pimoroni-pico/drivers/motor/motor.cpp

313 lines
9.1 KiB
C++

#include "motor.hpp"
#include "hardware/clocks.h"
#include "pwm.hpp"
#include "math.h"
namespace motor {
Motor::Driver::Driver(const pin_pair &pins) : motor_pins(pins), pwm_period(1) {
}
Motor::Driver::~Driver() {
gpio_set_function(motor_pins.first, GPIO_FUNC_NULL);
gpio_set_function(motor_pins.second, GPIO_FUNC_NULL);
}
const pin_pair& Motor::Driver::pins() const {
return motor_pins;
}
void Motor::DualPWMDriver::init(pwm_config *pwm_cfg, uint16_t period) {
pwm_period = period;
// Set up the positive and negative pins
pwm_init(pwm_gpio_to_slice_num(motor_pins.positive), pwm_cfg, true);
pwm_init(pwm_gpio_to_slice_num(motor_pins.negative), pwm_cfg, true);
gpio_set_function(motor_pins.positive, GPIO_FUNC_PWM);
gpio_set_function(motor_pins.negative, GPIO_FUNC_PWM);
pwm_set_gpio_level(motor_pins.positive, 0);
pwm_set_gpio_level(motor_pins.negative, 0);
}
void Motor::DualPWMDriver::update_frequency(uint8_t div, uint8_t mod, uint16_t period, float duty, DecayMode mode) {
// Record if the new period will be larger or smaller.
// This is used to apply new pwm speeds either before or after the wrap is applied,
// to avoid momentary blips in PWM output on SLOW_DECAY
bool pre_update_pwm = (period > pwm_period);
pwm_period = period;
uint pos_pin_slice = pwm_gpio_to_slice_num(motor_pins.positive);
uint neg_pin_slice = pwm_gpio_to_slice_num(motor_pins.negative);
// Apply the new divider
pwm_set_clkdiv_int_frac(pos_pin_slice, div, mod);
if((neg_pin_slice != pos_pin_slice))
pwm_set_clkdiv_int_frac(neg_pin_slice, div, mod);
// If the period is larger, update the pwm before setting the new wraps
if(pre_update_pwm) {
apply_duty(duty, mode);
}
// Set the new wrap (should be 1 less than the period to get full 0 to 100%)
pwm_set_wrap(pos_pin_slice, pwm_period - 1);
if(neg_pin_slice != pos_pin_slice)
pwm_set_wrap(neg_pin_slice, pwm_period - 1);
// If the period is smaller, update the pwm after setting the new wraps
if(!pre_update_pwm) {
apply_duty(duty, mode);
}
}
void Motor::DualPWMDriver::apply_duty(float duty, DecayMode mode) {
if(isfinite(duty)) {
int32_t signed_level = MotorState::duty_to_level(duty, pwm_period);
switch(mode) {
case SLOW_DECAY: //aka 'Braking'
if(signed_level >= 0) {
pwm_set_gpio_level(motor_pins.positive, pwm_period);
pwm_set_gpio_level(motor_pins.negative, pwm_period - signed_level);
}
else {
pwm_set_gpio_level(motor_pins.positive, pwm_period + signed_level);
pwm_set_gpio_level(motor_pins.negative, pwm_period);
}
break;
case FAST_DECAY: //aka 'Coasting'
default:
if(signed_level >= 0) {
pwm_set_gpio_level(motor_pins.positive, signed_level);
pwm_set_gpio_level(motor_pins.negative, 0);
}
else {
pwm_set_gpio_level(motor_pins.positive, 0);
pwm_set_gpio_level(motor_pins.negative, 0 - signed_level);
}
break;
}
}
else {
pwm_set_gpio_level(motor_pins.positive, 0);
pwm_set_gpio_level(motor_pins.negative, 0);
}
}
void Motor::PhEnDriver::init(pwm_config *pwm_cfg, uint16_t period) {
pwm_period = period;
// Set up the phase and enable pins
gpio_init(motor_pins.phase);
pwm_init(pwm_gpio_to_slice_num(motor_pins.enable), pwm_cfg, true);
gpio_set_dir(motor_pins.phase, true);
gpio_set_function(motor_pins.enable, GPIO_FUNC_PWM);
gpio_put(motor_pins.phase, false);
pwm_set_gpio_level(motor_pins.enable, 0);
}
void Motor::PhEnDriver::update_frequency(uint8_t div, uint8_t mod, uint16_t period, float duty, DecayMode mode) {
// Record if the new period will be larger or smaller.
// This is used to apply new pwm speeds either before or after the wrap is applied,
// to avoid momentary blips in PWM output on SLOW_DECAY
bool pre_update_pwm = (period > pwm_period);
pwm_period = period;
uint en_pin_slice = pwm_gpio_to_slice_num(motor_pins.enable);
// Apply the new divider
pwm_set_clkdiv_int_frac(en_pin_slice, div, mod);
// If the period is larger, update the pwm before setting the new wraps
if(pre_update_pwm) {
apply_duty(duty, mode);
}
// Set the new wrap (should be 1 less than the period to get full 0 to 100%)
pwm_set_wrap(en_pin_slice, pwm_period - 1);
// If the period is smaller, update the pwm after setting the new wraps
if(!pre_update_pwm) {
apply_duty(duty, mode);
}
}
void Motor::PhEnDriver::apply_duty(float duty, DecayMode mode) {
if(isfinite(duty)) {
int32_t signed_level = MotorState::duty_to_level(duty, pwm_period);
if(signed_level >= 0) {
gpio_put(motor_pins.phase, true);
pwm_set_gpio_level(motor_pins.enable, signed_level);
}
else {
gpio_put(motor_pins.phase, false);
pwm_set_gpio_level(motor_pins.enable, 0 - signed_level);
}
}
else {
gpio_put(motor_pins.phase, false);
pwm_set_gpio_level(motor_pins.enable, 0);
}
}
Motor::Motor(const pin_pair &pins, Direction direction, float speed_scale, float zeropoint, float deadzone, float freq, DecayMode mode, bool ph_en_driver)
: driver(ph_en_driver ? (Driver*)new PhEnDriver(pins) : (Driver*)new DualPWMDriver(pins))
, state(direction, speed_scale, zeropoint, deadzone), pwm_frequency(freq), motor_mode(mode) {
}
Motor::~Motor() {
delete driver;
}
bool Motor::init() {
bool success = false;
uint16_t period; uint16_t div16;
if(pimoroni::calculate_pwm_factors(pwm_frequency, period, div16)) {
pwm_cfg = pwm_get_default_config();
// Set the new wrap (should be 1 less than the period to get full 0 to 100%)
pwm_config_set_wrap(&pwm_cfg, period - 1);
// Apply the divider
pwm_config_set_clkdiv(&pwm_cfg, (float)div16 / 16.0f); // There's no 'pwm_config_set_clkdiv_int_frac' for some reason...
// Set up the pin driver
driver->init(&pwm_cfg, period);
success = true;
}
return success;
}
pin_pair Motor::pins() const {
return driver->pins();
}
void Motor::enable() {
driver->apply_duty(state.enable_with_return(), motor_mode);
}
void Motor::disable() {
driver->apply_duty(state.disable_with_return(), motor_mode);
}
bool Motor::is_enabled() const {
return state.is_enabled();
}
float Motor::duty() const {
return state.get_duty();
}
void Motor::duty(float duty) {
driver->apply_duty(state.set_duty_with_return(duty), motor_mode);
}
float Motor::speed() const {
return state.get_speed();
}
void Motor::speed(float speed) {
driver->apply_duty(state.set_speed_with_return(speed), motor_mode);
}
float Motor::frequency() const {
return pwm_frequency;
}
bool Motor::frequency(float freq) {
bool success = false;
if((freq >= MotorState::MIN_FREQUENCY) && (freq <= MotorState::MAX_FREQUENCY)) {
// Calculate a suitable pwm wrap period for this frequency
uint16_t period; uint16_t div16;
if(pimoroni::calculate_pwm_factors(freq, period, div16)) {
pwm_frequency = freq;
uint8_t div = div16 >> 4;
uint8_t mod = div16 % 16;
driver->update_frequency(div, mod, period, state.get_deadzoned_duty(), motor_mode);
success = true;
}
}
return success;
}
void Motor::stop() {
driver->apply_duty(state.stop_with_return(), motor_mode);
}
void Motor::coast() {
driver->apply_duty(state.stop_with_return(), FAST_DECAY);
}
void Motor::brake() {
driver->apply_duty(state.stop_with_return(), SLOW_DECAY);
}
void Motor::full_negative() {
driver->apply_duty(state.full_negative_with_return(), motor_mode);
}
void Motor::full_positive() {
driver->apply_duty(state.full_positive_with_return(), motor_mode);
}
void Motor::to_percent(float in, float in_min, float in_max) {
driver->apply_duty(state.to_percent_with_return(in, in_min, in_max), motor_mode);
}
void Motor::to_percent(float in, float in_min, float in_max, float speed_min, float speed_max) {
driver->apply_duty(state.to_percent_with_return(in, in_min, in_max, speed_min, speed_max), motor_mode);
}
Direction Motor::direction() const {
return state.get_direction();
}
void Motor::direction(Direction direction) {
state.set_direction(direction);
}
float Motor::speed_scale() const {
return state.get_speed_scale();
}
void Motor::speed_scale(float speed_scale) {
state.set_speed_scale(speed_scale);
}
float Motor::zeropoint() const {
return state.get_zeropoint();
}
void Motor::zeropoint(float zeropoint) {
state.set_zeropoint(zeropoint);
}
float Motor::deadzone() const {
return state.get_deadzone();
}
void Motor::deadzone(float deadzone) {
driver->apply_duty(state.set_deadzone_with_return(deadzone), motor_mode);
}
DecayMode Motor::decay_mode() {
return motor_mode;
}
void Motor::decay_mode(DecayMode mode) {
motor_mode = mode;
driver->apply_duty(state.get_deadzoned_duty(), motor_mode);
}
};