qoi/qoi.h

605 lines
17 KiB
C
Raw Normal View History

2021-11-24 10:07:17 +00:00
/*
2021-11-26 21:51:22 +00:00
QOI - The "Quite OK Image" format for fast, lossless image compression
2021-11-24 10:07:17 +00:00
Dominic Szablewski - https://phoboslab.org
-- LICENSE: The MIT License(MIT)
Copyright(c) 2021 Dominic Szablewski
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files(the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and / or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions :
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
-- About
QOI encodes and decodes images in a lossless format. An encoded QOI image is
usually around 10--30% larger than a decently optimized PNG image.
QOI outperforms simpler PNG encoders in compression ratio and performance. QOI
images are typically 20% smaller than PNGs written with stbi_image. Encoding is
25-50x faster and decoding is 3-4x faster than stbi_image or libpng.
2021-11-24 10:07:17 +00:00
-- Synopsis
// Define `QOI_IMPLEMENTATION` in *one* C/C++ file before including this
// library to create the implementation.
#define QOI_IMPLEMENTATION
#include "qoi.h"
// Encode and store an RGBA buffer to the file system. The qoi_desc describes
// the input pixel data.
qoi_write("image_new.qoi", rgba_pixels, &(qoi_desc){
.width = 1920,
.height = 1080,
.channels = 4,
.colorspace = QOI_SRGB
});
// Load and decode a QOI image from the file system into a 32bbp RGBA buffer.
// The qoi_desc struct will be filled with the width, height, number of channels
// and colorspace read from the file header.
qoi_desc desc;
void *rgba_pixels = qoi_read("image.qoi", &desc, 4);
2021-11-24 10:07:17 +00:00
-- Documentation
This library provides the following functions;
- qoi_read -- read and decode a QOI file
- qoi_decode -- decode the raw bytes of a QOI image from memory
- qoi_write -- encode and write a QOI file
- qoi_encode -- encode an rgba buffer into a QOI image in memory
See the function declaration below for the signature and more information.
If you don't want/need the qoi_read and qoi_write functions, you can define
QOI_NO_STDIO before including this library.
This library uses malloc() and free(). To supply your own malloc implementation
you can define QOI_MALLOC and QOI_FREE before including this library.
-- Data Format
2021-11-27 17:41:02 +00:00
A QOI file has a 14 byte header, followed by any number of data "chunks".
2021-11-24 10:07:17 +00:00
struct qoi_header_t {
char magic[4]; // magic bytes "qoif"
uint32_t width; // image width in pixels (BE)
uint32_t height; // image height in pixels (BE)
uint8_t channels; // must be 3 (RGB) or 4 (RGBA)
uint8_t colorspace; // a bitmap 0000rgba where
// - a zero bit indicates sRGBA,
// - a one bit indicates linear (user interpreted)
// colorspace for each channel
2021-11-24 10:07:17 +00:00
};
The decoder and encoder start with {r: 0, g: 0, b: 0, a: 255} as the previous
pixel value. Pixels are either encoded as
- a run of the previous pixel
- an index into a previously seen pixel
- a difference to the previous pixel value in r,g,b,a
- full r,g,b,a values
A running array[64] of previously seen pixel values is maintained by the encoder
and decoder. Each pixel that is seen by the encoder and decoder is put into this
array at the position (r * 3 + g * 5 + b * 7) % 64. In the encoder, if the pixel
value at this index matches the current pixel, this index position is written to
the stream.
2021-11-24 10:07:17 +00:00
Each chunk starts with a 8 or 2 bit tag, followed by a number of data bits.
2021-11-24 10:07:17 +00:00
The bit length of chunks is divisible by 8 - i.e. all chunks are byte aligned.
All values encoded in these data bits have the most significant bit (MSB) on the
left.
2021-11-24 10:07:17 +00:00
The 8-bit tags have precedence over the 2-bit tags. A decoder must check the
8-bit tags first.
2021-11-28 00:08:52 +00:00
The possible chunks are:
- QOI_OP_INDEX ----------
| Byte[0] |
| 7 6 5 4 3 2 1 0 |
|-------+-----------------|
| 0 0 | index |
2021-11-28 00:08:52 +00:00
2-bit tag b00
6-bit index into the color index array: 0..63
2021-11-28 00:08:52 +00:00
- QOI_OP_DIFF -----------
| Byte[0] |
| 7 6 5 4 3 2 1 0 |
|-------+-----+-----+-----|
| 0 1 | dr | dg | db |
2021-11-28 00:08:52 +00:00
2-bit tag b01
2-bit red channel difference from the previous pixel between -2..1
2-bit green channel difference from the previous pixel between -2..1
2-bit blue channel difference from the previous pixel between -2..1
2021-11-28 00:08:52 +00:00
The difference to the current channel values are using a wraparound operation,
so "1 - 2" will result in 255, while "255 + 1" will result in 0.
2021-11-28 00:17:24 +00:00
2021-11-28 00:08:52 +00:00
- QOI_OP_LUMA -------------------------------------
| Byte[0] | Byte[1] |
| 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0 |
|-------+-----------------+-------------+-----------|
| 1 0 | green diff | dr - dg | db - dg |
2-bit tag b10
6-bit green channel difference from the previous pixel -32..31
4-bit red channel difference minus green channel difference -8..7
4-bit blue channel difference minus green channel difference -8..7
The green channel is used to indicate the general direction of change and gets
a few more bits. dr and db base their diffs off of the green channel diff. E.g.
dr = (last_px.r - cur_px.r) - (last_px.g - cur_px.g)
The difference to the current channel values are using a wraparound operation,
so "10 - 13" will result in 253, while "250 + 7" will result in 1.
2021-11-28 00:17:24 +00:00
2021-11-28 00:08:52 +00:00
- QOI_OP_RUN ------------
| Byte[0] |
| 7 6 5 4 3 2 1 0 |
|-------+-----------------|
| 1 1 | run |
2021-11-28 00:08:52 +00:00
2021-12-08 10:25:24 +00:00
2-bit tag b11
6-bit run-length repeating the previous pixel: 1..62
Note that the run-lengths 63 and 64 (b111110 and b111111) are illegal as they
are occupied by the QOI_OP_RGB and QOI_OP_RGBA tags.
2021-11-28 00:17:24 +00:00
2021-11-28 00:08:52 +00:00
- QOI_OP_RGB ------------------------------------------
| Byte[0] | Byte[1] | Byte[2] | Byte[3] |
| 7 6 5 4 3 2 1 0 | 7 .. 0 | 7 .. 0 | 7 .. 0 |
|-------------------------+---------+---------+---------|
| 1 1 1 1 1 1 1 0 | red | green | blue |
2021-11-28 00:08:52 +00:00
8-bit tag b11111110
8-bit red channel value
8-bit green channel value
8-bit blue channel value
2021-11-28 00:08:52 +00:00
- QOI_OP_RGBA ----------------------------------------------------
| Byte[0] | Byte[1] | Byte[2] | Byte[3] | Byte[4] |
| 7 6 5 4 3 2 1 0 | 7 .. 0 | 7 .. 0 | 7 .. 0 | 7 .. 0 |
|-------------------------+---------+---------+---------+---------|
| 1 1 1 1 1 1 1 1 | red | green | blue | alpha |
2021-11-24 10:07:17 +00:00
8-bit tag b11111111
8-bit red channel value
8-bit green channel value
8-bit blue channel value
8-bit alpha channel value
The byte stream is padded at the end with 4 zero bytes. Size the longest legal
chunk is 5 bytes (QOI_OP_RGBA), with this padding it is possible to check for an
overrun only once per decode loop iteration.
2021-11-24 10:07:17 +00:00
*/
// -----------------------------------------------------------------------------
// Header - Public functions
#ifndef QOI_H
#define QOI_H
#ifdef __cplusplus
extern "C" {
#endif
// A pointer to qoi_desc struct has to be supplied to all of qoi's functions. It
// describes either the input format (for qoi_write, qoi_encode), or is filled
// with the description read from the file header (for qoi_read, qoi_decode).
// The colorspace in this qoi_desc is a bitmap with 0000rgba where a 0-bit
// indicates sRGB and a 1-bit indicates linear colorspace for each channel. You
// may use one of the predefined constants: QOI_SRGB, QOI_SRGB_LINEAR_ALPHA or
// QOI_LINEAR. The colorspace is purely informative. It will be saved to the
// file header, but does not affect en-/decoding in any way.
#define QOI_SRGB 0x00
#define QOI_SRGB_LINEAR_ALPHA 0x01
#define QOI_LINEAR 0x0f
typedef struct {
unsigned int width;
unsigned int height;
unsigned char channels;
unsigned char colorspace;
} qoi_desc;
2021-11-24 10:07:17 +00:00
#ifndef QOI_NO_STDIO
// Encode raw RGB or RGBA pixels into a QOI image and write it to the file
// system. The qoi_desc struct must be filled with the image width, height,
// number of channels (3 = RGB, 4 = RGBA) and the colorspace.
2021-11-24 10:07:17 +00:00
// The function returns 0 on failure (invalid parameters, or fopen or malloc
// failed) or the number of bytes written on success.
int qoi_write(const char *filename, const void *data, const qoi_desc *desc);
2021-11-24 10:07:17 +00:00
// Read and decode a QOI image from the file system. If channels is 0, the
// number of channels from the file header is used. If channels is 3 or 4 the
// output format will be forced into this number of channels.
2021-11-24 10:07:17 +00:00
// The function either returns NULL on failure (invalid data, or malloc or fopen
// failed) or a pointer to the decoded pixels. On success, the qoi_desc struct
// will be filled with the description from the file header.
2021-11-24 10:07:17 +00:00
// The returned pixel data should be free()d after use.
void *qoi_read(const char *filename, qoi_desc *desc, int channels);
2021-11-24 10:07:17 +00:00
#endif // QOI_NO_STDIO
// Encode raw RGB or RGBA pixels into a QOI image in memory.
2021-11-24 10:07:17 +00:00
// The function either returns NULL on failure (invalid parameters or malloc
// failed) or a pointer to the encoded data on success. On success the out_len
2021-11-24 10:07:17 +00:00
// is set to the size in bytes of the encoded data.
2021-11-28 10:48:01 +00:00
// The returned qoi data should be free()d after use.
2021-11-24 10:07:17 +00:00
void *qoi_encode(const void *data, const qoi_desc *desc, int *out_len);
2021-11-24 10:07:17 +00:00
// Decode a QOI image from memory.
2021-11-24 10:07:17 +00:00
// The function either returns NULL on failure (invalid parameters or malloc
// failed) or a pointer to the decoded pixels. On success, the qoi_desc struct
// is filled with the description from the file header.
2021-11-24 10:07:17 +00:00
// The returned pixel data should be free()d after use.
void *qoi_decode(const void *data, int size, qoi_desc *desc, int channels);
2021-11-24 10:07:17 +00:00
#ifdef __cplusplus
}
#endif
#endif // QOI_H
// -----------------------------------------------------------------------------
// Implementation
#ifdef QOI_IMPLEMENTATION
#include <stdlib.h>
#ifndef QOI_MALLOC
#define QOI_MALLOC(sz) malloc(sz)
#define QOI_FREE(p) free(p)
#endif
#define QOI_OP_INDEX 0x00 // 00xxxxxx
#define QOI_OP_DIFF 0x40 // 01xxxxxx
#define QOI_OP_LUMA 0x80 // 10xxxxxx
#define QOI_OP_RUN 0xc0 // 11xxxxxx
#define QOI_OP_RGB 0xfe // 11111110
#define QOI_OP_RGBA 0xff // 11111111
2021-11-24 10:07:17 +00:00
#define QOI_MASK_2 0xc0 // 11000000
2021-11-24 10:07:17 +00:00
2021-12-08 10:30:58 +00:00
#define QOI_COLOR_HASH(C) (C.rgba.r * 3 + C.rgba.g * 5 + C.rgba.b * 7 + C.rgba.a * 11)
#define QOI_MAGIC \
(((unsigned int)'q') << 24 | ((unsigned int)'o') << 16 | \
((unsigned int)'i') << 8 | ((unsigned int)'f'))
2021-11-27 17:41:02 +00:00
#define QOI_HEADER_SIZE 14
#define QOI_PADDING 4
2021-11-24 10:07:17 +00:00
typedef union {
struct { unsigned char r, g, b, a; } rgba;
unsigned int v;
} qoi_rgba_t;
void qoi_write_32(unsigned char *bytes, int *p, unsigned int v) {
bytes[(*p)++] = (0xff000000 & v) >> 24;
bytes[(*p)++] = (0x00ff0000 & v) >> 16;
bytes[(*p)++] = (0x0000ff00 & v) >> 8;
bytes[(*p)++] = (0x000000ff & v);
}
unsigned int qoi_read_32(const unsigned char *bytes, int *p) {
unsigned int a = bytes[(*p)++];
unsigned int b = bytes[(*p)++];
unsigned int c = bytes[(*p)++];
unsigned int d = bytes[(*p)++];
return (a << 24) | (b << 16) | (c << 8) | d;
}
void *qoi_encode(const void *data, const qoi_desc *desc, int *out_len) {
2021-11-24 10:07:17 +00:00
if (
data == NULL || out_len == NULL || desc == NULL ||
desc->width == 0 || desc->height == 0 ||
desc->channels < 3 || desc->channels > 4 ||
(desc->colorspace & 0xf0) != 0
2021-11-24 10:07:17 +00:00
) {
return NULL;
}
int max_size =
desc->width * desc->height * (desc->channels + 1) +
QOI_HEADER_SIZE + QOI_PADDING;
2021-11-24 10:07:17 +00:00
int p = 0;
unsigned char *bytes = QOI_MALLOC(max_size);
if (!bytes) {
return NULL;
}
qoi_write_32(bytes, &p, QOI_MAGIC);
qoi_write_32(bytes, &p, desc->width);
qoi_write_32(bytes, &p, desc->height);
bytes[p++] = desc->channels;
bytes[p++] = desc->colorspace;
2021-11-24 10:07:17 +00:00
const unsigned char *pixels = (const unsigned char *)data;
qoi_rgba_t index[64] = {0};
int run = 0;
qoi_rgba_t px_prev = {.rgba = {.r = 0, .g = 0, .b = 0, .a = 255}};
qoi_rgba_t px = px_prev;
int px_len = desc->width * desc->height * desc->channels;
int px_end = px_len - desc->channels;
int channels = desc->channels;
for (int px_pos = 0; px_pos < px_len; px_pos += channels) {
if (channels == 4) {
2021-11-24 10:07:17 +00:00
px = *(qoi_rgba_t *)(pixels + px_pos);
}
else {
px.rgba.r = pixels[px_pos + 0];
px.rgba.g = pixels[px_pos + 1];
px.rgba.b = pixels[px_pos + 2];
2021-11-24 10:07:17 +00:00
}
if (px.v == px_prev.v) {
run++;
}
if (
run > 0 &&
(run == 62 || px.v != px_prev.v || px_pos == px_end)
) {
bytes[p++] = QOI_OP_RUN | (run - 1);
2021-11-24 10:07:17 +00:00
run = 0;
}
if (px.v != px_prev.v) {
int index_pos = QOI_COLOR_HASH(px) % 64;
if (index[index_pos].v == px.v) {
bytes[p++] = QOI_OP_INDEX | index_pos;
2021-11-24 10:07:17 +00:00
}
else {
index[index_pos] = px;
if (px.rgba.a == px_prev.rgba.a) {
char vr = px.rgba.r - px_prev.rgba.r;
char vg = px.rgba.g - px_prev.rgba.g;
char vb = px.rgba.b - px_prev.rgba.b;
char vg_r = vr - vg;
char vg_b = vb - vg;
if (
vr > -3 && vr < 2 &&
vg > -3 && vg < 2 &&
vb > -3 && vb < 2
) {
bytes[p++] = QOI_OP_DIFF | ((vr + 2) << 4) | (vg + 2) << 2 | (vb + 2);
}
else if (
vg_r > -9 && vg_r < 8 &&
vg > -33 && vg < 32 &&
vg_b > -9 && vg_b < 8
) {
bytes[p++] = QOI_OP_LUMA | (vg + 32);
bytes[p++] = (vg_r + 8) << 4 | (vg_b + 8);
}
else {
bytes[p++] = QOI_OP_RGB;
bytes[p++] = px.rgba.r;
bytes[p++] = px.rgba.g;
bytes[p++] = px.rgba.b;
}
2021-11-24 10:07:17 +00:00
}
else {
bytes[p++] = QOI_OP_RGBA;
bytes[p++] = px.rgba.r;
bytes[p++] = px.rgba.g;
bytes[p++] = px.rgba.b;
bytes[p++] = px.rgba.a;
2021-11-24 10:07:17 +00:00
}
}
}
px_prev = px;
}
for (int i = 0; i < QOI_PADDING; i++) {
2021-11-24 10:07:17 +00:00
bytes[p++] = 0;
}
*out_len = p;
return bytes;
}
void *qoi_decode(const void *data, int size, qoi_desc *desc, int channels) {
if (
data == NULL || desc == NULL ||
(channels != 0 && channels != 3 && channels != 4) ||
size < QOI_HEADER_SIZE + QOI_PADDING
) {
2021-11-24 10:07:17 +00:00
return NULL;
}
const unsigned char *bytes = (const unsigned char *)data;
int p = 0;
unsigned int header_magic = qoi_read_32(bytes, &p);
desc->width = qoi_read_32(bytes, &p);
desc->height = qoi_read_32(bytes, &p);
desc->channels = bytes[p++];
desc->colorspace = bytes[p++];
2021-11-24 10:07:17 +00:00
if (
desc->width == 0 || desc->height == 0 ||
desc->channels < 3 || desc->channels > 4 ||
header_magic != QOI_MAGIC
2021-11-24 10:07:17 +00:00
) {
return NULL;
}
if (channels == 0) {
channels = desc->channels;
}
int px_len = desc->width * desc->height * channels;
2021-11-24 10:07:17 +00:00
unsigned char *pixels = QOI_MALLOC(px_len);
if (!pixels) {
return NULL;
}
qoi_rgba_t px = {.rgba = {.r = 0, .g = 0, .b = 0, .a = 255}};
qoi_rgba_t index[64] = {0};
int run = 0;
int chunks_len = size - QOI_PADDING;
for (int px_pos = 0; px_pos < px_len; px_pos += channels) {
2021-11-24 10:07:17 +00:00
if (run > 0) {
run--;
}
else if (p < chunks_len) {
2021-11-24 10:07:17 +00:00
int b1 = bytes[p++];
if (b1 == QOI_OP_RGB) {
px.rgba.r = bytes[p++];
px.rgba.g = bytes[p++];
px.rgba.b = bytes[p++];
2021-11-24 10:07:17 +00:00
}
else if (b1 == QOI_OP_RGBA) {
px.rgba.r = bytes[p++];
px.rgba.g = bytes[p++];
px.rgba.b = bytes[p++];
px.rgba.a = bytes[p++];
2021-11-24 10:07:17 +00:00
}
else if ((b1 & QOI_MASK_2) == QOI_OP_INDEX) {
px = index[b1 ^ QOI_OP_INDEX];
}
else if ((b1 & QOI_MASK_2) == QOI_OP_DIFF) {
px.rgba.r += ((b1 >> 4) & 0x03) - 2;
px.rgba.g += ((b1 >> 2) & 0x03) - 2;
px.rgba.b += ( b1 & 0x03) - 2;
2021-11-24 10:07:17 +00:00
}
else if ((b1 & QOI_MASK_2) == QOI_OP_LUMA) {
int b2 = bytes[p++];
int vg = (b1 & 0x3f) - 32;
px.rgba.r += vg - 8 + ((b2 >> 4) & 0x0f);
px.rgba.g += vg;
px.rgba.b += vg - 8 + (b2 & 0x0f);
2021-11-24 10:07:17 +00:00
}
else if ((b1 & QOI_MASK_2) == QOI_OP_RUN) {
run = (b1 & 0x3f);
2021-11-24 10:07:17 +00:00
}
index[QOI_COLOR_HASH(px) % 64] = px;
}
if (channels == 4) {
*(qoi_rgba_t*)(pixels + px_pos) = px;
}
else {
pixels[px_pos + 0] = px.rgba.r;
pixels[px_pos + 1] = px.rgba.g;
pixels[px_pos + 2] = px.rgba.b;
2021-11-24 10:07:17 +00:00
}
}
return pixels;
}
#ifndef QOI_NO_STDIO
#include <stdio.h>
int qoi_write(const char *filename, const void *data, const qoi_desc *desc) {
2021-11-24 10:07:17 +00:00
FILE *f = fopen(filename, "wb");
if (!f) {
return 0;
}
int size;
void *encoded = qoi_encode(data, desc, &size);
if (!encoded) {
fclose(f);
return 0;
}
2021-11-24 10:07:17 +00:00
fwrite(encoded, 1, size, f);
fclose(f);
2021-11-24 10:07:17 +00:00
QOI_FREE(encoded);
return size;
}
void *qoi_read(const char *filename, qoi_desc *desc, int channels) {
2021-11-24 10:07:17 +00:00
FILE *f = fopen(filename, "rb");
if (!f) {
return NULL;
}
fseek(f, 0, SEEK_END);
int size = ftell(f);
fseek(f, 0, SEEK_SET);
void *data = QOI_MALLOC(size);
if (!data) {
2021-11-26 20:28:49 +00:00
fclose(f);
2021-11-24 10:07:17 +00:00
return NULL;
}
int bytes_read = fread(data, 1, size, f);
fclose(f);
void *pixels = qoi_decode(data, bytes_read, desc, channels);
2021-11-24 10:07:17 +00:00
QOI_FREE(data);
return pixels;
}
#endif // QOI_NO_STDIO
#endif // QOI_IMPLEMENTATION