implicitly");
else
mp_raise_TypeError("can't convert object to str implicitly");
}
typedef struct _mp_obj_float_t {
mp_obj_base_t base;
mp_float_t value;
} mp_obj_float_t;
const mp_obj_float_t const_float_1 = {{&mp_type_float}, 1.0f};
/********** WS2812 **********/
/***** Variables Struct *****/
typedef struct _Badger2040_obj_t {
mp_obj_base_t base;
pimoroni::Badger2040* badger2040;
void *buf;
} _Badger2040_obj_t;
_Badger2040_obj_t *badger2040_obj;
/***** Destructor ******/
mp_obj_t Badger2040___del__(mp_obj_t self_in) {
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t);
// Try to ensure power is cut off when soft reset (IE: "Stop" in Thonny)
self->badger2040->power_off();
delete self->badger2040;
return mp_const_none;
}
/***** Constructor *****/
mp_obj_t Badger2040_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
enum { ARG_buffer };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_buffer, MP_ARG_OBJ, {.u_obj = nullptr} }
};
// Parse args.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
int width = 296;
int height = 128;
uint8_t *buffer = nullptr;
if (args[ARG_buffer].u_obj) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[ARG_buffer].u_obj, &bufinfo, MP_BUFFER_RW);
buffer = (uint8_t *)bufinfo.buf;
if(bufinfo.len < (size_t)(width * height / 8)) {
mp_raise_ValueError("Supplied buffer is too small!");
}
} else {
buffer = m_new(uint8_t, width * height / 8);
}
badger2040_obj = m_new_obj_with_finaliser(_Badger2040_obj_t);
badger2040_obj->base.type = &Badger2040_type;
badger2040_obj->buf = buffer;
badger2040_obj->badger2040 = new pimoroni::Badger2040(buffer);
badger2040_obj->badger2040->init();
return MP_OBJ_FROM_PTR(badger2040_obj);
}
mp_obj_t Badger2040_is_busy(mp_obj_t self_in) {
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t);
return self->badger2040->is_busy() ? mp_const_true : mp_const_false;
}
mp_obj_t Badger2040_update_speed(mp_obj_t self_in, mp_obj_t speed) {
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t);
self->badger2040->update_speed(mp_obj_get_int(speed));
return mp_const_none;
}
mp_obj_t Badger2040_update(mp_obj_t self_in) {
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t);
while(self->badger2040->is_busy()) {
#ifdef MICROPY_EVENT_POLL_HOOK
MICROPY_EVENT_POLL_HOOK
#endif
}
absolute_time_t t_end = make_timeout_time_ms(self->badger2040->update_time());
self->badger2040->update(false);
// Ensure blocking for the minimum amount of time
// in cases where "is_busy" is unreliable.
while(self->badger2040->is_busy() || absolute_time_diff_us(get_absolute_time(), t_end) > 0) {
#ifdef MICROPY_EVENT_POLL_HOOK
MICROPY_EVENT_POLL_HOOK
#endif
}
self->badger2040->power_off();
return mp_const_none;
}
mp_obj_t Badger2040_partial_update(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_x, ARG_y, ARG_w, ARG_h };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_x, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_y, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_w, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_h, MP_ARG_REQUIRED | MP_ARG_INT }
};
// Parse args.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
int x = args[ARG_x].u_int;
int y = args[ARG_y].u_int;
int w = args[ARG_w].u_int;
int h = args[ARG_h].u_int;
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Badger2040_obj_t);
while(self->badger2040->is_busy()) {
#ifdef MICROPY_EVENT_POLL_HOOK
MICROPY_EVENT_POLL_HOOK
#endif
}
absolute_time_t t_end = make_timeout_time_ms(self->badger2040->update_time());
self->badger2040->partial_update(x, y, w, h, false);
// Ensure blocking for the minimum amount of time
// in cases where "is_busy" is unreliable.
while(self->badger2040->is_busy() || absolute_time_diff_us(get_absolute_time(), t_end) > 0) {
#ifdef MICROPY_EVENT_POLL_HOOK
MICROPY_EVENT_POLL_HOOK
#endif
}
self->badger2040->power_off();
return mp_const_none;
}
mp_obj_t Badger2040_woken_by_button() {
return _Badger2040_wake_state_any() ? mp_const_true : mp_const_false;
}
mp_obj_t Badger2040_halt(mp_obj_t self_in) {
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t);
// Don't use the Badger halt so we can allow Micropython to be interrupted.
gpio_put(pimoroni::Badger2040::ENABLE_3V3, 0);
self->badger2040->update_button_states();
while (self->badger2040->button_states() == 0) {
#ifdef MICROPY_EVENT_POLL_HOOK
MICROPY_EVENT_POLL_HOOK
#endif
self->badger2040->update_button_states();
}
//watchdog_reboot(0, SRAM_END, 0);
return mp_const_none;
}
// sleep
mp_obj_t Badger2040_invert(mp_obj_t self_in, mp_obj_t invert) {
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t);
self->badger2040->invert(invert == mp_const_true);
return mp_const_none;
}
mp_obj_t Badger2040_led(mp_obj_t self_in, mp_obj_t brightness) {
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t);
self->badger2040->led(mp_obj_get_int(brightness));
return mp_const_none;
}
mp_obj_t Badger2040_font(mp_obj_t self_in, mp_obj_t font) {
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t);
self->badger2040->font(mp_obj_to_string_r(font));
return mp_const_none;
}
mp_obj_t Badger2040_pen(mp_obj_t self_in, mp_obj_t color) {
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t);
self->badger2040->pen(mp_obj_get_int(color));
return mp_const_none;
}
mp_obj_t Badger2040_thickness(mp_obj_t self_in, mp_obj_t thickness) {
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t);
self->badger2040->thickness(mp_obj_get_int(thickness));
return mp_const_none;
}
mp_obj_t Badger2040_pressed(mp_obj_t self_in, mp_obj_t button) {
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t);
self->badger2040->update_button_states();
bool wake_state = _Badger2040_wake_state_get_once(mp_obj_get_int(button));
bool state = self->badger2040->pressed(mp_obj_get_int(button));
return (state || wake_state) ? mp_const_true : mp_const_false;
}
mp_obj_t Badger2040_pressed_to_wake(mp_obj_t button) {
bool state = _Badger2040_wake_state_get(mp_obj_get_int(button));
return state ? mp_const_true : mp_const_false;
}
// pressed
// pressed_to_wake
// wait_for_press - implement in terms of MicroPython!
// update_button_states
// button_states
mp_obj_t Badger2040_clear(mp_obj_t self_in) {
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t);
self->badger2040->clear();
return mp_const_none;
}
mp_obj_t Badger2040_pixel(mp_obj_t self_in, mp_obj_t x, mp_obj_t y) {
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t);
self->badger2040->pixel(mp_obj_get_int(x), mp_obj_get_int(y));
return mp_const_none;
}
mp_obj_t Badger2040_command(mp_obj_t self_in, mp_obj_t reg, mp_obj_t data) {
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(self_in, _Badger2040_obj_t);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(data, &bufinfo, MP_BUFFER_RW);
self->badger2040->debug_command(mp_obj_get_int(reg), bufinfo.len, (const uint8_t *)bufinfo.buf);
return mp_const_none;
}
mp_obj_t Badger2040_line(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_x1, ARG_y1, ARG_x2, ARG_y2 };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_x1, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_y1, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_x2, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_r2, MP_ARG_REQUIRED | MP_ARG_INT }
};
// Parse args.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
int x1 = args[ARG_x1].u_int;
int y1 = args[ARG_y1].u_int;
int x2 = args[ARG_x2].u_int;
int y2 = args[ARG_y2].u_int;
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Badger2040_obj_t);
self->badger2040->line(x1, y1, x2, y2);
return mp_const_none;
}
mp_obj_t Badger2040_rectangle(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_x1, ARG_y1, ARG_x2, ARG_y2 };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_x, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_y, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_w, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_h, MP_ARG_REQUIRED | MP_ARG_INT }
};
// Parse args.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
int x = args[ARG_x1].u_int;
int y = args[ARG_y1].u_int;
int w = args[ARG_x2].u_int;
int h = args[ARG_y2].u_int;
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Badger2040_obj_t);
self->badger2040->rectangle(x, y, w, h);
return mp_const_none;
}
mp_obj_t Badger2040_image(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_data, ARG_w, ARG_h, ARG_x, ARG_y };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_w, MP_ARG_INT, {.u_int = 296} },
{ MP_QSTR_h, MP_ARG_INT, {.u_int = 128} },
{ MP_QSTR_x, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_y, MP_ARG_INT, {.u_int = 0} }
};
// Parse args.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
int dw = args[ARG_w].u_int;
int dh = args[ARG_h].u_int;
int dx = args[ARG_x].u_int;
int dy = args[ARG_y].u_int;
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[ARG_data].u_obj, &bufinfo, MP_BUFFER_RW);
if(bufinfo.len < (size_t)(dw * dh / 8)) {
mp_raise_ValueError("image: Supplied buffer is too small!");
}
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Badger2040_obj_t);
self->badger2040->image((uint8_t *)bufinfo.buf, dw, dh, dx, dy);
return mp_const_none;
}
mp_obj_t Badger2040_icon(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_data, ARG_icon_index, ARG_sheet_size, ARG_icon_size, ARG_dx, ARG_dy };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_icon_index, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_sheet_size, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_icon_size, MP_ARG_INT, {.u_int = 64} },
{ MP_QSTR_dx, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_dy, MP_ARG_INT, {.u_int = 0} }
};
// Parse args.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
int ssize = args[ARG_sheet_size].u_int;
int isize = args[ARG_icon_size].u_int;
int index = args[ARG_icon_index].u_int;
int dx = args[ARG_dx].u_int;
int dy = args[ARG_dy].u_int;
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[ARG_data].u_obj, &bufinfo, MP_BUFFER_RW);
if(bufinfo.len < (size_t)(ssize * isize / 8)) {
mp_raise_ValueError("icon: Supplied buffer is too small!");
}
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Badger2040_obj_t);
self->badger2040->icon((uint8_t *)bufinfo.buf, ssize, isize, index, dx, dy);
return mp_const_none;
}
mp_obj_t Badger2040_text(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_message, ARG_x, ARG_y, ARG_scale, ARG_rotation, ARG_letter_spacing };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_message, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_x, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_y, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_scale, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_rotation, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_letter_spacing, MP_ARG_INT, {.u_int = 1} }
};
// Parse args.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
std::string message = mp_obj_to_string_r(args[ARG_message].u_obj);
int spacing = args[ARG_letter_spacing].u_int;
int x = args[ARG_x].u_int;
int y = args[ARG_y].u_int;
float scale = 1.0f;
if (args[ARG_scale].u_obj != mp_const_none) {
scale = mp_obj_get_float(args[ARG_scale].u_obj);
}
float rotation = 0.0f;
if (args[ARG_rotation].u_obj != mp_const_none) {
rotation = mp_obj_get_float(args[ARG_rotation].u_obj);
}
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Badger2040_obj_t);
self->badger2040->text(message, x, y, scale, rotation, spacing);
return mp_const_none;
}
mp_obj_t Badger2040_glyph(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_char, ARG_x, ARG_y, ARG_scale, ARG_rotation };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_char, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_x, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_y, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_scale, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_rotation, MP_ARG_OBJ, {.u_obj = mp_const_none} }
};
// Parse args.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
int c = 0;
int x = args[ARG_x].u_int;
int y = args[ARG_y].u_int;
float scale = 1.0f;
if (args[ARG_scale].u_obj != mp_const_none) {
scale = mp_obj_get_float(args[ARG_scale].u_obj);
}
float rotation = 0.0f;
if (args[ARG_rotation].u_obj != mp_const_none) {
rotation = mp_obj_get_float(args[ARG_rotation].u_obj);
}
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Badger2040_obj_t);
if (mp_obj_is_int(args[ARG_char].u_obj)) {
c = (uint8_t)mp_obj_get_int(args[ARG_char].u_obj);
self->badger2040->glyph(c, x, y, scale, rotation);
} else if (mp_obj_is_str_or_bytes(args[ARG_char].u_obj)) {
std::string message = mp_obj_to_string_r(args[ARG_char].u_obj);
self->badger2040->text(message, x, y, scale, rotation);
} else {
mp_raise_TypeError("glyph: expected char or string.");
}
return mp_const_none;
}
mp_obj_t Badger2040_measure_text(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_message, ARG_scale, ARG_letter_spacing };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_message, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_scale, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_letter_spacing, MP_ARG_INT, {.u_int = 1} }
};
// Parse args.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
int spacing = args[ARG_letter_spacing].u_int;
std::string message = mp_obj_to_string_r(args[ARG_message].u_obj);
float scale = 1.0f;
if (args[ARG_scale].u_obj != mp_const_none) {
scale = mp_obj_get_float(args[ARG_scale].u_obj);
}
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Badger2040_obj_t);
return mp_obj_new_int(self->badger2040->measure_text(message, scale, spacing));
}
mp_obj_t Badger2040_measure_glyph(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_self, ARG_char, ARG_scale };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_char, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_scale, MP_ARG_OBJ, {.u_obj = mp_const_none} },
};
// Parse args.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
int c = args[ARG_char].u_int;
float scale = 1.0f;
if (args[ARG_scale].u_obj != mp_const_none) {
scale = mp_obj_get_float(args[ARG_scale].u_obj);
}
_Badger2040_obj_t *self = MP_OBJ_TO_PTR2(args[ARG_self].u_obj, _Badger2040_obj_t);
return mp_obj_new_int(self->badger2040->measure_glyph(c, scale));
}
#include "hardware/vreg.h"
#include "hardware/clocks.h"
#include "hardware/pll.h"
#if MICROPY_HW_ENABLE_UART_REPL
#include "uart.h"
#endif
static void _Badger2040_set_system_speed(uint32_t selected_speed) {
uint32_t sys_freq;
switch (selected_speed)
{
case 4: // TURBO: 250 MHZ, 1.2V
vreg_set_voltage(VREG_VOLTAGE_1_20);
set_sys_clock_khz(250000, true);
return;
case 3: // FAST: 133 MHZ
vreg_set_voltage(VREG_VOLTAGE_1_10);
set_sys_clock_khz(133000, true);
return;
default:
case 2: // NORMAL: 48 MHZ
vreg_set_voltage(VREG_VOLTAGE_1_10);
set_sys_clock_48mhz();
return;
case 1: // SLOW: 12 MHZ, 1.0V
sys_freq = 12 * MHZ;
break;
case 0: // VERY_SLOW: 4 MHZ, 1.0V
sys_freq = 4 * MHZ;
break;
}
// Set the configured clock speed, by dividing the USB PLL
clock_configure(clk_sys,
CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
48 * MHZ,
sys_freq);
clock_configure(clk_peri,
0,
CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLK_SYS,
sys_freq,
sys_freq);
clock_configure(clk_adc,
0,
CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
48 * MHZ,
sys_freq);
// No longer using the SYS PLL so disable it
pll_deinit(pll_sys);
// Not using USB so stop the clock
clock_stop(clk_usb);
// Drop the core voltage
vreg_set_voltage(VREG_VOLTAGE_1_00);
}
mp_obj_t Badger2040_system_speed(mp_obj_t speed) {
uint32_t selected_speed = mp_obj_get_int(speed);
if (gpio_get(pimoroni::Badger2040::VBUS_DETECT) && selected_speed < 2) {
// If on USB never go slower than normal speed.
selected_speed = 2;
}
_Badger2040_set_system_speed(selected_speed);
#if MICROPY_HW_ENABLE_UART_REPL
setup_default_uart();
mp_uart_init();
#endif
if (selected_speed >= 2) {
spi_set_baudrate(PIMORONI_SPI_DEFAULT_INSTANCE, 12 * MHZ);
}
else {
// Set the SPI baud rate for communicating with the display to
// go as fast as possible (which is now 6 or 2 MHz)
spi_get_hw(PIMORONI_SPI_DEFAULT_INSTANCE)->cpsr = 2;
hw_write_masked(&spi_get_hw(PIMORONI_SPI_DEFAULT_INSTANCE)->cr0, 0, SPI_SSPCR0_SCR_BITS);
}
return mp_const_none;
}
}