pimoroni-pico/examples/motor2040/motor2040_read_encoders.cpp

61 lines
1.6 KiB
C++

#include <cstdio>
#include "pico/stdlib.h"
#include "motor2040.hpp"
#include "button.hpp"
/*
Demonstrates how to read the angles of Motor 2040's four encoders.
Press "Boot" to exit the program.
*/
using namespace motor;
using namespace encoder;
// The gear ratio of the motor
constexpr float GEAR_RATIO = 50.0f;
// The counts per revolution of the motor's output shaft
constexpr float COUNTS_PER_REV = MMME_CPR * GEAR_RATIO;
// Create an array of encoder pointers
const pin_pair encoder_pins[] = {motor2040::ENCODER_A, motor2040::ENCODER_B,
motor2040::ENCODER_C, motor2040::ENCODER_D};
const char* ENCODER_NAMES[] = {"A", "B", "C", "D"};
const uint NUM_ENCODERS = count_of(encoder_pins);
Encoder *encoders[NUM_ENCODERS];
// Create the user button
Button user_sw(motor2040::USER_SW);
int main() {
stdio_init_all();
// Fill the array of motors, and initialise them. Up to 8 motors can be created
for(auto e = 0u; e < NUM_ENCODERS; e++) {
encoders[e] = new Encoder(pio0, e, encoder_pins[e], PIN_UNUSED, NORMAL_DIR, COUNTS_PER_REV, true);
encoders[e]->init();
}
// Uncomment the below lines to reverse
// the counting direction of an encoder
// encoders[0].direction(REVERSED_DIR);
// encoders[1].direction(REVERSED_DIR);
// encoders[2].direction(REVERSED_DIR);
// encoders[3].direction(REVERSED_DIR);
// Read the encoders until the user button is pressed
while(!user_sw.raw()) {
// Print out the angle of each encoder
for(auto e = 0u; e < NUM_ENCODERS; e++) {
printf("%s = %f, ", ENCODER_NAMES[e], encoders[e]->degrees());
}
printf("\n");
sleep_ms(100);
}
}