pimoroni-pico/drivers/as7262/as7262.cpp

221 lines
6.1 KiB
C++

#include <cstdlib>
#include <math.h>
#include <map>
#include <vector>
#include <cstring>
#include "as7262.hpp"
namespace pimoroni {
/***** Device registers and masks here *****/
enum reg {
DEVICE = 0x00,
HW_VERSION = 0x01,
FW_VERSION = 0x02, // + 0x03
CONTROL = 0x04,
INT_T = 0x05,
TEMP = 0x06,
LED_CONTROL = 0x07,
V_HIGH = 0x08, // Violet
V_LOW = 0x09,
B_HIGH = 0x0A, // Blue
B_LOW = 0x0B,
G_HIGH = 0x0C, // Green
G_LOW = 0x0D,
Y_HIGH = 0x0E, // Yellow
Y_LOW = 0x0F,
O_HIGH = 0x10, // Orange
O_LOW = 0x11,
R_HIGH = 0x12, // Red
R_LOW = 0x13,
V_CAL_F = 0x14, // -> 0x17 Float (Violet)
B_CAL_F = 0x18, // -> 0x1B Float (Blue)
G_CAL_F = 0x1C, // -> 0x1F Float (Green)
Y_CAL_F = 0x20, // -> 0x23 Float (Yellow)
O_CAL_F = 0x24, // -> 0x27 Float (Orange)
R_CAL_F = 0x28, // -> 0x27 Float (Red)
};
bool AS7262::init() {
bool succeeded = false;
if(interrupt != PIN_UNUSED) {
gpio_set_function(interrupt, GPIO_FUNC_SIO);
gpio_set_dir(interrupt, GPIO_IN);
gpio_pull_up(interrupt);
}
reset();
/***** Replace if(true) with any operations needed to initialise the device *****/
if(true) {
succeeded = true;
}
return succeeded;
}
void AS7262::reset() {
i2c_reg_write_uint8(reg::CONTROL, 0b10000000);
sleep_ms(1000);
}
i2c_inst_t* AS7262::get_i2c() const {
return i2c->get_i2c();
}
int AS7262::get_sda() const {
return i2c->get_sda();
}
int AS7262::get_scl() const {
return i2c->get_scl();
}
int AS7262::get_int() const {
return interrupt;
}
uint8_t AS7262::device_type() {
return i2c_reg_read_uint8(reg::DEVICE);
}
uint8_t AS7262::hardware_version() {
return i2c_reg_read_uint8(reg::HW_VERSION);
}
void AS7262::firmware_version(uint8_t &major_out, uint8_t &minor_out, uint8_t &sub_out) {
uint16_t fw_version = i2c_reg_read_uint16(reg::FW_VERSION);
major_out = (fw_version & 0x00F0) >> 4;
minor_out = ((fw_version & 0x000F) << 2) | ((fw_version & 0xC000) >> 14);
sub_out = (fw_version & 0x3F00) >> 8;
}
AS7262::reading AS7262::read() {
while(!data_ready()) {}
return AS7262::reading {
i2c_reg_read_float(reg::R_CAL_F),
i2c_reg_read_float(reg::O_CAL_F),
i2c_reg_read_float(reg::Y_CAL_F),
i2c_reg_read_float(reg::G_CAL_F),
i2c_reg_read_float(reg::B_CAL_F),
i2c_reg_read_float(reg::V_CAL_F)
};
}
uint8_t AS7262::temperature() {
return i2c_reg_read_uint8(reg::TEMP);
}
void AS7262::set_gain(gain gain) {
uint8_t temp = i2c_reg_read_uint8(reg::CONTROL) & ~0b00110000;
temp |= (uint8_t)gain << 4;
i2c_reg_write_uint8(reg::CONTROL, temp);
}
void AS7262::set_measurement_mode(measurement_mode mode) {
uint8_t temp = i2c_reg_read_uint8(reg::CONTROL) & ~0b00001100;
temp |= (uint8_t)mode << 2;
i2c_reg_write_uint8(reg::CONTROL, temp);
}
void AS7262::set_indicator_current(indicator_current current) {
uint8_t temp = i2c_reg_read_uint8(reg::LED_CONTROL) & ~0b00000110;
temp |= (uint8_t)current << 1;
i2c_reg_write_uint8(reg::LED_CONTROL, temp);
}
void AS7262::set_illumination_current(illumination_current current) {
uint8_t temp = i2c_reg_read_uint8(reg::LED_CONTROL) & ~0b00110000;
temp |= (uint8_t)current << 4;
i2c_reg_write_uint8(reg::LED_CONTROL, temp);
}
void AS7262::set_leds(bool illumination, bool indicator) {
uint8_t temp = i2c_reg_read_uint8(reg::LED_CONTROL) & ~0b00001001;
temp |= indicator ? 1 : 0;
temp |= (illumination ? 1 : 0) << 3;
i2c_reg_write_uint8(reg::LED_CONTROL, temp);
}
void AS7262::set_integration_time(float integration_time_ms) {
uint8_t integration_time = uint8_t(integration_time_ms * 2.88);
i2c_reg_write_uint8(reg::INT_T, integration_time);
}
bool AS7262::data_ready() {
return i2c_reg_read_uint8(reg::CONTROL) & 0b00000010;
}
// i2c IO wrappers around the weird virtual i2c nonsense
void AS7262::i2c_reg_write_uint8(uint8_t reg, uint8_t value) {
i2c_write(reg, &value, 1);
}
// convert the AS7262s 4-byte big-endian float value into a native float
float AS7262::i2c_reg_read_float(uint8_t reg) {
uint32_t value;
i2c_read(reg, (uint8_t *)&value, 4);
value = __builtin_bswap32(value);
// Fails due to -Werror=strict-aliasing in MicroPython build
// return reinterpret_cast<float &>(value);
// Assumes sizeof(uint32_t) == sizeof(float)
float result;
memcpy(&result, &value, sizeof(float));
return result;
}
uint8_t AS7262::i2c_reg_read_uint8(uint8_t reg) {
uint8_t value;
i2c_read(reg, &value, 1);
return value;
}
uint16_t AS7262::i2c_reg_read_uint16(uint8_t reg) {
uint16_t value;
i2c_read(reg, (uint8_t *)&value, 2);
return value;
}
uint8_t AS7262::i2c_status() {
return _i2c_reg_read_uint8(0x00);
}
uint8_t AS7262::i2c_read(uint8_t reg, uint8_t *values, uint8_t len) {
for(uint8_t i = 0; i < len; i++){
while((i2c_status() & 0b10) != 0) {}; // Wait for write-ready
_i2c_reg_write_uint8(0x01, reg + i); // Set address pointer
while((i2c_status() & 0b01) != 1) {}; // Wait for read-ready
values[i] = _i2c_reg_read_uint8(0x02); // Read *one* byte :|
}
return 0;
}
uint8_t AS7262::i2c_write(uint8_t reg, uint8_t *values, uint8_t len) {
for(uint8_t i = 0; i < len; i++){
while((i2c_status() & 0b10) != 0) {}; // Wait for write-ready
_i2c_reg_write_uint8(0x01, reg | 0x80); // Set address pointer
while((i2c_status() & 0b10) != 0) {}; // Wait for write-ready
_i2c_reg_write_uint8(0x01, values[i]); // Write *one* byte :|
}
return 0;
}
// Plumbing for virtual i2c
void AS7262::_i2c_reg_write_uint8(uint8_t reg, uint8_t value) {
uint8_t buffer[2] = {reg, value};
i2c->write_blocking(address, buffer, 2, false);
}
uint8_t AS7262::_i2c_reg_read_uint8(uint8_t reg) {
uint8_t value;
i2c->write_blocking(address, &reg, 1, false);
i2c->read_blocking(address, (uint8_t *)&value, 1, false);
return value;
}
}