pimoroni-pico/examples/tufty2040/tufty2040_drawing.cpp

133 lines
3.2 KiB
C++

#include "pico/stdlib.h"
#include <stdio.h>
#include <cstring>
#include <string>
#include <algorithm>
#include "pico/time.h"
#include "pico/platform.h"
#include "common/pimoroni_common.hpp"
#include "generic_st7789.hpp"
#include "tufty2040.hpp"
#include "button.hpp"
using namespace pimoroni;
Tufty2040 tufty;
// Swap WIDTH and HEIGHT to rotate 90 degrees
ST7789Generic pico_display(
Tufty2040::WIDTH, Tufty2040::HEIGHT, ROTATE_0, nullptr,
ParallelPins{
Tufty2040::LCD_CS,
Tufty2040::LCD_DC,
Tufty2040::LCD_WR,
Tufty2040::LCD_RD,
Tufty2040::LCD_D0,
Tufty2040::BACKLIGHT
}
);
Button button_a(Tufty2040::A);
Button button_b(Tufty2040::B);
Button button_c(Tufty2040::C);
Button button_up(Tufty2040::UP);
Button button_down(Tufty2040::DOWN);
uint32_t time() {
absolute_time_t t = get_absolute_time();
return to_ms_since_boot(t);
}
// HSV Conversion expects float inputs in the range of 0.00-1.00 for each channel
// Outputs are rgb in the range 0-255 for each channel
void from_hsv(float h, float s, float v, uint8_t &r, uint8_t &g, uint8_t &b) {
float i = floor(h * 6.0f);
float f = h * 6.0f - i;
v *= 255.0f;
uint8_t p = v * (1.0f - s);
uint8_t q = v * (1.0f - f * s);
uint8_t t = v * (1.0f - (1.0f - f) * s);
switch (int(i) % 6) {
case 0: r = v; g = t; b = p; break;
case 1: r = q; g = v; b = p; break;
case 2: r = p; g = v; b = t; break;
case 3: r = p; g = q; b = v; break;
case 4: r = t; g = p; b = v; break;
case 5: r = v; g = p; b = q; break;
}
}
int main() {
pico_display.set_backlight(255);
pico_display.configure_display(true); // Rotate 180
struct pt {
float x;
float y;
uint8_t r;
float dx;
float dy;
uint16_t pen;
};
std::vector<pt> shapes;
for(int i = 0; i < 100; i++) {
pt shape;
shape.x = rand() % pico_display.bounds.w;
shape.y = rand() % pico_display.bounds.h;
shape.r = (rand() % 10) + 3;
shape.dx = float(rand() % 255) / 64.0f;
shape.dy = float(rand() % 255) / 64.0f;
shape.pen = pico_display.create_pen(rand() % 255, rand() % 255, rand() % 255);
shapes.push_back(shape);
}
Point text_location(0, 0);
uint8_t i = 0;
while(true) {
pico_display.set_pen(120, 40, 60);
pico_display.clear();
for(auto &shape : shapes) {
shape.x += shape.dx;
shape.y += shape.dy;
if((shape.x - shape.r) < 0) {
shape.dx *= -1;
shape.x = shape.r;
}
if((shape.x + shape.r) >= pico_display.bounds.w) {
shape.dx *= -1;
shape.x = pico_display.bounds.w - shape.r;
}
if((shape.y - shape.r) < 0) {
shape.dy *= -1;
shape.y = shape.r;
}
if((shape.y + shape.r) >= pico_display.bounds.h) {
shape.dy *= -1;
shape.y = pico_display.bounds.h - shape.r;
}
pico_display.set_pen(shape.pen);
pico_display.circle(Point(shape.x, shape.y), shape.r);
}
pico_display.set_pen(255, 255, 255);
pico_display.text("Hello World", text_location, 320);
// update screen
pico_display.update();
i+=10;
tufty.led(i);
}
return 0;
}