pimoroni-pico/micropython/modules_py/pimoroni.py

181 lines
5.6 KiB
Python

import time
from machine import Pin, PWM, ADC
BREAKOUT_GARDEN_I2C_PINS = {"sda": 4, "scl": 5}
PICO_EXPLORER_I2C_PINS = {"sda": 20, "scl": 21}
HEADER_I2C_PINS = {"sda": 20, "scl": 21}
# Motor and encoder directions
NORMAL_DIR = 0x00
REVERSED_DIR = 0x01
BREAKOUT_GARDEN_SPI_SLOT_FRONT = 0
BREAKOUT_GARDEN_SPI_SLOT_BACK = 1
PICO_EXPLORER_SPI_ONBOARD = 2
class Analog:
def __init__(self, pin, amplifier_gain=1, resistor=0, offset=0):
self.gain = amplifier_gain
self.resistor = resistor
self.offset = offset
self.pin = ADC(pin)
def read_voltage(self):
return max((((self.pin.read_u16() * 3.3) / 65535) + self.offset) / self.gain, 0.0)
def read_current(self):
if self.resistor > 0:
return self.read_voltage() / self.resistor
else:
return self.read_voltage()
class AnalogMux:
def __init__(self, addr0, addr1=None, addr2=None, en=None, muxed_pin=None):
self.addr0_pin = Pin(addr0, Pin.OUT)
self.addr1_pin = Pin(addr1, Pin.OUT) if addr1 is not None else None
self.addr2_pin = Pin(addr2, Pin.OUT) if addr2 is not None else None
self.en_pin = Pin(en, Pin.OUT) if en is not None else None
self.max_address = 0b001
if addr1 is not None:
self.max_address = 0b011
if addr2 is not None:
self.max_address = 0b111
self.pulls = [None] * (self.max_address + 1)
self.muxed_pin = muxed_pin
def select(self, address):
if address < 0:
raise ValueError("address is less than zero")
elif address > self.max_address:
raise ValueError("address is greater than number of available addresses")
else:
if self.muxed_pin and self.pulls[address] is None:
self.muxed_pin.init(Pin.IN, None)
self.addr0_pin.value(address & 0b001)
if self.addr1_pin is not None:
self.addr1_pin.value(address & 0b010)
if self.addr2_pin is not None:
self.addr2_pin.value(address & 0b100)
if self.en_pin is not None:
self.en_pin.value(1)
if self.muxed_pin and self.pulls[address] is not None:
self.muxed_pin.init(Pin.IN, self.pulls[address])
def disable(self):
if self.en_pin is not None:
self.en_pin.value(0)
else:
raise RuntimeError("there is no enable pin assigned to this mux")
def configure_pull(self, address, pull=None):
if address < 0:
raise ValueError("address is less than zero")
elif address > self.max_address:
raise ValueError("address is greater than number of available addresses")
else:
self.pulls[address] = pull
def read(self):
if self.muxed_pin is not None:
return self.muxed_pin.value()
else:
raise RuntimeError("there is no muxed pin assigned to this mux")
class Button:
def __init__(self, button, invert=True, repeat_time=200, hold_time=1000):
self.invert = invert
self.repeat_time = repeat_time
self.hold_time = hold_time
self.pin = Pin(button, pull=Pin.PULL_UP if invert else Pin.PULL_DOWN)
self.last_state = False
self.pressed = False
self.pressed_time = 0
def read(self):
current_time = time.ticks_ms()
state = self.raw()
changed = state != self.last_state
self.last_state = state
if changed:
if state:
self.pressed_time = current_time
self.pressed = True
self.last_time = current_time
return True
else:
self.pressed_time = 0
self.pressed = False
self.last_time = 0
if self.repeat_time == 0:
return False
if self.pressed:
repeat_rate = self.repeat_time
if self.hold_time > 0 and current_time - self.pressed_time > self.hold_time:
repeat_rate /= 3
if current_time - self.last_time > repeat_rate:
self.last_time = current_time
return True
return False
def raw(self):
if self.invert:
return not self.pin.value()
else:
return self.pin.value()
class RGBLED:
def __init__(self, r, g, b, invert=True):
self.invert = invert
self.led_r = PWM(Pin(r))
self.led_r.freq(1000)
self.led_g = PWM(Pin(g))
self.led_g.freq(1000)
self.led_b = PWM(Pin(b))
self.led_b.freq(1000)
def set_rgb(self, r, g, b):
if self.invert:
r = 255 - r
g = 255 - g
b = 255 - b
self.led_r.duty_u16(int((r * 65535) / 255))
self.led_g.duty_u16(int((g * 65535) / 255))
self.led_b.duty_u16(int((b * 65535) / 255))
# A simple class for handling Proportional, Integral & Derivative (PID) control calculations
class PID:
def __init__(self, kp, ki, kd, sample_rate):
self.kp = kp
self.ki = ki
self.kd = kd
self.setpoint = 0
self._error_sum = 0
self._last_value = 0
self._sample_rate = sample_rate
def calculate(self, value, value_change=None):
error = self.setpoint - value
self._error_sum += error * self._sample_rate
if value_change is None:
rate_error = (value - self._last_value) / self._sample_rate
else:
rate_error = value_change
self._last_value = value
return (error * self.kp) + (self._error_sum * self.ki) - (rate_error * self.kd)