Two optimizations.
Use values instead of pointers.
We were using pointers to make track the "peer in progress" easier.
It's not too hard to do it manually, though.
Make two passes through the data, so that we can size our
return value accurately from the beginning.
This is cheap enough compared to the allocation,
which grows linearly in the number of peers,
that it is worth doing.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
Still very much a prototype (hard-coded IPs, etc) but should be
non-invasive enough to submit at this point and iterate from here.
Updates #2589
Co-Author: David Crawshaw <crawshaw@tailscale.com>
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
The fact that Hash returns a [sha256.Size]byte leaks details about
the underlying hash implementation. This could very well be any other
hashing algorithm with a possible different block size.
Abstract this implementation detail away by declaring an opaque type
that is comparable. While we are changing the signature of UpdateHash,
rename it to just Update to reduce stutter (e.g., deephash.Update).
Signed-off-by: Joe Tsai <joetsai@digital-static.net>
Pull in the latest version of wireguard-windows.
Switch to upstream wireguard-go.
This requires reverting all of our import paths.
Unfortunately, this has to happen at the same time.
The wireguard-go change is very low risk,
as that commit matches our fork almost exactly.
(The only changes are import paths, CI files, and a go.mod entry.)
So if there are issues as a result of this commit,
the first place to look is wireguard-windows changes.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
magicsock.Conn.ParseEndpoint requires a peer's public key,
disco key, and legacy ip/ports in order to do its job.
We currently accomplish that by:
* adding the public key in our wireguard-go fork
* encoding the disco key as magic hostname
* using a bespoke comma-separated encoding
It's a bit messy.
Instead, switch to something simpler: use a json-encoded struct
containing exactly the information we need, in the form we use it.
Our wireguard-go fork still adds the public key to the
address when it passes it to ParseEndpoint, but now the code
compensating for that is just a couple of simple, well-commented lines.
Once this commit is in, we can remove that part of the fork
and remove the compensating code.
Signed-off-by: Josh Bleecher Snyder <josharian@gmail.com>
Yes, it printed, but that was an implementation detail for hashing.
And coming optimization will make it print even less.
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
On benchmark completion, we shut down the wgengine.
If we happen to poll for status during shutdown,
we get an "engine closing" error.
It doesn't hurt anything; ignore it.
Fixestailscale/corp#1776
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
It is unused, and has been since early Feb 2021 (Tailscale 1.6).
We can't get delete the DeviceOptions entirely yet;
first #1831 and #1839 need to go in, along with some wireguard-go changes.
Deleting this chunk of code now will make the later commits more clearly correct.
Pingers can now go too.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
We had a long-standing bug in which our TUN events channel
was being received from simultaneously in two places.
The first is wireguard-go.
At wgengine/userspace.go:366, we pass e.tundev to wireguard-go,
which starts a goroutine (RoutineTUNEventReader)
that receives from that channel and uses events to adjust the MTU
and bring the device up/down.
At wgengine/userspace.go:374, we launch a goroutine that
receives from e.tundev, logs MTU changes, and triggers
state updates when up/down changes occur.
Events were getting delivered haphazardly between the two of them.
We don't really want wireguard-go to receive the up/down events;
we control the state of the device explicitly by calling device.Up.
And the userspace.go loop MTU logging duplicates logging that
wireguard-go does when it received MTU updates.
So this change splits the single TUN events channel into up/down
and other (aka MTU), and sends them to the parties that ought
to receive them.
I'm actually a bit surprised that this hasn't caused more visible trouble.
If a down event went to wireguard-go but the subsequent up event
went to userspace.go, we could end up with the wireguard-go device disappearing.
I believe that this may also (somewhat accidentally) be a fix for #1790.
Signed-off-by: Josh Bleecher Snyder <josharian@gmail.com>
Track endpoints internally with a new tailcfg.Endpoint type that
includes a typed netaddr.IPPort (instead of just a string) and
includes a type for how that endpoint was discovered (STUN, local,
etc).
Use []tailcfg.Endpoint instead of []string internally.
At the last second, send it to the control server as the existing
[]string for endpoints, but also include a new parallel
MapRequest.EndpointType []tailcfg.EndpointType, so the control server
can start filtering out less-important endpoint changes from
new-enough clients. Notably, STUN-discovered endpoints can be filtered
out from 1.6+ clients, as they can discover them amongst each other
via CallMeMaybe disco exchanges started over DERP. And STUN endpoints
change a lot, causing a lot of MapResposne updates. But portmapped
endpoints are worth keeping for now, as they they work right away
without requiring the firewall traversal extra RTT dance.
End result will be less control->client bandwidth. (despite negligible
increase in client->control bandwidth)
Updates tailscale/corp#1543
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
Upstream wireguard-go has changed its receive model.
NewDevice now accepts a conn.Bind interface.
The conn.Bind is stateless; magicsock.Conns are stateful.
To work around this, we add a connBind type that supports
cheap teardown and bring-up, backed by a Conn.
The new conn.Bind allows us to specify a set of receive functions,
rather than having to shoehorn everything into ReceiveIPv4 and ReceiveIPv6.
This lets us plumbing DERP messages directly into wireguard-go,
instead of having to mux them via ReceiveIPv4.
One consequence of the new conn.Bind layer is that
closing the wireguard-go device is now indistinguishable
from the routine bring-up and tear-down normally experienced
by a conn.Bind. We thus have to explicitly close the magicsock.Conn
when the close the wireguard-go device.
One downside of this change is that we are reliant on wireguard-go
to call receiveDERP to process DERP messages. This is fine for now,
but is perhaps something we should fix in the future.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
The resolver still only supports a single upstream config, and
ipn/wgengine still have to split up the DNS config, but this moves
closer to unifying the DNS configs.
As a handy side-effect of the refactor, IPv6 MagicDNS records exist
now.
Signed-off-by: David Anderson <danderson@tailscale.com>
So we have a documented & tested way to check whether we're in
netstack mode. To be used by future commits.
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
For discovery when an explicit hostname/IP is known. We'll still
also send it via control for finding peers by a list.
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
"Fake" doesn't mean a lot any more, given that many components
of the engine can be faked out, including in valid production
configurations like userspace-networking.
Signed-off-by: David Anderson <danderson@tailscale.com>
This makes setup more explicit in prod codepaths, without
requiring a bunch of arguments or helpers for tests and
userspace mode.
Signed-off-by: David Anderson <danderson@tailscale.com>
The tstun packagen contains both constructors for generic tun
Devices, and a wrapper that provides additional functionality.
Signed-off-by: David Anderson <danderson@tailscale.com>