tailscale/net/dns/resolver/forwarder.go

856 lines
23 KiB
Go
Raw Normal View History

// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package resolver
import (
"bytes"
"context"
"encoding/binary"
"errors"
"fmt"
"io"
"io/ioutil"
"math/rand"
"net"
"net/http"
"net/url"
"runtime"
"sort"
"strconv"
"strings"
"sync"
"time"
dns "golang.org/x/net/dns/dnsmessage"
"inet.af/netaddr"
"tailscale.com/envknob"
"tailscale.com/hostinfo"
"tailscale.com/net/dns/publicdns"
"tailscale.com/net/dnscache"
"tailscale.com/net/neterror"
"tailscale.com/net/netns"
"tailscale.com/net/tsdial"
"tailscale.com/types/dnstype"
"tailscale.com/types/logger"
ipn/ipnlocal, net/dns*, util/cloudenv: specialize DNS config on Google Cloud This does three things: * If you're on GCP, it adds a *.internal DNS split route to the metadata server, so we never break GCP DNS names. This lets people have some Tailscale nodes on GCP and some not (e.g. laptops at home) without having to add a Tailnet-wide *.internal DNS route. If you already have such a route, though, it won't overwrite it. * If the 100.100.100.100 DNS forwarder has nowhere to forward to, it forwards it to the GCP metadata IP, which forwards to 8.8.8.8. This means there are never errNoUpstreams ("upstream nameservers not set") errors on GCP due to e.g. mangled /etc/resolv.conf (GCP default VMs don't have systemd-resolved, so it's likely a DNS supremacy fight) * makes the DNS fallback mechanism use the GCP metadata IP as a fallback before our hosted HTTP-based fallbacks I created a default GCP VM from their web wizard. It has no systemd-resolved. I then made its /etc/resolv.conf be empty and deleted its GCP hostnames in /etc/hosts. I then logged in to a tailnet with no global DNS settings. With this, tailscaled writes /etc/resolv.conf (direct mode, as no systemd-resolved) and sets it to 100.100.100.100, which then has regular DNS via the metadata IP and *.internal DNS via the metadata IP as well. If the tailnet configures explicit DNS servers, those are used instead, except for *.internal. This also adds a new util/cloudenv package based on version/distro where the cloud type is only detected once. We'll likely expand it in the future for other clouds, doing variants of this change for other popular cloud environments. Fixes #4911 RELNOTES=Google Cloud DNS improvements Change-Id: I19f3c2075983669b2b2c0f29a548da8de373c7cf Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
2022-06-29 21:19:34 +01:00
"tailscale.com/util/cloudenv"
"tailscale.com/util/dnsname"
"tailscale.com/wgengine/monitor"
)
// headerBytes is the number of bytes in a DNS message header.
const headerBytes = 12
// dnsFlagTruncated is set in the flags word when the packet is truncated.
const dnsFlagTruncated = 0x200
// truncatedFlagSet returns true if the DNS packet signals that it has
// been truncated. False is also returned if the packet was too small
// to be valid.
func truncatedFlagSet(pkt []byte) bool {
if len(pkt) < headerBytes {
return false
}
return (binary.BigEndian.Uint16(pkt[2:4]) & dnsFlagTruncated) != 0
}
const (
// responseTimeout is the maximal amount of time to wait for a DNS response.
responseTimeout = 5 * time.Second
// dohTransportTimeout is how long to keep idle HTTP
// connections open to DNS-over-HTTPs servers. This is pretty
// arbitrary.
dohTransportTimeout = 30 * time.Second
// dohTransportTimeout is how much of a head start to give a DoH query
// that was upgraded from a well-known public DNS provider's IP before
// normal UDP mode is attempted as a fallback.
dohHeadStart = 500 * time.Millisecond
// wellKnownHostBackupDelay is how long to artificially delay upstream
// DNS queries to the "fallback" DNS server IP for a known provider
// (e.g. how long to wait to query Google's 8.8.4.4 after 8.8.8.8).
wellKnownHostBackupDelay = 200 * time.Millisecond
)
var errNoUpstreams = errors.New("upstream nameservers not set")
// txid identifies a DNS transaction.
//
// As the standard DNS Request ID is only 16 bits, we extend it:
// the lower 32 bits are the zero-extended bits of the DNS Request ID;
// the upper 32 bits are the CRC32 checksum of the first question in the request.
// This makes probability of txid collision negligible.
type txid uint64
// getTxID computes the txid of the given DNS packet.
func getTxID(packet []byte) txid {
if len(packet) < headerBytes {
return 0
}
dnsid := binary.BigEndian.Uint16(packet[0:2])
// Previously, we hashed the question and combined it with the original txid
// which was useful when concurrent queries were multiplexed on a single
// local source port. We encountered some situations where the DNS server
// canonicalizes the question in the response (uppercase converted to
// lowercase in this case), which resulted in responses that we couldn't
// match to the original request due to hash mismatches.
return txid(dnsid)
}
func getRCode(packet []byte) dns.RCode {
if len(packet) < headerBytes {
// treat invalid packets as a refusal
return dns.RCode(5)
}
// get bottom 4 bits of 3rd byte
return dns.RCode(packet[3] & 0x0F)
}
// clampEDNSSize attempts to limit the maximum EDNS response size. This is not
// an exhaustive solution, instead only easy cases are currently handled in the
// interest of speed and reduced complexity. Only OPT records at the very end of
// the message with no option codes are addressed.
// TODO: handle more situations if we discover that they happen often
func clampEDNSSize(packet []byte, maxSize uint16) {
// optFixedBytes is the size of an OPT record with no option codes.
const optFixedBytes = 11
const edns0Version = 0
if len(packet) < headerBytes+optFixedBytes {
return
}
arCount := binary.BigEndian.Uint16(packet[10:12])
if arCount == 0 {
// OPT shows up in an AR, so there must be no OPT
return
}
// https://datatracker.ietf.org/doc/html/rfc6891#section-6.1.2
opt := packet[len(packet)-optFixedBytes:]
if opt[0] != 0 {
// OPT NAME must be 0 (root domain)
return
}
if dns.Type(binary.BigEndian.Uint16(opt[1:3])) != dns.TypeOPT {
// Not an OPT record
return
}
requestedSize := binary.BigEndian.Uint16(opt[3:5])
// Ignore extended RCODE in opt[5]
if opt[6] != edns0Version {
// Be conservative and don't touch unknown versions.
return
}
// Ignore flags in opt[6:9]
if binary.BigEndian.Uint16(opt[9:11]) != 0 {
// RDLEN must be 0 (no variable length data). We're at the end of the
// packet so this should be 0 anyway)..
return
}
if requestedSize <= maxSize {
return
}
// Clamp the maximum size
binary.BigEndian.PutUint16(opt[3:5], maxSize)
}
type route struct {
Suffix dnsname.FQDN
Resolvers []resolverAndDelay
}
// resolverAndDelay is an upstream DNS resolver and a delay for how
// long to wait before querying it.
type resolverAndDelay struct {
// name is the upstream resolver.
name *dnstype.Resolver
// startDelay is an amount to delay this resolver at
// start. It's used when, say, there are four Google or
// Cloudflare DNS IPs (two IPv4 + two IPv6) and we don't want
// to race all four at once.
startDelay time.Duration
}
// forwarder forwards DNS packets to a number of upstream nameservers.
type forwarder struct {
logf logger.Logf
linkMon *monitor.Mon
linkSel ForwardLinkSelector // TODO(bradfitz): remove this when tsdial.Dialer absords it
dialer *tsdial.Dialer
dohSem chan struct{}
ctx context.Context // good until Close
ctxCancel context.CancelFunc // closes ctx
mu sync.Mutex // guards following
dohClient map[string]*http.Client // urlBase -> client
// routes are per-suffix resolvers to use, with
// the most specific routes first.
routes []route
// cloudHostFallback are last resort resolvers to use if no per-suffix
// resolver matches. These are only populated on cloud hosts where the
// platform provides a well-known recursive resolver.
//
// That is, if we're running on GCP or AWS where there's always a well-known
// IP of a recursive resolver, return that rather than having callers return
// errNoUpstreams. This fixes both normal 100.100.100.100 resolution when
// /etc/resolv.conf is missing/corrupt, and the peerapi ExitDNS stub
// resolver lookup.
cloudHostFallback []resolverAndDelay
}
func init() {
rand.Seed(time.Now().UnixNano())
}
func maxDoHInFlight(goos string) int {
if goos != "ios" {
return 1000 // effectively unlimited
}
// iOS < 15 limits the memory to 15MB for NetworkExtensions.
// iOS >= 15 gives us 50MB.
// See: https://tailscale.com/blog/go-linker/
ver := hostinfo.GetOSVersion()
if ver == "" {
// Unknown iOS version, be cautious.
return 10
}
major, _, ok := strings.Cut(ver, ".")
if !ok {
// Unknown iOS version, be cautious.
return 10
}
if m, err := strconv.Atoi(major); err != nil || m < 15 {
return 10
}
return 1000
}
func newForwarder(logf logger.Logf, linkMon *monitor.Mon, linkSel ForwardLinkSelector, dialer *tsdial.Dialer) *forwarder {
f := &forwarder{
logf: logger.WithPrefix(logf, "forward: "),
linkMon: linkMon,
linkSel: linkSel,
dialer: dialer,
dohSem: make(chan struct{}, maxDoHInFlight(runtime.GOOS)),
}
f.ctx, f.ctxCancel = context.WithCancel(context.Background())
return f
}
func (f *forwarder) Close() error {
f.ctxCancel()
return nil
}
// resolversWithDelays maps from a set of DNS server names to a slice of a type
// that included a startDelay, upgrading any well-known DoH (DNS-over-HTTP)
// servers in the process, insert a DoH lookup first before UDP fallbacks.
func resolversWithDelays(resolvers []*dnstype.Resolver) []resolverAndDelay {
rr := make([]resolverAndDelay, 0, len(resolvers)+2)
// Add the known DoH ones first, starting immediately.
didDoH := map[string]bool{}
for _, r := range resolvers {
ipp, ok := r.IPPort()
if !ok {
continue
}
dohBase, ok := publicdns.KnownDoH()[ipp.IP()]
if !ok || didDoH[dohBase] {
continue
}
didDoH[dohBase] = true
rr = append(rr, resolverAndDelay{name: &dnstype.Resolver{Addr: dohBase}})
}
type hostAndFam struct {
host string // some arbitrary string representing DNS host (currently the DoH base)
bits uint8 // either 32 or 128 for IPv4 vs IPv6s address family
}
done := map[hostAndFam]int{}
for _, r := range resolvers {
ipp, ok := r.IPPort()
if !ok {
// Pass non-IP ones through unchanged, without delay.
// (e.g. DNS-over-ExitDNS when using an exit node)
rr = append(rr, resolverAndDelay{name: r})
continue
}
ip := ipp.IP()
var startDelay time.Duration
if host, ok := publicdns.KnownDoH()[ip]; ok {
// We already did the DoH query early. These
startDelay = dohHeadStart
key := hostAndFam{host, ip.BitLen()}
if done[key] > 0 {
startDelay += wellKnownHostBackupDelay
}
done[key]++
}
rr = append(rr, resolverAndDelay{
name: r,
startDelay: startDelay,
})
}
return rr
}
var (
cloudResolversOnce sync.Once
cloudResolversLazy []resolverAndDelay
)
func cloudResolvers() []resolverAndDelay {
cloudResolversOnce.Do(func() {
if ip := cloudenv.Get().ResolverIP(); ip != "" {
cloudResolver := []*dnstype.Resolver{{Addr: ip}}
cloudResolversLazy = resolversWithDelays(cloudResolver)
}
})
return cloudResolversLazy
}
// setRoutes sets the routes to use for DNS forwarding. It's called by
// Resolver.SetConfig on reconfig.
//
// The memory referenced by routesBySuffix should not be modified.
func (f *forwarder) setRoutes(routesBySuffix map[dnsname.FQDN][]*dnstype.Resolver) {
routes := make([]route, 0, len(routesBySuffix))
cloudHostFallback := cloudResolvers()
for suffix, rs := range routesBySuffix {
if suffix == "." && len(rs) == 0 && len(cloudHostFallback) > 0 {
routes = append(routes, route{
Suffix: suffix,
Resolvers: cloudHostFallback,
})
} else {
routes = append(routes, route{
Suffix: suffix,
Resolvers: resolversWithDelays(rs),
})
}
}
if cloudenv.Get().HasInternalTLD() && len(cloudHostFallback) > 0 {
if _, ok := routesBySuffix["internal."]; !ok {
routes = append(routes, route{
Suffix: "internal.",
Resolvers: cloudHostFallback,
})
}
}
// Sort from longest prefix to shortest.
sort.Slice(routes, func(i, j int) bool {
return routes[i].Suffix.NumLabels() > routes[j].Suffix.NumLabels()
})
f.mu.Lock()
defer f.mu.Unlock()
f.routes = routes
f.cloudHostFallback = cloudHostFallback
}
var stdNetPacketListener packetListener = new(net.ListenConfig)
type packetListener interface {
ListenPacket(ctx context.Context, network, address string) (net.PacketConn, error)
}
func (f *forwarder) packetListener(ip netaddr.IP) (packetListener, error) {
if f.linkSel == nil || initListenConfig == nil {
return stdNetPacketListener, nil
}
linkName := f.linkSel.PickLink(ip)
if linkName == "" {
return stdNetPacketListener, nil
}
lc := new(net.ListenConfig)
if err := initListenConfig(lc, f.linkMon, linkName); err != nil {
return nil, err
}
return lc, nil
}
// getKnownDoHClientForProvider returns an HTTP client for a specific DoH
// provider named by its DoH base URL (like "https://dns.google/dns-query").
//
// The returned client race/Happy Eyeballs dials all IPs for urlBase (usually
// 4), as statically known by the publicdns package.
func (f *forwarder) getKnownDoHClientForProvider(urlBase string) (c *http.Client, ok bool) {
f.mu.Lock()
defer f.mu.Unlock()
if c, ok := f.dohClient[urlBase]; ok {
return c, true
}
allIPs := publicdns.DoHIPsOfBase()[urlBase]
if len(allIPs) == 0 {
return nil, false
}
dohURL, err := url.Parse(urlBase)
if err != nil {
return nil, false
}
nsDialer := netns.NewDialer(f.logf)
dialer := dnscache.Dialer(nsDialer.DialContext, &dnscache.Resolver{
SingleHost: dohURL.Hostname(),
SingleHostStaticResult: allIPs,
})
c = &http.Client{
Transport: &http.Transport{
IdleConnTimeout: dohTransportTimeout,
DialContext: func(ctx context.Context, netw, addr string) (net.Conn, error) {
if !strings.HasPrefix(netw, "tcp") {
return nil, fmt.Errorf("unexpected network %q", netw)
}
return dialer(ctx, netw, addr)
},
},
}
if f.dohClient == nil {
f.dohClient = map[string]*http.Client{}
}
f.dohClient[urlBase] = c
return c, true
}
const dohType = "application/dns-message"
func (f *forwarder) releaseDoHSem() { <-f.dohSem }
func (f *forwarder) sendDoH(ctx context.Context, urlBase string, c *http.Client, packet []byte) ([]byte, error) {
// Bound the number of HTTP requests in flight. This primarily
// matters for iOS where we're very memory constrained and
// HTTP requests are heavier on iOS where we don't include
// HTTP/2 for binary size reasons (as binaries on iOS linked
// with Go code cost memory proportional to the binary size,
// for reasons not fully understood).
select {
case f.dohSem <- struct{}{}:
case <-ctx.Done():
return nil, ctx.Err()
}
defer f.releaseDoHSem()
metricDNSFwdDoH.Add(1)
req, err := http.NewRequestWithContext(ctx, "POST", urlBase, bytes.NewReader(packet))
if err != nil {
return nil, err
}
req.Header.Set("Content-Type", dohType)
// Note: we don't currently set the Accept header (which is
// only a SHOULD in the spec) as iOS doesn't use HTTP/2 and
// we'd rather save a few bytes on outgoing requests when
// empirically no provider cares about the Accept header's
// absence.
hres, err := c.Do(req)
if err != nil {
metricDNSFwdDoHErrorTransport.Add(1)
return nil, err
}
defer hres.Body.Close()
if hres.StatusCode != 200 {
metricDNSFwdDoHErrorStatus.Add(1)
return nil, errors.New(hres.Status)
}
if ct := hres.Header.Get("Content-Type"); ct != dohType {
metricDNSFwdDoHErrorCT.Add(1)
return nil, fmt.Errorf("unexpected response Content-Type %q", ct)
}
res, err := ioutil.ReadAll(hres.Body)
if err != nil {
metricDNSFwdDoHErrorBody.Add(1)
}
if truncatedFlagSet(res) {
metricDNSFwdTruncated.Add(1)
}
return res, err
}
var verboseDNSForward = envknob.Bool("TS_DEBUG_DNS_FORWARD_SEND")
// send sends packet to dst. It is best effort.
//
// send expects the reply to have the same txid as txidOut.
func (f *forwarder) send(ctx context.Context, fq *forwardQuery, rr resolverAndDelay) (ret []byte, err error) {
if verboseDNSForward {
f.logf("forwarder.send(%q) ...", rr.name.Addr)
defer func() {
f.logf("forwarder.send(%q) = %v, %v", rr.name.Addr, len(ret), err)
}()
}
if strings.HasPrefix(rr.name.Addr, "http://") {
return f.sendDoH(ctx, rr.name.Addr, f.dialer.PeerAPIHTTPClient(), fq.packet)
}
if strings.HasPrefix(rr.name.Addr, "https://") {
// Only known DoH providers are supported currently. Specifically, we
// only support DoH providers where we can TCP connect to them on port
// 443 at the same IP address they serve normal UDP DNS from (1.1.1.1,
// 8.8.8.8, 9.9.9.9, etc.) That's why OpenDNS and custon DoH providers
// aren't currently supported. There's no backup DNS resolution path for
// them.
urlBase := rr.name.Addr
if hc, ok := f.getKnownDoHClientForProvider(urlBase); ok {
return f.sendDoH(ctx, urlBase, hc, fq.packet)
}
metricDNSFwdErrorType.Add(1)
return nil, fmt.Errorf("arbitrary https:// resolvers not supported yet")
}
if strings.HasPrefix(rr.name.Addr, "tls://") {
metricDNSFwdErrorType.Add(1)
return nil, fmt.Errorf("tls:// resolvers not supported yet")
}
return f.sendUDP(ctx, fq, rr)
}
func (f *forwarder) sendUDP(ctx context.Context, fq *forwardQuery, rr resolverAndDelay) (ret []byte, err error) {
ipp, ok := rr.name.IPPort()
if !ok {
metricDNSFwdErrorType.Add(1)
return nil, fmt.Errorf("unrecognized resolver type %q", rr.name.Addr)
}
metricDNSFwdUDP.Add(1)
ln, err := f.packetListener(ipp.IP())
if err != nil {
return nil, err
}
conn, err := ln.ListenPacket(ctx, "udp", ":0")
if err != nil {
f.logf("ListenPacket failed: %v", err)
return nil, err
}
defer conn.Close()
fq.closeOnCtxDone.Add(conn)
defer fq.closeOnCtxDone.Remove(conn)
if _, err := conn.WriteTo(fq.packet, ipp.UDPAddr()); err != nil {
metricDNSFwdUDPErrorWrite.Add(1)
if err := ctx.Err(); err != nil {
return nil, err
}
return nil, err
}
metricDNSFwdUDPWrote.Add(1)
// The 1 extra byte is to detect packet truncation.
out := make([]byte, maxResponseBytes+1)
n, _, err := conn.ReadFrom(out)
if err != nil {
if err := ctx.Err(); err != nil {
return nil, err
}
if neterror.PacketWasTruncated(err) {
err = nil
} else {
metricDNSFwdUDPErrorRead.Add(1)
return nil, err
}
}
truncated := n > maxResponseBytes
if truncated {
n = maxResponseBytes
}
if n < headerBytes {
f.logf("recv: packet too small (%d bytes)", n)
}
out = out[:n]
txid := getTxID(out)
if txid != fq.txid {
metricDNSFwdUDPErrorTxID.Add(1)
return nil, errors.New("txid doesn't match")
}
rcode := getRCode(out)
// don't forward transient errors back to the client when the server fails
if rcode == dns.RCodeServerFailure {
f.logf("recv: response code indicating server failure: %d", rcode)
metricDNSFwdUDPErrorServer.Add(1)
return nil, errors.New("response code indicates server issue")
}
if truncated {
// Set the truncated bit if it wasn't already.
flags := binary.BigEndian.Uint16(out[2:4])
flags |= dnsFlagTruncated
binary.BigEndian.PutUint16(out[2:4], flags)
// TODO(#2067): Remove any incomplete records? RFC 1035 section 6.2
// states that truncation should head drop so that the authority
// section can be preserved if possible. However, the UDP read with
// a too-small buffer has already dropped the end, so that's the
// best we can do.
}
if truncatedFlagSet(out) {
metricDNSFwdTruncated.Add(1)
}
clampEDNSSize(out, maxResponseBytes)
metricDNSFwdUDPSuccess.Add(1)
return out, nil
}
// resolvers returns the resolvers to use for domain.
func (f *forwarder) resolvers(domain dnsname.FQDN) []resolverAndDelay {
f.mu.Lock()
routes := f.routes
cloudHostFallback := f.cloudHostFallback
f.mu.Unlock()
for _, route := range routes {
if route.Suffix == "." || route.Suffix.Contains(domain) {
return route.Resolvers
}
}
return cloudHostFallback // or nil if no fallback
}
// forwardQuery is information and state about a forwarded DNS query that's
// being sent to 1 or more upstreams.
//
// In the case of racing against multiple equivalent upstreams
// (e.g. Google or CloudFlare's 4 DNS IPs: 2 IPv4 + 2 IPv6), this type
// handles racing them more intelligently than just blasting away 4
// queries at once.
type forwardQuery struct {
txid txid
packet []byte
// closeOnCtxDone lets send register values to Close if the
// caller's ctx expires. This avoids send from allocating its
// own waiting goroutine to interrupt the ReadFrom, as memory
// is tight on iOS and we want the number of pending DNS
// lookups to be bursty without too much associated
// goroutine/memory cost.
closeOnCtxDone *closePool
// TODO(bradfitz): add race delay state:
// mu sync.Mutex
// ...
}
// forwardWithDestChan forwards the query to all upstream nameservers
// and waits for the first response.
//
// It either sends to responseChan and returns nil, or returns a
// non-nil error (without sending to the channel).
//
// If resolvers is non-empty, it's used explicitly (notably, for exit
// node DNS proxy queries), otherwise f.resolvers is used.
func (f *forwarder) forwardWithDestChan(ctx context.Context, query packet, responseChan chan<- packet, resolvers ...resolverAndDelay) error {
metricDNSFwd.Add(1)
domain, err := nameFromQuery(query.bs)
if err != nil {
metricDNSFwdErrorName.Add(1)
return err
}
// Guarantee that the ctx we use below is done when this function returns.
ctx, cancel := context.WithCancel(ctx)
defer cancel()
// Drop DNS service discovery spam, primarily for battery life
// on mobile. Things like Spotify on iOS generate this traffic,
// when browsing for LAN devices. But even when filtering this
// out, playing on Sonos still works.
if hasRDNSBonjourPrefix(domain) {
metricDNSFwdDropBonjour.Add(1)
res, err := nxDomainResponse(query)
if err != nil {
f.logf("error parsing bonjour query: %v", err)
return nil
}
select {
case <-ctx.Done():
return ctx.Err()
case responseChan <- res:
return nil
}
}
if fl, ok := fwdLogAtomic.Load().(*fwdLog); ok {
fl.addName(string(domain))
}
clampEDNSSize(query.bs, maxResponseBytes)
if len(resolvers) == 0 {
resolvers = f.resolvers(domain)
if len(resolvers) == 0 {
metricDNSFwdErrorNoUpstream.Add(1)
return errNoUpstreams
}
}
fq := &forwardQuery{
txid: getTxID(query.bs),
packet: query.bs,
closeOnCtxDone: new(closePool),
}
defer fq.closeOnCtxDone.Close()
resc := make(chan []byte, 1) // it's fine buffered or not
errc := make(chan error, 1) // it's fine buffered or not too
for i := range resolvers {
go func(rr *resolverAndDelay) {
if rr.startDelay > 0 {
timer := time.NewTimer(rr.startDelay)
select {
case <-timer.C:
case <-ctx.Done():
timer.Stop()
return
}
}
resb, err := f.send(ctx, fq, *rr)
if err != nil {
select {
case errc <- err:
case <-ctx.Done():
}
return
}
select {
case resc <- resb:
case <-ctx.Done():
}
}(&resolvers[i])
}
var firstErr error
var numErr int
for {
select {
case v := <-resc:
select {
case <-ctx.Done():
metricDNSFwdErrorContext.Add(1)
return ctx.Err()
case responseChan <- packet{v, query.addr}:
metricDNSFwdSuccess.Add(1)
return nil
}
case err := <-errc:
if firstErr == nil {
firstErr = err
}
numErr++
if numErr == len(resolvers) {
return firstErr
}
case <-ctx.Done():
metricDNSFwdErrorContext.Add(1)
if firstErr != nil {
metricDNSFwdErrorContextGotError.Add(1)
return firstErr
}
return ctx.Err()
}
}
}
var initListenConfig func(_ *net.ListenConfig, _ *monitor.Mon, tunName string) error
// nameFromQuery extracts the normalized query name from bs.
func nameFromQuery(bs []byte) (dnsname.FQDN, error) {
var parser dns.Parser
hdr, err := parser.Start(bs)
if err != nil {
return "", err
}
if hdr.Response {
return "", errNotQuery
}
q, err := parser.Question()
if err != nil {
return "", err
}
n := q.Name.Data[:q.Name.Length]
return dnsname.ToFQDN(rawNameToLower(n))
}
// nxDomainResponse returns an NXDomain DNS reply for the provided request.
func nxDomainResponse(req packet) (res packet, err error) {
p := dnsParserPool.Get().(*dnsParser)
defer dnsParserPool.Put(p)
if err := p.parseQuery(req.bs); err != nil {
return packet{}, err
}
h := p.Header
h.Response = true
h.RecursionAvailable = h.RecursionDesired
h.RCode = dns.RCodeNameError
b := dns.NewBuilder(nil, h)
// TODO(bradfitz): should we add an SOA record in the Authority
// section too? (for the nxdomain negative caching TTL)
// For which zone? Does iOS care?
res.bs, err = b.Finish()
res.addr = req.addr
return res, err
}
// closePool is a dynamic set of io.Closers to close as a group.
// It's intended to be Closed at most once.
//
// The zero value is ready for use.
type closePool struct {
mu sync.Mutex
m map[io.Closer]bool
closed bool
}
func (p *closePool) Add(c io.Closer) {
p.mu.Lock()
defer p.mu.Unlock()
if p.closed {
c.Close()
return
}
if p.m == nil {
p.m = map[io.Closer]bool{}
}
p.m[c] = true
}
func (p *closePool) Remove(c io.Closer) {
p.mu.Lock()
defer p.mu.Unlock()
if p.closed {
return
}
delete(p.m, c)
}
func (p *closePool) Close() error {
p.mu.Lock()
defer p.mu.Unlock()
if p.closed {
return nil
}
p.closed = true
for c := range p.m {
c.Close()
}
return nil
}