tailscale/net/tstun/wrap.go

1514 lines
45 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
package tstun
import (
"errors"
"fmt"
"io"
"net/netip"
"os"
"reflect"
"runtime"
"slices"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/gaissmai/bart"
"github.com/tailscale/wireguard-go/conn"
"github.com/tailscale/wireguard-go/device"
"github.com/tailscale/wireguard-go/tun"
"go4.org/mem"
"gvisor.dev/gvisor/pkg/tcpip/stack"
"tailscale.com/disco"
tsmetrics "tailscale.com/metrics"
"tailscale.com/net/connstats"
"tailscale.com/net/packet"
"tailscale.com/net/packet/checksum"
"tailscale.com/net/tsaddr"
"tailscale.com/syncs"
"tailscale.com/tstime/mono"
"tailscale.com/types/ipproto"
"tailscale.com/types/key"
"tailscale.com/types/logger"
"tailscale.com/util/clientmetric"
"tailscale.com/util/usermetric"
"tailscale.com/wgengine/capture"
"tailscale.com/wgengine/filter"
"tailscale.com/wgengine/netstack/gro"
"tailscale.com/wgengine/wgcfg"
)
const maxBufferSize = device.MaxMessageSize
// PacketStartOffset is the minimal amount of leading space that must exist
// before &packet[offset] in a packet passed to Read, Write, or InjectInboundDirect.
// This is necessary to avoid reallocation in wireguard-go internals.
const PacketStartOffset = device.MessageTransportHeaderSize
// MaxPacketSize is the maximum size (in bytes)
// of a packet that can be injected into a tstun.Wrapper.
const MaxPacketSize = device.MaxContentSize
const tapDebug = false // for super verbose TAP debugging
var (
// ErrClosed is returned when attempting an operation on a closed Wrapper.
ErrClosed = errors.New("device closed")
// ErrFiltered is returned when the acted-on packet is rejected by a filter.
ErrFiltered = errors.New("packet dropped by filter")
)
var (
errPacketTooBig = errors.New("packet too big")
errOffsetTooBig = errors.New("offset larger than buffer length")
errOffsetTooSmall = errors.New("offset smaller than PacketStartOffset")
)
// parsedPacketPool holds a pool of Parsed structs for use in filtering.
// This is needed because escape analysis cannot see that parsed packets
// do not escape through {Pre,Post}Filter{In,Out}.
var parsedPacketPool = sync.Pool{New: func() any { return new(packet.Parsed) }}
// FilterFunc is a packet-filtering function with access to the Wrapper device.
// It must not hold onto the packet struct, as its backing storage will be reused.
type FilterFunc func(*packet.Parsed, *Wrapper) filter.Response
// GROFilterFunc is a FilterFunc extended with a *gro.GRO, enabling increased
// throughput where GRO is supported by a packet.Parsed interceptor, e.g.
// netstack/gVisor, and we are handling a vector of packets. Callers must pass a
// nil g for the first packet in a given vector, and continue passing the
// returned *gro.GRO for all remaining packets in said vector. If the returned
// *gro.GRO is non-nil after the last packet for a given vector is passed
// through the GROFilterFunc, the caller must also call Flush() on it to deliver
// any previously Enqueue()'d packets.
type GROFilterFunc func(p *packet.Parsed, w *Wrapper, g *gro.GRO) (filter.Response, *gro.GRO)
// Wrapper augments a tun.Device with packet filtering and injection.
//
// A Wrapper starts in a "corked" mode where Read calls are blocked
// until the Wrapper's Start method is called.
type Wrapper struct {
logf logger.Logf
limitedLogf logger.Logf // aggressively rate-limited logf used for potentially high volume errors
// tdev is the underlying Wrapper device.
tdev tun.Device
isTAP bool // whether tdev is a TAP device
started atomic.Bool // whether Start has been called
startCh chan struct{} // closed in Start
closeOnce sync.Once
// lastActivityAtomic is read/written atomically.
// On 32 bit systems, if the fields above change,
// you might need to add an align64 field here.
lastActivityAtomic mono.Time // time of last send or receive
destIPActivity syncs.AtomicValue[map[netip.Addr]func()]
//lint:ignore U1000 used in tap_linux.go
destMACAtomic syncs.AtomicValue[[6]byte]
discoKey syncs.AtomicValue[key.DiscoPublic]
// timeNow, if non-nil, will be used to obtain the current time.
timeNow func() time.Time
// peerConfig stores the current NAT configuration.
peerConfig atomic.Pointer[peerConfigTable]
// vectorBuffer stores the oldest unconsumed packet vector from tdev. It is
// allocated in wrap() and the underlying arrays should never grow.
vectorBuffer [][]byte
// bufferConsumedMu protects bufferConsumed from concurrent sends, closes,
// and send-after-close (by way of bufferConsumedClosed).
bufferConsumedMu sync.Mutex
// bufferConsumedClosed is true when bufferConsumed has been closed. This is
// read by bufferConsumed writers to prevent send-after-close.
bufferConsumedClosed bool
// bufferConsumed synchronizes access to vectorBuffer (shared by Read() and
// pollVector()).
//
// Close closes bufferConsumed and sets bufferConsumedClosed to true.
bufferConsumed chan struct{}
// closed signals poll (by closing) when the device is closed.
closed chan struct{}
// outboundMu protects outbound and vectorOutbound from concurrent sends,
// closes, and send-after-close (by way of outboundClosed).
outboundMu sync.Mutex
// outboundClosed is true when outbound or vectorOutbound have been closed.
// This is read by outbound and vectorOutbound writers to prevent
// send-after-close.
outboundClosed bool
// vectorOutbound is the queue by which packets leave the TUN device.
//
// The directions are relative to the network, not the device:
// inbound packets arrive via UDP and are written into the TUN device;
// outbound packets are read from the TUN device and sent out via UDP.
// This queue is needed because although inbound writes are synchronous,
// the other direction must wait on a WireGuard goroutine to poll it.
//
// Empty reads are skipped by WireGuard, so it is always legal
// to discard an empty packet instead of sending it through vectorOutbound.
//
// Close closes vectorOutbound and sets outboundClosed to true.
vectorOutbound chan tunVectorReadResult
// eventsUpDown yields up and down tun.Events that arrive on a Wrapper's events channel.
eventsUpDown chan tun.Event
// eventsOther yields non-up-and-down tun.Events that arrive on a Wrapper's events channel.
eventsOther chan tun.Event
// filter atomically stores the currently active packet filter
filter atomic.Pointer[filter.Filter]
// filterFlags control the verbosity of logging packet drops/accepts.
filterFlags filter.RunFlags
// jailedFilter is the packet filter for jailed nodes.
// Can be nil, which means drop all packets.
jailedFilter atomic.Pointer[filter.Filter]
// PreFilterPacketInboundFromWireGuard is the inbound filter function that runs before the main filter
// and therefore sees the packets that may be later dropped by it.
PreFilterPacketInboundFromWireGuard FilterFunc
// PostFilterPacketInboundFromWireGuard is the inbound filter function that runs after the main filter.
PostFilterPacketInboundFromWireGuard GROFilterFunc
// PreFilterPacketOutboundToWireGuardNetstackIntercept is a filter function that runs before the main filter
// for packets from the local system. This filter is populated by netstack to hook
// packets that should be handled by netstack. If set, this filter runs before
// PreFilterFromTunToEngine.
PreFilterPacketOutboundToWireGuardNetstackIntercept GROFilterFunc
// PreFilterPacketOutboundToWireGuardEngineIntercept is a filter function that runs before the main filter
// for packets from the local system. This filter is populated by wgengine to hook
// packets which it handles internally. If both this and PreFilterFromTunToNetstack
// filter functions are non-nil, this filter runs second.
PreFilterPacketOutboundToWireGuardEngineIntercept FilterFunc
// PostFilterPacketOutboundToWireGuard is the outbound filter function that runs after the main filter.
PostFilterPacketOutboundToWireGuard FilterFunc
// OnTSMPPongReceived, if non-nil, is called whenever a TSMP pong arrives.
OnTSMPPongReceived func(packet.TSMPPongReply)
// OnICMPEchoResponseReceived, if non-nil, is called whenever a ICMP echo response
// arrives. If the packet is to be handled internally this returns true,
// false otherwise.
OnICMPEchoResponseReceived func(*packet.Parsed) bool
// PeerAPIPort, if non-nil, returns the peerapi port that's
// running for the given IP address.
PeerAPIPort func(netip.Addr) (port uint16, ok bool)
// disableFilter disables all filtering when set. This should only be used in tests.
disableFilter bool
// disableTSMPRejected disables TSMP rejected responses. For tests.
disableTSMPRejected bool
// stats maintains per-connection counters.
stats atomic.Pointer[connstats.Statistics]
captureHook syncs.AtomicValue[capture.Callback]
metrics *metrics
}
type metrics struct {
inboundDroppedPacketsTotal *tsmetrics.MultiLabelMap[dropPacketLabel]
outboundDroppedPacketsTotal *tsmetrics.MultiLabelMap[dropPacketLabel]
}
func registerMetrics(reg *usermetric.Registry) *metrics {
return &metrics{
inboundDroppedPacketsTotal: usermetric.NewMultiLabelMapWithRegistry[dropPacketLabel](
reg,
"tailscaled_inbound_dropped_packets_total",
"counter",
"Counts the number of dropped packets received by the node from other peers",
),
outboundDroppedPacketsTotal: usermetric.NewMultiLabelMapWithRegistry[dropPacketLabel](
reg,
"tailscaled_outbound_dropped_packets_total",
"counter",
"Counts the number of packets dropped while being sent to other peers",
),
}
}
// tunInjectedRead is an injected packet pretending to be a tun.Read().
type tunInjectedRead struct {
// Only one of packet or data should be set, and are read in that order of
// precedence.
packet *stack.PacketBuffer
data []byte
}
// tunVectorReadResult is the result of a tun.Read(), or an injected packet
// pretending to be a tun.Read().
type tunVectorReadResult struct {
// When err AND data are nil, injected will be set with meaningful data
// (injected packet). If either err OR data is non-nil, injected should be
// ignored (a "real" tun.Read).
err error
data [][]byte
injected tunInjectedRead
dataOffset int
}
type setWrapperer interface {
// setWrapper enables the underlying TUN/TAP to have access to the Wrapper.
// It MUST be called only once during initialization, other usage is unsafe.
setWrapper(*Wrapper)
}
// Start unblocks any Wrapper.Read calls that have already started
// and makes the Wrapper functional.
//
// Start must be called exactly once after the various Tailscale
// subsystems have been wired up to each other.
func (w *Wrapper) Start() {
w.started.Store(true)
close(w.startCh)
}
func WrapTAP(logf logger.Logf, tdev tun.Device, m *usermetric.Registry) *Wrapper {
return wrap(logf, tdev, true, m)
}
func Wrap(logf logger.Logf, tdev tun.Device, m *usermetric.Registry) *Wrapper {
return wrap(logf, tdev, false, m)
}
func wrap(logf logger.Logf, tdev tun.Device, isTAP bool, m *usermetric.Registry) *Wrapper {
logf = logger.WithPrefix(logf, "tstun: ")
w := &Wrapper{
logf: logf,
limitedLogf: logger.RateLimitedFn(logf, 1*time.Minute, 2, 10),
isTAP: isTAP,
tdev: tdev,
// bufferConsumed is conceptually a condition variable:
// a goroutine should not block when setting it, even with no listeners.
bufferConsumed: make(chan struct{}, 1),
closed: make(chan struct{}),
// vectorOutbound can be unbuffered; the buffer is an optimization.
vectorOutbound: make(chan tunVectorReadResult, 1),
eventsUpDown: make(chan tun.Event),
eventsOther: make(chan tun.Event),
// TODO(dmytro): (highly rate-limited) hexdumps should happen on unknown packets.
filterFlags: filter.LogAccepts | filter.LogDrops,
startCh: make(chan struct{}),
metrics: registerMetrics(m),
}
w.vectorBuffer = make([][]byte, tdev.BatchSize())
for i := range w.vectorBuffer {
w.vectorBuffer[i] = make([]byte, maxBufferSize)
}
go w.pollVector()
go w.pumpEvents()
// The buffer starts out consumed.
w.bufferConsumed <- struct{}{}
w.noteActivity()
if sw, ok := w.tdev.(setWrapperer); ok {
sw.setWrapper(w)
}
return w
}
// now returns the current time, either by calling t.timeNow if set or time.Now
// if not.
func (t *Wrapper) now() time.Time {
if t.timeNow != nil {
return t.timeNow()
}
return time.Now()
}
// SetDestIPActivityFuncs sets a map of funcs to run per packet
// destination (the map keys).
//
// The map ownership passes to the Wrapper. It must be non-nil.
func (t *Wrapper) SetDestIPActivityFuncs(m map[netip.Addr]func()) {
t.destIPActivity.Store(m)
}
// SetDiscoKey sets the current discovery key.
//
// It is only used for filtering out bogus traffic when network
// stack(s) get confused; see Issue 1526.
func (t *Wrapper) SetDiscoKey(k key.DiscoPublic) {
t.discoKey.Store(k)
}
// isSelfDisco reports whether packet p
// looks like a Disco packet from ourselves.
// See Issue 1526.
func (t *Wrapper) isSelfDisco(p *packet.Parsed) bool {
if p.IPProto != ipproto.UDP {
return false
}
pkt := p.Payload()
discobs, ok := disco.Source(pkt)
if !ok {
return false
}
discoSrc := key.DiscoPublicFromRaw32(mem.B(discobs))
selfDiscoPub := t.discoKey.Load()
return selfDiscoPub == discoSrc
}
func (t *Wrapper) Close() error {
var err error
t.closeOnce.Do(func() {
if t.started.CompareAndSwap(false, true) {
close(t.startCh)
}
close(t.closed)
t.bufferConsumedMu.Lock()
t.bufferConsumedClosed = true
close(t.bufferConsumed)
t.bufferConsumedMu.Unlock()
t.outboundMu.Lock()
t.outboundClosed = true
close(t.vectorOutbound)
t.outboundMu.Unlock()
err = t.tdev.Close()
})
return err
}
// isClosed reports whether t is closed.
func (t *Wrapper) isClosed() bool {
select {
case <-t.closed:
return true
default:
return false
}
}
// pumpEvents copies events from t.tdev to t.eventsUpDown and t.eventsOther.
// pumpEvents exits when t.tdev.events or t.closed is closed.
// pumpEvents closes t.eventsUpDown and t.eventsOther when it exits.
func (t *Wrapper) pumpEvents() {
defer close(t.eventsUpDown)
defer close(t.eventsOther)
src := t.tdev.Events()
for {
// Retrieve an event from the TUN device.
var event tun.Event
var ok bool
select {
case <-t.closed:
return
case event, ok = <-src:
if !ok {
return
}
}
// Pass along event to the correct recipient.
// Though event is a bitmask, in practice there is only ever one bit set at a time.
dst := t.eventsOther
if event&(tun.EventUp|tun.EventDown) != 0 {
dst = t.eventsUpDown
}
select {
case <-t.closed:
return
case dst <- event:
}
}
}
// EventsUpDown returns a TUN event channel that contains all Up and Down events.
func (t *Wrapper) EventsUpDown() chan tun.Event {
return t.eventsUpDown
}
// Events returns a TUN event channel that contains all non-Up, non-Down events.
// It is named Events because it is the set of events that we want to expose to wireguard-go,
// and Events is the name specified by the wireguard-go tun.Device interface.
func (t *Wrapper) Events() <-chan tun.Event {
return t.eventsOther
}
func (t *Wrapper) File() *os.File {
return t.tdev.File()
}
func (t *Wrapper) MTU() (int, error) {
return t.tdev.MTU()
}
func (t *Wrapper) Name() (string, error) {
return t.tdev.Name()
}
const ethernetFrameSize = 14 // 2 six byte MACs, 2 bytes ethertype
// pollVector polls t.tdev.Read(), placing the oldest unconsumed packet vector
// into t.vectorBuffer. This is needed because t.tdev.Read() in general may
// block (it does on Windows), so packets may be stuck in t.vectorOutbound if
// t.Read() called t.tdev.Read() directly.
func (t *Wrapper) pollVector() {
sizes := make([]int, len(t.vectorBuffer))
readOffset := PacketStartOffset
if t.isTAP {
readOffset = PacketStartOffset - ethernetFrameSize
}
for range t.bufferConsumed {
DoRead:
for i := range t.vectorBuffer {
t.vectorBuffer[i] = t.vectorBuffer[i][:cap(t.vectorBuffer[i])]
}
var n int
var err error
for n == 0 && err == nil {
if t.isClosed() {
return
}
n, err = t.tdev.Read(t.vectorBuffer[:], sizes, readOffset)
if t.isTAP && tapDebug {
s := fmt.Sprintf("% x", t.vectorBuffer[0][:])
for strings.HasSuffix(s, " 00") {
s = strings.TrimSuffix(s, " 00")
}
t.logf("TAP read %v, %v: %s", n, err, s)
}
}
for i := range sizes[:n] {
t.vectorBuffer[i] = t.vectorBuffer[i][:readOffset+sizes[i]]
}
if t.isTAP {
if err == nil {
ethernetFrame := t.vectorBuffer[0][readOffset:]
if t.handleTAPFrame(ethernetFrame) {
goto DoRead
}
}
// Fall through. We got an IP packet.
if sizes[0] >= ethernetFrameSize {
t.vectorBuffer[0] = t.vectorBuffer[0][:readOffset+sizes[0]-ethernetFrameSize]
}
if tapDebug {
t.logf("tap regular frame: %x", t.vectorBuffer[0][PacketStartOffset:PacketStartOffset+sizes[0]])
}
}
t.sendVectorOutbound(tunVectorReadResult{
data: t.vectorBuffer[:n],
dataOffset: PacketStartOffset,
err: err,
})
}
}
// sendBufferConsumed does t.bufferConsumed <- struct{}{}.
func (t *Wrapper) sendBufferConsumed() {
t.bufferConsumedMu.Lock()
defer t.bufferConsumedMu.Unlock()
if t.bufferConsumedClosed {
return
}
t.bufferConsumed <- struct{}{}
}
// injectOutbound does t.vectorOutbound <- r
func (t *Wrapper) injectOutbound(r tunInjectedRead) {
t.outboundMu.Lock()
defer t.outboundMu.Unlock()
if t.outboundClosed {
return
}
t.vectorOutbound <- tunVectorReadResult{
injected: r,
}
}
// sendVectorOutbound does t.vectorOutbound <- r.
func (t *Wrapper) sendVectorOutbound(r tunVectorReadResult) {
t.outboundMu.Lock()
defer t.outboundMu.Unlock()
if t.outboundClosed {
return
}
t.vectorOutbound <- r
}
// snat does SNAT on p if the destination address requires a different source address.
func (pc *peerConfigTable) snat(p *packet.Parsed) {
oldSrc := p.Src.Addr()
newSrc := pc.selectSrcIP(oldSrc, p.Dst.Addr())
if oldSrc != newSrc {
checksum.UpdateSrcAddr(p, newSrc)
}
}
// dnat does destination NAT on p.
func (pc *peerConfigTable) dnat(p *packet.Parsed) {
oldDst := p.Dst.Addr()
newDst := pc.mapDstIP(p.Src.Addr(), oldDst)
if newDst != oldDst {
checksum.UpdateDstAddr(p, newDst)
}
}
// findV4 returns the first Tailscale IPv4 address in addrs.
func findV4(addrs []netip.Prefix) netip.Addr {
for _, ap := range addrs {
a := ap.Addr()
if a.Is4() && tsaddr.IsTailscaleIP(a) {
return a
}
}
return netip.Addr{}
}
// findV6 returns the first Tailscale IPv6 address in addrs.
func findV6(addrs []netip.Prefix) netip.Addr {
for _, ap := range addrs {
a := ap.Addr()
if a.Is6() && tsaddr.IsTailscaleIP(a) {
return a
}
}
return netip.Addr{}
}
// peerConfigTable contains configuration for individual peers and related
// information necessary to perform peer-specific operations. It should be
// treated as immutable.
//
// The nil value is a valid configuration.
type peerConfigTable struct {
// nativeAddr4 and nativeAddr6 are the IPv4/IPv6 Tailscale Addresses of
// the current node.
//
// These are implicitly used as the address to rewrite to in the DNAT
// path (as configured by listenAddrs, below). The IPv4 address will be
// used if the inbound packet is IPv4, and the IPv6 address if the
// inbound packet is IPv6.
nativeAddr4, nativeAddr6 netip.Addr
// byIP contains configuration for each peer, indexed by a peer's IP
// address(es).
byIP bart.Table[*peerConfig]
// masqAddrCounts is a count of peers by MasqueradeAsIP.
// TODO? for logging
masqAddrCounts map[netip.Addr]int
}
// peerConfig is the configuration for a single peer.
type peerConfig struct {
// dstMasqAddr{4,6} are the addresses that should be used as the
// source address when masquerading packets to this peer (i.e.
// SNAT). If an address is not valid, the packet should not be
// masqueraded for that address family.
dstMasqAddr4 netip.Addr
dstMasqAddr6 netip.Addr
// jailed is whether this peer is "jailed" (i.e. is restricted from being
// able to initiate connections to this node). This is the case for shared
// nodes.
jailed bool
}
func (c *peerConfigTable) String() string {
if c == nil {
return "peerConfigTable(nil)"
}
var b strings.Builder
b.WriteString("peerConfigTable{")
fmt.Fprintf(&b, "nativeAddr4: %v, ", c.nativeAddr4)
fmt.Fprintf(&b, "nativeAddr6: %v, ", c.nativeAddr6)
// TODO: figure out how to iterate/debug/print c.byIP
b.WriteString("}")
return b.String()
}
func (c *peerConfig) String() string {
if c == nil {
return "peerConfig(nil)"
}
var b strings.Builder
b.WriteString("peerConfig{")
fmt.Fprintf(&b, "dstMasqAddr4: %v, ", c.dstMasqAddr4)
fmt.Fprintf(&b, "dstMasqAddr6: %v, ", c.dstMasqAddr6)
fmt.Fprintf(&b, "jailed: %v}", c.jailed)
return b.String()
}
// mapDstIP returns the destination IP to use for a packet to dst.
// If dst is not one of the listen addresses, it is returned as-is,
// otherwise the native address is returned.
func (pc *peerConfigTable) mapDstIP(src, oldDst netip.Addr) netip.Addr {
if pc == nil {
return oldDst
}
// The packet we're processing is inbound from WireGuard, received from
// a peer. The 'src' of the packet is the remote peer's IP address,
// possibly the masqueraded address (if the peer is shared/etc.).
//
// The 'dst' of the packet is the address for this local node. It could
// be a masquerade address that we told other nodes to use, or one of
// our local node's Addresses.
c, ok := pc.byIP.Lookup(src)
if !ok {
return oldDst
}
if oldDst.Is4() && pc.nativeAddr4.IsValid() && c.dstMasqAddr4 == oldDst {
return pc.nativeAddr4
}
if oldDst.Is6() && pc.nativeAddr6.IsValid() && c.dstMasqAddr6 == oldDst {
return pc.nativeAddr6
}
return oldDst
}
// selectSrcIP returns the source IP to use for a packet to dst.
// If the packet is not from the native address, it is returned as-is.
func (pc *peerConfigTable) selectSrcIP(oldSrc, dst netip.Addr) netip.Addr {
if pc == nil {
return oldSrc
}
// If this packet doesn't originate from this Tailscale node, don't
// SNAT it (e.g. if we're a subnet router).
if oldSrc.Is4() && oldSrc != pc.nativeAddr4 {
return oldSrc
}
if oldSrc.Is6() && oldSrc != pc.nativeAddr6 {
return oldSrc
}
// Look up the configuration for the destination
c, ok := pc.byIP.Lookup(dst)
if !ok {
return oldSrc
}
// Perform SNAT based on the address family and whether we have a valid
// addr.
if oldSrc.Is4() && c.dstMasqAddr4.IsValid() {
return c.dstMasqAddr4
}
if oldSrc.Is6() && c.dstMasqAddr6.IsValid() {
return c.dstMasqAddr6
}
// No SNAT; use old src
return oldSrc
}
// peerConfigTableFromWGConfig generates a peerConfigTable from nm. If NAT is
// not required, and no additional configuration is present, it returns nil.
func peerConfigTableFromWGConfig(wcfg *wgcfg.Config) *peerConfigTable {
if wcfg == nil {
return nil
}
nativeAddr4 := findV4(wcfg.Addresses)
nativeAddr6 := findV6(wcfg.Addresses)
if !nativeAddr4.IsValid() && !nativeAddr6.IsValid() {
return nil
}
ret := &peerConfigTable{
nativeAddr4: nativeAddr4,
nativeAddr6: nativeAddr6,
masqAddrCounts: make(map[netip.Addr]int),
}
// When using an exit node that requires masquerading, we need to
// fill out the routing table with all peers not just the ones that
// require masquerading.
exitNodeRequiresMasq := false // true if using an exit node and it requires masquerading
for _, p := range wcfg.Peers {
isExitNode := slices.Contains(p.AllowedIPs, tsaddr.AllIPv4()) || slices.Contains(p.AllowedIPs, tsaddr.AllIPv6())
if isExitNode {
hasMasqAddr := false ||
(p.V4MasqAddr != nil && p.V4MasqAddr.IsValid()) ||
(p.V6MasqAddr != nil && p.V6MasqAddr.IsValid())
if hasMasqAddr {
exitNodeRequiresMasq = true
}
break
}
}
byIPSize := 0
for i := range wcfg.Peers {
p := &wcfg.Peers[i]
// Build a routing table that configures DNAT (i.e. changing
// the V4MasqAddr/V6MasqAddr for a given peer to the current
// peer's v4/v6 IP).
var addrToUse4, addrToUse6 netip.Addr
if p.V4MasqAddr != nil && p.V4MasqAddr.IsValid() {
addrToUse4 = *p.V4MasqAddr
ret.masqAddrCounts[addrToUse4]++
}
if p.V6MasqAddr != nil && p.V6MasqAddr.IsValid() {
addrToUse6 = *p.V6MasqAddr
ret.masqAddrCounts[addrToUse6]++
}
// If the exit node requires masquerading, set the masquerade
// addresses to our native addresses.
if exitNodeRequiresMasq {
if !addrToUse4.IsValid() && nativeAddr4.IsValid() {
addrToUse4 = nativeAddr4
}
if !addrToUse6.IsValid() && nativeAddr6.IsValid() {
addrToUse6 = nativeAddr6
}
}
if !addrToUse4.IsValid() && !addrToUse6.IsValid() && !p.IsJailed {
// NAT not required for this peer.
continue
}
// Use the same peer configuration for each address of the peer.
pc := &peerConfig{
dstMasqAddr4: addrToUse4,
dstMasqAddr6: addrToUse6,
jailed: p.IsJailed,
}
// Insert an entry into our routing table for each allowed IP.
for _, ip := range p.AllowedIPs {
ret.byIP.Insert(ip, pc)
byIPSize++
}
}
if byIPSize == 0 && len(ret.masqAddrCounts) == 0 {
return nil
}
return ret
}
func (pc *peerConfigTable) inboundPacketIsJailed(p *packet.Parsed) bool {
if pc == nil {
return false
}
c, ok := pc.byIP.Lookup(p.Src.Addr())
if !ok {
return false
}
return c.jailed
}
func (pc *peerConfigTable) outboundPacketIsJailed(p *packet.Parsed) bool {
if pc == nil {
return false
}
c, ok := pc.byIP.Lookup(p.Dst.Addr())
if !ok {
return false
}
return c.jailed
}
// SetWGConfig is called when a new NetworkMap is received.
func (t *Wrapper) SetWGConfig(wcfg *wgcfg.Config) {
cfg := peerConfigTableFromWGConfig(wcfg)
old := t.peerConfig.Swap(cfg)
if !reflect.DeepEqual(old, cfg) {
t.logf("peer config: %v", cfg)
}
}
var (
magicDNSIPPort = netip.AddrPortFrom(tsaddr.TailscaleServiceIP(), 0) // 100.100.100.100:0
magicDNSIPPortv6 = netip.AddrPortFrom(tsaddr.TailscaleServiceIPv6(), 0)
)
func (t *Wrapper) filterPacketOutboundToWireGuard(p *packet.Parsed, pc *peerConfigTable, gro *gro.GRO) (filter.Response, *gro.GRO) {
// Fake ICMP echo responses to MagicDNS (100.100.100.100).
if p.IsEchoRequest() {
switch p.Dst {
case magicDNSIPPort:
header := p.ICMP4Header()
header.ToResponse()
outp := packet.Generate(&header, p.Payload())
t.InjectInboundCopy(outp)
return filter.DropSilently, gro // don't pass on to OS; already handled
case magicDNSIPPortv6:
header := p.ICMP6Header()
header.ToResponse()
outp := packet.Generate(&header, p.Payload())
t.InjectInboundCopy(outp)
return filter.DropSilently, gro // don't pass on to OS; already handled
}
}
// Issue 1526 workaround: if we sent disco packets over
// Tailscale from ourselves, then drop them, as that shouldn't
// happen unless a networking stack is confused, as it seems
// macOS in Network Extension mode might be.
if p.IPProto == ipproto.UDP && // disco is over UDP; avoid isSelfDisco call for TCP/etc
t.isSelfDisco(p) {
t.limitedLogf("[unexpected] received self disco out packet over tstun; dropping")
metricPacketOutDropSelfDisco.Add(1)
return filter.DropSilently, gro
}
if t.PreFilterPacketOutboundToWireGuardNetstackIntercept != nil {
var res filter.Response
res, gro = t.PreFilterPacketOutboundToWireGuardNetstackIntercept(p, t, gro)
if res.IsDrop() {
// Handled by netstack.Impl.handleLocalPackets (quad-100 DNS primarily)
return res, gro
}
}
if t.PreFilterPacketOutboundToWireGuardEngineIntercept != nil {
if res := t.PreFilterPacketOutboundToWireGuardEngineIntercept(p, t); res.IsDrop() {
// Handled by userspaceEngine.handleLocalPackets (primarily handles
// quad-100 if netstack is not installed).
return res, gro
}
}
// If the outbound packet is to a jailed peer, use our jailed peer
// packet filter.
var filt *filter.Filter
if pc.outboundPacketIsJailed(p) {
filt = t.jailedFilter.Load()
} else {
filt = t.filter.Load()
}
if filt == nil {
return filter.Drop, gro
}
if filt.RunOut(p, t.filterFlags) != filter.Accept {
metricPacketOutDropFilter.Add(1)
t.metrics.outboundDroppedPacketsTotal.Add(dropPacketLabel{
Reason: DropReasonACL,
}, 1)
return filter.Drop, gro
}
if t.PostFilterPacketOutboundToWireGuard != nil {
if res := t.PostFilterPacketOutboundToWireGuard(p, t); res.IsDrop() {
return res, gro
}
}
return filter.Accept, gro
}
// noteActivity records that there was a read or write at the current time.
func (t *Wrapper) noteActivity() {
t.lastActivityAtomic.StoreAtomic(mono.Now())
}
// IdleDuration reports how long it's been since the last read or write to this device.
//
// Its value should only be presumed accurate to roughly 10ms granularity.
// If there's never been activity, the duration is since the wrapper was created.
func (t *Wrapper) IdleDuration() time.Duration {
return mono.Since(t.lastActivityAtomic.LoadAtomic())
}
func (t *Wrapper) Read(buffs [][]byte, sizes []int, offset int) (int, error) {
if !t.started.Load() {
<-t.startCh
}
// packet from OS read and sent to WG
res, ok := <-t.vectorOutbound
if !ok {
return 0, io.EOF
}
if res.err != nil && len(res.data) == 0 {
return 0, res.err
}
if res.data == nil {
return t.injectedRead(res.injected, buffs, sizes, offset)
}
metricPacketOut.Add(int64(len(res.data)))
var buffsPos int
p := parsedPacketPool.Get().(*packet.Parsed)
defer parsedPacketPool.Put(p)
captHook := t.captureHook.Load()
pc := t.peerConfig.Load()
var buffsGRO *gro.GRO
for _, data := range res.data {
p.Decode(data[res.dataOffset:])
if m := t.destIPActivity.Load(); m != nil {
if fn := m[p.Dst.Addr()]; fn != nil {
fn()
}
}
if captHook != nil {
captHook(capture.FromLocal, t.now(), p.Buffer(), p.CaptureMeta)
}
if !t.disableFilter {
var response filter.Response
response, buffsGRO = t.filterPacketOutboundToWireGuard(p, pc, buffsGRO)
if response != filter.Accept {
metricPacketOutDrop.Add(1)
continue
}
}
// Make sure to do SNAT after filtering, so that any flow tracking in
// the filter sees the original source address. See #12133.
pc.snat(p)
n := copy(buffs[buffsPos][offset:], p.Buffer())
if n != len(data)-res.dataOffset {
panic(fmt.Sprintf("short copy: %d != %d", n, len(data)-res.dataOffset))
}
sizes[buffsPos] = n
if stats := t.stats.Load(); stats != nil {
stats.UpdateTxVirtual(p.Buffer())
}
buffsPos++
}
if buffsGRO != nil {
buffsGRO.Flush()
}
// t.vectorBuffer has a fixed location in memory.
// TODO(raggi): add an explicit field and possibly method to the tunVectorReadResult
// to signal when sendBufferConsumed should be called.
if &res.data[0] == &t.vectorBuffer[0] {
// We are done with t.buffer. Let poll() re-use it.
t.sendBufferConsumed()
}
t.noteActivity()
return buffsPos, res.err
}
const (
minTCPHeaderSize = 20
)
func stackGSOToTunGSO(pkt []byte, gso stack.GSO) (tun.GSOOptions, error) {
options := tun.GSOOptions{
CsumStart: gso.L3HdrLen,
CsumOffset: gso.CsumOffset,
GSOSize: gso.MSS,
NeedsCsum: gso.NeedsCsum,
}
switch gso.Type {
case stack.GSONone:
options.GSOType = tun.GSONone
return options, nil
case stack.GSOTCPv4:
options.GSOType = tun.GSOTCPv4
case stack.GSOTCPv6:
options.GSOType = tun.GSOTCPv6
default:
return tun.GSOOptions{}, fmt.Errorf("unsupported gVisor GSOType: %v", gso.Type)
}
// options.HdrLen is both layer 3 and 4 together, whereas gVisor only
// gives us layer 3 length. We have to gather TCP header length
// ourselves.
if len(pkt) < int(gso.L3HdrLen)+minTCPHeaderSize {
return tun.GSOOptions{}, errors.New("gVisor GSOTCP packet length too short")
}
tcphLen := uint16(pkt[int(gso.L3HdrLen)+12] >> 4 * 4)
options.HdrLen = gso.L3HdrLen + tcphLen
return options, nil
}
// invertGSOChecksum inverts the transport layer checksum in pkt if gVisor
// handed us a segment with a partial checksum. A partial checksum is not a
// ones' complement of the sum, and incremental checksum updating is not yet
// partial checksum aware. This may be called twice for a single packet,
// both before and after partial checksum updates where later checksum
// offloading still expects a partial checksum.
// TODO(jwhited): plumb partial checksum awareness into net/packet/checksum.
func invertGSOChecksum(pkt []byte, gso stack.GSO) {
if gso.NeedsCsum != true {
return
}
at := int(gso.L3HdrLen + gso.CsumOffset)
if at+1 > len(pkt)-1 {
return
}
pkt[at] = ^pkt[at]
pkt[at+1] = ^pkt[at+1]
}
// injectedRead handles injected reads, which bypass filters.
func (t *Wrapper) injectedRead(res tunInjectedRead, outBuffs [][]byte, sizes []int, offset int) (n int, err error) {
var gso stack.GSO
pkt := outBuffs[0][offset:]
if res.packet != nil {
bufN := copy(pkt, res.packet.NetworkHeader().Slice())
bufN += copy(pkt[bufN:], res.packet.TransportHeader().Slice())
bufN += copy(pkt[bufN:], res.packet.Data().AsRange().ToSlice())
gso = res.packet.GSOOptions
pkt = pkt[:bufN]
defer res.packet.DecRef() // defer DecRef so we may continue to reference it
} else {
sizes[0] = copy(pkt, res.data)
pkt = pkt[:sizes[0]]
n = 1
}
pc := t.peerConfig.Load()
p := parsedPacketPool.Get().(*packet.Parsed)
defer parsedPacketPool.Put(p)
p.Decode(pkt)
invertGSOChecksum(pkt, gso)
pc.snat(p)
invertGSOChecksum(pkt, gso)
if m := t.destIPActivity.Load(); m != nil {
if fn := m[p.Dst.Addr()]; fn != nil {
fn()
}
}
if res.packet != nil {
var gsoOptions tun.GSOOptions
gsoOptions, err = stackGSOToTunGSO(pkt, gso)
if err != nil {
return 0, err
}
n, err = tun.GSOSplit(pkt, gsoOptions, outBuffs, sizes, offset)
}
if stats := t.stats.Load(); stats != nil {
for i := 0; i < n; i++ {
stats.UpdateTxVirtual(outBuffs[i][offset : offset+sizes[i]])
}
}
t.noteActivity()
metricPacketOut.Add(int64(n))
return n, err
}
func (t *Wrapper) filterPacketInboundFromWireGuard(p *packet.Parsed, captHook capture.Callback, pc *peerConfigTable, gro *gro.GRO) (filter.Response, *gro.GRO) {
if captHook != nil {
captHook(capture.FromPeer, t.now(), p.Buffer(), p.CaptureMeta)
}
if p.IPProto == ipproto.TSMP {
if pingReq, ok := p.AsTSMPPing(); ok {
t.noteActivity()
t.injectOutboundPong(p, pingReq)
return filter.DropSilently, gro
} else if data, ok := p.AsTSMPPong(); ok {
if f := t.OnTSMPPongReceived; f != nil {
f(data)
}
}
}
if p.IsEchoResponse() {
if f := t.OnICMPEchoResponseReceived; f != nil && f(p) {
// Note: this looks dropped in metrics, even though it was
// handled internally.
return filter.DropSilently, gro
}
}
// Issue 1526 workaround: if we see disco packets over
// Tailscale from ourselves, then drop them, as that shouldn't
// happen unless a networking stack is confused, as it seems
// macOS in Network Extension mode might be.
if p.IPProto == ipproto.UDP && // disco is over UDP; avoid isSelfDisco call for TCP/etc
t.isSelfDisco(p) {
t.limitedLogf("[unexpected] received self disco in packet over tstun; dropping")
metricPacketInDropSelfDisco.Add(1)
return filter.DropSilently, gro
}
if t.PreFilterPacketInboundFromWireGuard != nil {
if res := t.PreFilterPacketInboundFromWireGuard(p, t); res.IsDrop() {
return res, gro
}
}
var filt *filter.Filter
if pc.inboundPacketIsJailed(p) {
filt = t.jailedFilter.Load()
} else {
filt = t.filter.Load()
}
if filt == nil {
return filter.Drop, gro
}
outcome := filt.RunIn(p, t.filterFlags)
// Let peerapi through the filter; its ACLs are handled at L7,
// not at the packet level.
if outcome != filter.Accept &&
p.IPProto == ipproto.TCP &&
p.TCPFlags&packet.TCPSyn != 0 &&
t.PeerAPIPort != nil {
if port, ok := t.PeerAPIPort(p.Dst.Addr()); ok && port == p.Dst.Port() {
outcome = filter.Accept
}
}
if outcome != filter.Accept {
metricPacketInDropFilter.Add(1)
t.metrics.inboundDroppedPacketsTotal.Add(dropPacketLabel{
Reason: DropReasonACL,
}, 1)
// Tell them, via TSMP, we're dropping them due to the ACL.
// Their host networking stack can translate this into ICMP
// or whatnot as required. But notably, their GUI or tailscale CLI
// can show them a rejection history with reasons.
if p.IPVersion == 4 && p.IPProto == ipproto.TCP && p.TCPFlags&packet.TCPSyn != 0 && !t.disableTSMPRejected {
rj := packet.TailscaleRejectedHeader{
IPSrc: p.Dst.Addr(),
IPDst: p.Src.Addr(),
Src: p.Src,
Dst: p.Dst,
Proto: p.IPProto,
Reason: packet.RejectedDueToACLs,
}
if filt.ShieldsUp() {
rj.Reason = packet.RejectedDueToShieldsUp
}
pkt := packet.Generate(rj, nil)
t.InjectOutbound(pkt)
// TODO(bradfitz): also send a TCP RST, after the TSMP message.
}
return filter.Drop, gro
}
if t.PostFilterPacketInboundFromWireGuard != nil {
var res filter.Response
res, gro = t.PostFilterPacketInboundFromWireGuard(p, t, gro)
if res.IsDrop() {
return res, gro
}
}
return filter.Accept, gro
}
// Write accepts incoming packets. The packets begin at buffs[:][offset:],
// like wireguard-go/tun.Device.Write. Write is called per-peer via
// wireguard-go/device.Peer.RoutineSequentialReceiver, so it MUST be
// thread-safe.
func (t *Wrapper) Write(buffs [][]byte, offset int) (int, error) {
metricPacketIn.Add(int64(len(buffs)))
i := 0
p := parsedPacketPool.Get().(*packet.Parsed)
defer parsedPacketPool.Put(p)
captHook := t.captureHook.Load()
pc := t.peerConfig.Load()
var buffsGRO *gro.GRO
for _, buff := range buffs {
p.Decode(buff[offset:])
pc.dnat(p)
if !t.disableFilter {
var res filter.Response
// TODO(jwhited): name and document this filter code path
// appropriately. It is not only responsible for filtering, it
// also routes packets towards gVisor/netstack.
res, buffsGRO = t.filterPacketInboundFromWireGuard(p, captHook, pc, buffsGRO)
if res != filter.Accept {
metricPacketInDrop.Add(1)
} else {
buffs[i] = buff
i++
}
}
}
if buffsGRO != nil {
buffsGRO.Flush()
}
if t.disableFilter {
i = len(buffs)
}
buffs = buffs[:i]
if len(buffs) > 0 {
t.noteActivity()
_, err := t.tdevWrite(buffs, offset)
if err != nil {
t.metrics.inboundDroppedPacketsTotal.Add(dropPacketLabel{
Reason: DropReasonError,
}, int64(len(buffs)))
}
return len(buffs), err
}
return 0, nil
}
func (t *Wrapper) tdevWrite(buffs [][]byte, offset int) (int, error) {
if stats := t.stats.Load(); stats != nil {
for i := range buffs {
stats.UpdateRxVirtual((buffs)[i][offset:])
}
}
return t.tdev.Write(buffs, offset)
}
func (t *Wrapper) GetFilter() *filter.Filter {
return t.filter.Load()
}
func (t *Wrapper) SetFilter(filt *filter.Filter) {
t.filter.Store(filt)
}
func (t *Wrapper) GetJailedFilter() *filter.Filter {
return t.jailedFilter.Load()
}
func (t *Wrapper) SetJailedFilter(filt *filter.Filter) {
t.jailedFilter.Store(filt)
}
// InjectInboundPacketBuffer makes the Wrapper device behave as if a packet
// (pkt) with the given contents was received from the network.
// It takes ownership of one reference count on pkt. The injected
// packet will not pass through inbound filters.
//
// pkt will be copied into buffs before writing to the underlying tun.Device.
// Therefore, callers must allocate and pass a buffs slice that is sized
// appropriately for holding pkt.Size() + PacketStartOffset as a single
// element (buffs[0]) and split across multiple elements if the originating
// stack supports GSO. sizes must be sized with similar consideration,
// len(buffs) should be equal to len(sizes). If any len(buffs[<index>]) was
// mutated by InjectInboundPacketBuffer it will be reset to cap(buffs[<index>])
// before returning.
//
// This path is typically used to deliver synthesized packets to the
// host networking stack.
func (t *Wrapper) InjectInboundPacketBuffer(pkt *stack.PacketBuffer, buffs [][]byte, sizes []int) error {
buf := buffs[0][PacketStartOffset:]
bufN := copy(buf, pkt.NetworkHeader().Slice())
bufN += copy(buf[bufN:], pkt.TransportHeader().Slice())
bufN += copy(buf[bufN:], pkt.Data().AsRange().ToSlice())
if bufN != pkt.Size() {
panic("unexpected packet size after copy")
}
buf = buf[:bufN]
defer pkt.DecRef()
pc := t.peerConfig.Load()
p := parsedPacketPool.Get().(*packet.Parsed)
defer parsedPacketPool.Put(p)
p.Decode(buf)
captHook := t.captureHook.Load()
if captHook != nil {
captHook(capture.SynthesizedToLocal, t.now(), p.Buffer(), p.CaptureMeta)
}
invertGSOChecksum(buf, pkt.GSOOptions)
pc.dnat(p)
invertGSOChecksum(buf, pkt.GSOOptions)
gso, err := stackGSOToTunGSO(buf, pkt.GSOOptions)
if err != nil {
return err
}
// TODO(jwhited): support GSO passthrough to t.tdev. If t.tdev supports
// GSO we don't need to split here and coalesce inside wireguard-go,
// we can pass a coalesced segment all the way through.
n, err := tun.GSOSplit(buf, gso, buffs, sizes, PacketStartOffset)
if err != nil {
if errors.Is(err, tun.ErrTooManySegments) {
t.limitedLogf("InjectInboundPacketBuffer: GSO split overflows buffs")
} else {
return err
}
}
for i := 0; i < n; i++ {
buffs[i] = buffs[i][:PacketStartOffset+sizes[i]]
}
defer func() {
for i := 0; i < n; i++ {
buffs[i] = buffs[i][:cap(buffs[i])]
}
}()
_, err = t.tdevWrite(buffs[:n], PacketStartOffset)
return err
}
// InjectInboundDirect makes the Wrapper device behave as if a packet
// with the given contents was received from the network.
// It blocks and does not take ownership of the packet.
// The injected packet will not pass through inbound filters.
//
// The packet contents are to start at &buf[offset].
// offset must be greater or equal to PacketStartOffset.
// The space before &buf[offset] will be used by WireGuard.
func (t *Wrapper) InjectInboundDirect(buf []byte, offset int) error {
if len(buf) > MaxPacketSize {
return errPacketTooBig
}
if len(buf) < offset {
return errOffsetTooBig
}
if offset < PacketStartOffset {
return errOffsetTooSmall
}
// Write to the underlying device to skip filters.
_, err := t.tdevWrite([][]byte{buf}, offset) // TODO(jwhited): alloc?
return err
}
// InjectInboundCopy takes a packet without leading space,
// reallocates it to conform to the InjectInboundDirect interface
// and calls InjectInboundDirect on it. Injecting a nil packet is a no-op.
func (t *Wrapper) InjectInboundCopy(packet []byte) error {
// We duplicate this check from InjectInboundDirect here
// to avoid wasting an allocation on an oversized packet.
if len(packet) > MaxPacketSize {
return errPacketTooBig
}
if len(packet) == 0 {
return nil
}
buf := make([]byte, PacketStartOffset+len(packet))
copy(buf[PacketStartOffset:], packet)
return t.InjectInboundDirect(buf, PacketStartOffset)
}
func (t *Wrapper) injectOutboundPong(pp *packet.Parsed, req packet.TSMPPingRequest) {
pong := packet.TSMPPongReply{
Data: req.Data,
}
if t.PeerAPIPort != nil {
pong.PeerAPIPort, _ = t.PeerAPIPort(pp.Dst.Addr())
}
switch pp.IPVersion {
case 4:
h4 := pp.IP4Header()
h4.ToResponse()
pong.IPHeader = h4
case 6:
h6 := pp.IP6Header()
h6.ToResponse()
pong.IPHeader = h6
default:
return
}
t.InjectOutbound(packet.Generate(pong, nil))
}
// InjectOutbound makes the Wrapper device behave as if a packet
// with the given contents was sent to the network.
// It does not block, but takes ownership of the packet.
// The injected packet will not pass through outbound filters.
// Injecting an empty packet is a no-op.
func (t *Wrapper) InjectOutbound(pkt []byte) error {
if len(pkt) > MaxPacketSize {
return errPacketTooBig
}
if len(pkt) == 0 {
return nil
}
t.injectOutbound(tunInjectedRead{data: pkt})
return nil
}
// InjectOutboundPacketBuffer logically behaves as InjectOutbound. It takes ownership of one
// reference count on the packet, and the packet may be mutated. The packet refcount will be
// decremented after the injected buffer has been read.
func (t *Wrapper) InjectOutboundPacketBuffer(pkt *stack.PacketBuffer) error {
size := pkt.Size()
if size > MaxPacketSize {
pkt.DecRef()
return errPacketTooBig
}
if size == 0 {
pkt.DecRef()
return nil
}
if capt := t.captureHook.Load(); capt != nil {
b := pkt.ToBuffer()
capt(capture.SynthesizedToPeer, t.now(), b.Flatten(), packet.CaptureMeta{})
}
t.injectOutbound(tunInjectedRead{packet: pkt})
return nil
}
func (t *Wrapper) BatchSize() int {
if runtime.GOOS == "linux" {
// Always setup Linux to handle vectors, even in the very rare case that
// the underlying t.tdev returns 1. gVisor GSO is always enabled for
// Linux, and we cannot make a determination on gVisor usage at
// wireguard-go.Device startup, which is when this value matters for
// packet memory init.
return conn.IdealBatchSize
}
return t.tdev.BatchSize()
}
// Unwrap returns the underlying tun.Device.
func (t *Wrapper) Unwrap() tun.Device {
return t.tdev
}
// SetStatistics specifies a per-connection statistics aggregator.
// Nil may be specified to disable statistics gathering.
func (t *Wrapper) SetStatistics(stats *connstats.Statistics) {
t.stats.Store(stats)
}
var (
metricPacketIn = clientmetric.NewCounter("tstun_in_from_wg")
metricPacketInDrop = clientmetric.NewCounter("tstun_in_from_wg_drop")
metricPacketInDropFilter = clientmetric.NewCounter("tstun_in_from_wg_drop_filter")
metricPacketInDropSelfDisco = clientmetric.NewCounter("tstun_in_from_wg_drop_self_disco")
metricPacketOut = clientmetric.NewCounter("tstun_out_to_wg")
metricPacketOutDrop = clientmetric.NewCounter("tstun_out_to_wg_drop")
metricPacketOutDropFilter = clientmetric.NewCounter("tstun_out_to_wg_drop_filter")
metricPacketOutDropSelfDisco = clientmetric.NewCounter("tstun_out_to_wg_drop_self_disco")
)
type DropReason string
const (
DropReasonACL DropReason = "acl"
DropReasonError DropReason = "error"
)
type dropPacketLabel struct {
// Reason indicates what we have done with the packet, and has the following values:
// - acl (rejected packets because of ACL)
// - error (rejected packets because of an error)
Reason DropReason
}
func (t *Wrapper) InstallCaptureHook(cb capture.Callback) {
t.captureHook.Store(cb)
}