pimoroni-pico/drivers/msa301/msa301.cpp

144 lines
3.8 KiB
C++

#include <cstdlib>
#include <math.h>
#include <map>
#include <vector>
#include "msa301.hpp"
namespace pimoroni {
bool MSA301::init() {
i2c_init(i2c, 400000);
gpio_set_function(sda, GPIO_FUNC_I2C); gpio_pull_up(sda);
gpio_set_function(scl, GPIO_FUNC_I2C); gpio_pull_up(scl);
if(interrupt != PIN_UNUSED) {
gpio_set_function(interrupt, GPIO_FUNC_SIO);
gpio_set_dir(interrupt, GPIO_IN);
gpio_pull_up(interrupt);
}
reset();
set_power_mode(PowerMode::NORMAL);
set_range_and_resolution(Range::G_2, Resolution::BITS_14);
return true;
}
void MSA301::reset() {
i2c_reg_write_uint8(SOFT_RESET, 0b00100100);
sleep_ms(1);
}
i2c_inst_t* MSA301::get_i2c() const {
return i2c;
}
int MSA301::get_sda() const {
return sda;
}
int MSA301::get_scl() const {
return scl;
}
int MSA301::get_int() const {
return interrupt;
}
uint8_t MSA301::part_id() {
return i2c_reg_read_uint8(PART_ID);
}
float MSA301::get_axis(Axis axis, uint8_t sample_count) {
if(sample_count > 1) {
int32_t total = 0;
for(uint8_t i = 0; i < sample_count; i++) {
total += i2c_reg_read_int16((int)axis);
}
total /= sample_count;
return total / 16384.0f;
}
return i2c_reg_read_int16(axis) / 16384.0f;
}
float MSA301::get_x_axis(uint8_t sample_count) {
return get_axis(MSA301::X, sample_count);
}
float MSA301::get_y_axis(uint8_t sample_count) {
return get_axis(MSA301::Y, sample_count);
}
float MSA301::get_z_axis(uint8_t sample_count) {
return get_axis(MSA301::Z, sample_count);
}
MSA301::Orientation MSA301::get_orientation() {
return (Orientation)((i2c_reg_read_uint8(ORIENTATION_STATUS) >> 4) & 0b11);
}
void MSA301::set_power_mode(MSA301::PowerMode power_mode) {
i2c_reg_write_uint8(POWER_MODE_BANDWIDTH, power_mode);
}
void MSA301::set_range_and_resolution(Range range, MSA301::Resolution resolution) {
i2c_reg_write_uint8(RESOLUTION_RANGE, range | resolution);
}
void MSA301::set_axis_polarity(uint8_t polarity) {
i2c_reg_write_uint8(SET_AXIS_POLARITY, polarity);
}
void MSA301::disable_all_interrupts() {
enable_interrupts(MSA301::Interrupt::NONE);
}
void MSA301::enable_interrupts(uint16_t interrupts) {
i2c_reg_write_uint8(INTERRUPT_ENABLE_0, interrupts & 0xff);
i2c_reg_write_uint8(INTERRUPT_ENABLE_1, (interrupts & 0xff00) >> 8);
}
void MSA301::set_interrupt_latch(MSA301::InterruptLatchPeriod latch_period, bool reset_latched = false) {
i2c_reg_write_uint8(INTERRUPT_LATCH_PERIOD, latch_period | (reset_latched ? 0b10000000: 0b0));
}
bool MSA301::read_interrupt(Interrupt interrupt) {
if(interrupt == NEW_DATA) {
return i2c_reg_read_uint8(DATA_INTERRUPT) & 0b1;
}
// determine which bit indicates the status of this interrupt
uint8_t bit = 0;
if(interrupt == FREEFALL) bit = 0;
if(interrupt == ACTIVE) bit = 2;
if(interrupt == DOUBLE_TAP) bit = 4;
if(interrupt == SINGLE_TAP) bit = 5;
if(interrupt == ORIENTATION) bit = 6;
return i2c_reg_read_uint8(MOTION_INTERRUPT) & (1U << bit);
}
void MSA301::i2c_reg_write_uint8(uint8_t reg, uint8_t value) {
uint8_t buffer[2] = {reg, value};
i2c_write_blocking(i2c, address, buffer, 2, false);
}
uint8_t MSA301::i2c_reg_read_uint8(uint8_t reg) {
uint8_t value;
i2c_write_blocking(i2c, address, &reg, 1, true);
i2c_read_blocking(i2c, address, (uint8_t *)&value, 1, false);
return value;
}
int16_t MSA301::i2c_reg_read_int16(uint8_t reg) {
int16_t value;
i2c_write_blocking(i2c, address, &reg, 1, true);
i2c_read_blocking(i2c, address, (uint8_t *)&value, 2, false);
return value;
}
}