pimoroni-pico/examples/pico_display_2/mandelbrot/demo.cpp

348 lines
12 KiB
C++

#define MULTICORE
#include <math.h>
#include "pico/stdlib.h"
#if defined(MULTICORE)
#include "pico/multicore.h"
#endif
#include "libraries/pico_display_2/pico_display_2.hpp"
#include "drivers/st7789/st7789.hpp"
#include "libraries/pico_graphics/pico_graphics.hpp"
#include "rgbled.hpp"
#include "button.hpp"
using namespace pimoroni;
// PicoDisplay2 is 320 by 240
#define DISPLAY_WIDTH PicoDisplay2::WIDTH
#define DISPLAY_HEIGHT PicoDisplay2::HEIGHT
ST7789 st7789(DISPLAY_WIDTH, DISPLAY_HEIGHT, ROTATE_0, false, get_spi_pins(BG_SPI_FRONT));
PicoGraphics_PenRGB565 graphics(st7789.width, st7789.height, nullptr);
RGBLED led(PicoDisplay2::LED_R, PicoDisplay2::LED_G, PicoDisplay2::LED_B);
Button button_a(PicoDisplay2::A);
Button button_b(PicoDisplay2::B);
Button button_x(PicoDisplay2::X);
Button button_y(PicoDisplay2::Y);
typedef int32_t fixed_t;
class complex_fixed_t {
public:
complex_fixed_t() {}
complex_fixed_t(fixed_t _r, fixed_t _i) : r(_r), i(_i) {}
public:
fixed_t r;
fixed_t i;
};
inline bool operator==(const complex_fixed_t& lhs, const complex_fixed_t& rhs){ return lhs.r == rhs.r && lhs.i == rhs.i; }
#define FXD_FRACTIONAL_BITS 25
#define FXD_FROM_INT(x) ((x) << FXD_FRACTIONAL_BITS)
static inline fixed_t float_to_fixed(float x) { return static_cast<fixed_t>(x * static_cast<float>(1u << FXD_FRACTIONAL_BITS)); }
static inline float fixed_to_float(fixed_t x) { return static_cast<float>(x) / static_cast<float>(1u << FXD_FRACTIONAL_BITS); }
static inline fixed_t fixed_multiply(fixed_t a, fixed_t b) {
const int64_t r = static_cast<int64_t>(a) * static_cast<int64_t>(b);
return static_cast<int32_t>(r >> FXD_FRACTIONAL_BITS);
}
#define FXD_MUL(x, y) fixed_multiply(x, y)
class MandelbrotView {
public:
void init(int aSizeX, int aScreenSizeY, uint16_t *aBuffer, int aPalettSize, int aBlockSizeX, int aInterationLimit, int aCore);
void init(const MandelbrotView& aView, int aBlockSizeX, int aInterationLimit, int aCore);
void setRange(fixed_t aFxdRangeR, const complex_fixed_t& aFxdCenter);
void setRange(const MandelbrotView& aView);
void render(void);
void createPalettes(int aPaletteSize);
void nextPalette(void);
inline void start(void) { running = true; }
inline void stop(void) { running = false; }
inline bool isRunning(void) const { return running; }
private:
bool running;
int core;
int screenSizeX;
int screenSizeY;
fixed_t fxdRangeR;
complex_fixed_t fxdCenter;
complex_fixed_t fxdMin;
complex_fixed_t fxdMax;
complex_fixed_t fxdPixel;
int iterationLimit;
int blockSizeX;
uint16_t *pFrameBuffer;
static const uint8_t PALETTE_COUNT = 6;
int paletteIndex;
uint16_t *pPalette;
uint16_t *pPalettes[PALETTE_COUNT];
};
void MandelbrotView::init(int aScreenSizeX, int aScreenSizeY, uint16_t *aBuffer, int aPaletteSize, int aBlockSizeX, int aInterationLimit, int aCore) {
screenSizeX = aScreenSizeX;
screenSizeY = aScreenSizeY;
createPalettes(aPaletteSize);
blockSizeX = aBlockSizeX;
pFrameBuffer = aBuffer;
iterationLimit = aInterationLimit;
core = aCore;
running = true;
}
void MandelbrotView::init(const MandelbrotView& aView, int aBlockSizeX, int aInterationLimit, int aCore) {
*this = aView;
for (int ii = 0; ii < PALETTE_COUNT; ++ii) {
pPalettes[ii] = aView.pPalettes[ii];
}
blockSizeX = aBlockSizeX;
iterationLimit = aInterationLimit;
core = aCore;
running = false;
}
void MandelbrotView::setRange(fixed_t aFxdRangeR, const complex_fixed_t& aFxdCenter) {
fxdRangeR = aFxdRangeR;
fxdCenter = aFxdCenter;
fxdMin.r = aFxdCenter.r - fxdRangeR / 2;
fxdMax.r = aFxdCenter.r + fxdRangeR / 2;
const float screenRatio2 = static_cast<float>(screenSizeY) / static_cast<float>(screenSizeX * 2);
const fixed_t fxdRangeI2 = float_to_fixed(fixed_to_float(fxdRangeR) * screenRatio2);
fxdMin.i = fxdCenter.i - fxdRangeI2;
fxdMax.i = fxdCenter.i + fxdRangeI2;
fxdPixel.r = float_to_fixed(fixed_to_float(fxdRangeR) / screenSizeX);
fxdPixel.i = float_to_fixed(2*fixed_to_float(fxdRangeI2) / screenSizeY);
}
void MandelbrotView::setRange(const MandelbrotView& aView) {
fxdRangeR = aView.fxdRangeR;
fxdCenter= aView.fxdCenter;
fxdMin = aView.fxdMin;
fxdMax = aView.fxdMax;
fxdPixel = aView.fxdPixel;
}
void MandelbrotView::render(void) {
const fixed_t fxdMaxZ2 = FXD_FROM_INT(4);
uint16_t *pFrame = pFrameBuffer;
Pen pen = 0;
complex_fixed_t fxdC = fxdMin;
for (int screenY = 0; screenY < screenSizeY; ++screenY) {
fxdC.r = fxdMin.r;
for (int screenX = 0; screenX < screenSizeX; screenX += blockSizeX) {
if (!running) {
return;
}
pen = 0;
complex_fixed_t fxdZ = fxdC;
complex_fixed_t fxdZ0 = fxdZ;
int period0 = 0;
for (int ii = 0; ii < iterationLimit; ++ii) {
const fixed_t fxdZR2 = FXD_MUL(fxdZ.r, fxdZ.r);
const fixed_t fxdZI2 = FXD_MUL(fxdZ.i, fxdZ.i);
if (fxdZR2 + fxdZI2 >= fxdMaxZ2) {
// we are outside the set so set color and break
pen = pPalette[ii];
break;
}
fxdZ.i = 2 * FXD_MUL(fxdZ.r, fxdZ.i) + fxdC.i;
fxdZ.r = fxdZR2 - fxdZI2 + fxdC.r;
if (fxdZ == fxdZ0) {
// we have a repeating cycle, so we are inside the set
break;
}
if (++period0 > 20) {
period0 = 0;
fxdZ0 = fxdZ;
}
}
for (int ii = 0; ii < blockSizeX; ++ii) {
*(pFrame + screenX + ii) = pen;
fxdC.r += fxdPixel.r;
}
}
fxdC.i += fxdPixel.i;
pFrame += screenSizeX;
if (core == 1 && (screenY & 0xF) == 0) {
// update core1 view every 16 lines
st7789.update(&graphics);
}
}
st7789.update(&graphics);
}
// HSV Conversion expects float inputs in the range of 0.0-360.0 for the h channel and 0.0-1.0 for the s and v channels
uint16_t penFromHSV(float h, float s, float v) {
h = fmod(h, 360.0) / 360.0;
const float i = floor(h * 6.0f);
const float f = h * 6.0f - i;
v *= 255.0f;
const uint8_t p = v * (1.0f - s);
const uint8_t q = v * (1.0f - f * s);
const uint8_t t = v * (1.0f - (1.0f - f) * s);
uint8_t r = 0, g = 0, b = 0;
switch (int(i) % 6) {
case 0: r = v; g = t; b = p; break;
case 1: r = q; g = v; b = p; break;
case 2: r = p; g = v; b = t; break;
case 3: r = p; g = q; b = v; break;
case 4: r = t; g = p; b = v; break;
case 5: r = v; g = p; b = q; break;
}
return graphics.create_pen(r, g, b);
}
void MandelbrotView::createPalettes(int aPaletteSize) {
paletteIndex = 2;
for (int ii = 0; ii < PALETTE_COUNT; ++ii) {
pPalettes[ii] = static_cast<uint16_t*>(malloc(sizeof(uint16_t) * aPaletteSize));
}
for (int ii = 0; ii < aPaletteSize; ++ii) {
pPalettes[0][ii] = graphics.create_pen(255 - 255 * ii / aPaletteSize, 255 - 255 * ii / aPaletteSize, 255 - 255 * ii / aPaletteSize);
pPalettes[1][ii] = graphics.create_pen(255, 255, 255);
pPalettes[2][ii] = penFromHSV(160.0 + 360.0 * static_cast<float>(ii) / aPaletteSize, 0.9, 1.0);
pPalettes[3][ii] = penFromHSV(60.0 + 360.0 * static_cast<float>(ii) / aPaletteSize, 0.9, 1.0);
pPalettes[4][ii] = penFromHSV(360.0 * static_cast<float>(ii) / aPaletteSize, 0.9, 1.0);
pPalettes[5][ii] = graphics.create_pen(ii % 4 * 64, ii % 8 * 32, ii % 16 * 16);
}
pPalette = pPalettes[paletteIndex];
}
void MandelbrotView::nextPalette(void) {
++paletteIndex;
if (paletteIndex >= PALETTE_COUNT) {
paletteIndex = 0;
}
pPalette = pPalettes[paletteIndex];
}
MandelbrotView g_view0;
#if defined(MULTICORE)
MandelbrotView g_view1;
// Note no mutual exclusion required for start and stop
static inline void core1_start(void) {
g_view1.start();
}
static inline void core1_stop(void) {
g_view1.stop();
}
void core1_main(void) {
while (true) {
//uint32_t command = multicore_fifo_pop_blocking();
while (!g_view1.isRunning()) {
//tight_loop_contents();
sleep_ms(1);
}
g_view1.render();
}
}
#endif // MULTICORE
int main() {
st7789.set_backlight(100);
graphics.set_pen(0, 0, 0);
graphics.clear();
st7789.update(&graphics);
const int iterationLimitV0 = 40;
const int iterationLimitV1 = 128;
g_view0.init(DISPLAY_WIDTH, DISPLAY_HEIGHT, (uint16_t *)graphics.frame_buffer, iterationLimitV1, 4, iterationLimitV0, 0);
#if defined(MULTICORE)
g_view1.init(g_view0, 1, iterationLimitV1, 1);
// Launch core1, it won't start rendering until core1_start() is called
multicore_launch_core1(core1_main);
#endif
const fixed_t fxdInitialRangeR = float_to_fixed(3.2);
const complex_fixed_t fxdInitialCenter(float_to_fixed(-0.75), float_to_fixed(0.0));
fixed_t fxdRangeR = fxdInitialRangeR;
complex_fixed_t fxdCenter = fxdInitialCenter;
while (true) {
g_view0.setRange(fxdRangeR, fxdCenter);
#if defined(MULTICORE)
g_view1.setRange(fxdRangeR, fxdCenter);
#endif
led.set_rgb(64, 0, 0);
g_view0.render();
led.set_rgb(0, 0, 64);
#if defined(MULTICORE)
core1_start();
#endif
led.set_rgb(0, 0, 0);
// Loop, waiting for key presses
bool keyPressed = false;
while (keyPressed == false) {
sleep_ms(1);
if (button_a.raw()) {
// Hold A to move left/right
if (button_x.read() && fxdCenter.r > FXD_FROM_INT(-3)) {
fxdCenter.r -= fxdRangeR / 8;
keyPressed = true;
} else if (button_y.read() && fxdCenter.r < FXD_FROM_INT(3)) {
fxdCenter.r += fxdRangeR / 8;
keyPressed = true;
} else if (button_b.read()) {
// Press A and B together to switch palette
g_view0.nextPalette();
#if defined(MULTICORE)
g_view1.nextPalette();
#endif
keyPressed = true;
}
} else if (button_b.raw()) {
// Hold B to move up/down
if (button_x.read() && fxdCenter.i > FXD_FROM_INT(-2)) {
fxdCenter.i -= fxdRangeR / 8;
keyPressed = true;
} else if (button_y.read() && fxdCenter.i < FXD_FROM_INT(2)) {
fxdCenter.i += fxdRangeR / 8;
keyPressed = true;
}
} else {
// Otherwise zoom in/out
if (button_x.read()) {
if (button_y.read()) {
// Press X and Y together to reset to initial position
fxdRangeR = fxdInitialRangeR;
fxdCenter = fxdInitialCenter;
} else {
fxdRangeR /= 4;
fxdRangeR *= 3;
}
keyPressed = true;
} else if (button_y.read() && fxdRangeR < FXD_FROM_INT(3)) {
fxdRangeR *= 4;
fxdRangeR /= 3;
keyPressed = true;
}
}
}
#if defined(MULTICORE)
// key pressed, so stop core1
core1_stop();
#endif
}
return 0;
}