tailscale/wgengine/netstack/netstack.go

1814 lines
60 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
// Package netstack wires up gVisor's netstack into Tailscale.
package netstack
import (
"bytes"
"context"
"errors"
"expvar"
"fmt"
"io"
"log"
"math"
"net"
"net/netip"
"runtime"
"strconv"
"sync"
"sync/atomic"
"time"
"gvisor.dev/gvisor/pkg/buffer"
"gvisor.dev/gvisor/pkg/refs"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/adapters/gonet"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/link/channel"
"gvisor.dev/gvisor/pkg/tcpip/network/ipv4"
"gvisor.dev/gvisor/pkg/tcpip/network/ipv6"
"gvisor.dev/gvisor/pkg/tcpip/stack"
"gvisor.dev/gvisor/pkg/tcpip/transport/icmp"
"gvisor.dev/gvisor/pkg/tcpip/transport/tcp"
"gvisor.dev/gvisor/pkg/tcpip/transport/udp"
"gvisor.dev/gvisor/pkg/waiter"
"tailscale.com/drive"
"tailscale.com/envknob"
"tailscale.com/ipn/ipnlocal"
"tailscale.com/metrics"
"tailscale.com/net/dns"
"tailscale.com/net/netaddr"
"tailscale.com/net/packet"
"tailscale.com/net/tsaddr"
"tailscale.com/net/tsdial"
"tailscale.com/net/tstun"
"tailscale.com/proxymap"
"tailscale.com/syncs"
"tailscale.com/tailcfg"
"tailscale.com/types/ipproto"
"tailscale.com/types/logger"
"tailscale.com/types/netmap"
"tailscale.com/types/nettype"
"tailscale.com/util/clientmetric"
"tailscale.com/version"
"tailscale.com/wgengine"
"tailscale.com/wgengine/filter"
"tailscale.com/wgengine/magicsock"
)
const debugPackets = false
// If non-zero, these override the values returned from the corresponding
// functions, below.
var (
maxInFlightConnectionAttemptsForTest int
maxInFlightConnectionAttemptsPerClientForTest int
)
// maxInFlightConnectionAttempts returns the global number of in-flight
// connection attempts that we allow for a single netstack Impl. Any new
// forwarded TCP connections that are opened after the limit has been hit are
// rejected until the number of in-flight connections drops below the limit
// again.
//
// Each in-flight connection attempt is a new goroutine and an open TCP
// connection, so we want to ensure that we don't allow an unbounded number of
// connections.
func maxInFlightConnectionAttempts() int {
if n := maxInFlightConnectionAttemptsForTest; n > 0 {
return n
}
if version.IsMobile() {
return 1024 // previous global value
}
switch version.OS() {
case "linux":
// On the assumption that most subnet routers deployed in
// production are running on Linux, we return a higher value.
//
// TODO(andrew-d): tune this based on the amount of system
// memory instead of a fixed limit.
return 8192
default:
// On all other platforms, return a reasonably high value that
// most users won't hit.
return 2048
}
}
// maxInFlightConnectionAttemptsPerClient is the same as
// maxInFlightConnectionAttempts, but applies on a per-client basis
// (i.e. keyed by the remote Tailscale IP).
func maxInFlightConnectionAttemptsPerClient() int {
if n := maxInFlightConnectionAttemptsPerClientForTest; n > 0 {
return n
}
// For now, allow each individual client at most 2/3rds of the global
// limit. On all platforms except mobile, this won't be a visible
// change for users since this limit was added at the same time as we
// bumped the global limit, above.
return maxInFlightConnectionAttempts() * 2 / 3
}
var debugNetstack = envknob.RegisterBool("TS_DEBUG_NETSTACK")
var (
serviceIP = tsaddr.TailscaleServiceIP()
serviceIPv6 = tsaddr.TailscaleServiceIPv6()
)
func init() {
mode := envknob.String("TS_DEBUG_NETSTACK_LEAK_MODE")
if mode == "" {
return
}
var lm refs.LeakMode
if err := lm.Set(mode); err != nil {
panic(err)
}
refs.SetLeakMode(lm)
}
// Impl contains the state for the netstack implementation,
// and implements wgengine.FakeImpl to act as a userspace network
// stack when Tailscale is running in fake mode.
type Impl struct {
// GetTCPHandlerForFlow conditionally handles an incoming TCP flow for the
// provided (src/port, dst/port) 4-tuple.
//
// A nil value is equivalent to a func returning (nil, false).
//
// If func returns intercept=false, the default forwarding behavior (if
// ProcessLocalIPs and/or ProcesssSubnetIPs) takes place.
//
// When intercept=true, the behavior depends on whether the returned handler
// is non-nil: if nil, the connection is rejected. If non-nil, handler takes
// over the TCP conn.
GetTCPHandlerForFlow func(src, dst netip.AddrPort) (handler func(net.Conn), intercept bool)
// GetUDPHandlerForFlow conditionally handles an incoming UDP flow for the
// provided (src/port, dst/port) 4-tuple.
//
// A nil value is equivalent to a func returning (nil, false).
//
// If func returns intercept=false, the default forwarding behavior (if
// ProcessLocalIPs and/or ProcesssSubnetIPs) takes place.
//
// When intercept=true, the behavior depends on whether the returned handler
// is non-nil: if nil, the connection is rejected. If non-nil, handler takes
// over the UDP flow.
GetUDPHandlerForFlow func(src, dst netip.AddrPort) (handler func(nettype.ConnPacketConn), intercept bool)
// ProcessLocalIPs is whether netstack should handle incoming
// traffic directed at the Node.Addresses (local IPs).
// It can only be set before calling Start.
ProcessLocalIPs bool
// ProcessSubnets is whether netstack should handle incoming
// traffic destined to non-local IPs (i.e. whether it should
// be a subnet router).
// It can only be set before calling Start.
ProcessSubnets bool
ipstack *stack.Stack
linkEP *channel.Endpoint
tundev *tstun.Wrapper
e wgengine.Engine
pm *proxymap.Mapper
mc *magicsock.Conn
logf logger.Logf
dialer *tsdial.Dialer
ctx context.Context // alive until Close
ctxCancel context.CancelFunc // called on Close
lb *ipnlocal.LocalBackend // or nil
dns *dns.Manager
driveForLocal drive.FileSystemForLocal // or nil
peerapiPort4Atomic atomic.Uint32 // uint16 port number for IPv4 peerapi
peerapiPort6Atomic atomic.Uint32 // uint16 port number for IPv6 peerapi
// atomicIsLocalIPFunc holds a func that reports whether an IP
// is a local (non-subnet) Tailscale IP address of this
// machine. It's always a non-nil func. It's changed on netmap
// updates.
atomicIsLocalIPFunc syncs.AtomicValue[func(netip.Addr) bool]
// forwardDialFunc, if non-nil, is the net.Dialer.DialContext-style
// function that is used to make outgoing connections when forwarding a
// TCP connection to another host (e.g. in subnet router mode).
//
// This is currently only used in tests.
forwardDialFunc func(context.Context, string, string) (net.Conn, error)
// forwardInFlightPerClientDropped is a metric that tracks how many
// in-flight TCP forward requests were dropped due to the per-client
// limit.
forwardInFlightPerClientDropped expvar.Int
mu sync.Mutex
// connsOpenBySubnetIP keeps track of number of connections open
// for each subnet IP temporarily registered on netstack for active
// TCP connections, so they can be unregistered when connections are
// closed.
connsOpenBySubnetIP map[netip.Addr]int
// connsInFlightByClient keeps track of the number of in-flight
// connections by the client ("Tailscale") IP. This is used to apply a
// per-client limit on in-flight connections that's smaller than the
// global limit, preventing a misbehaving client from starving the
// global limit.
connsInFlightByClient map[netip.Addr]int
// packetsInFlight tracks whether we're already handling a packet by
// the given endpoint ID; clients can send repeated SYN packets while
// trying to establish a connection (and while we're dialing the
// upstream address). If we don't deduplicate based on the endpoint,
// each SYN retransmit results in us incrementing
// connsInFlightByClient, and not decrementing them because the
// underlying TCP forwarder returns 'true' to indicate that the packet
// is handled but never actually launches our acceptTCP function.
//
// This mimics the 'inFlight' map in the TCP forwarder; it's
// unfortunate that we have to track this all twice, but thankfully the
// map only holds pending (in-flight) packets, and it's reasonably cheap.
packetsInFlight map[stack.TransportEndpointID]struct{}
}
const nicID = 1
// maxUDPPacketSize is the maximum size of a UDP packet we copy in
// startPacketCopy when relaying UDP packets. The user can configure
// the tailscale MTU to anything up to this size so we can potentially
// have a UDP packet as big as the MTU.
const maxUDPPacketSize = tstun.MaxPacketSize
// Create creates and populates a new Impl.
func Create(logf logger.Logf, tundev *tstun.Wrapper, e wgengine.Engine, mc *magicsock.Conn, dialer *tsdial.Dialer, dns *dns.Manager, pm *proxymap.Mapper, driveForLocal drive.FileSystemForLocal) (*Impl, error) {
if mc == nil {
return nil, errors.New("nil magicsock.Conn")
}
if tundev == nil {
return nil, errors.New("nil tundev")
}
if logf == nil {
return nil, errors.New("nil logger")
}
if e == nil {
return nil, errors.New("nil Engine")
}
if pm == nil {
return nil, errors.New("nil proxymap.Mapper")
}
if dialer == nil {
return nil, errors.New("nil Dialer")
}
ipstack := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocolFactory{ipv4.NewProtocol, ipv6.NewProtocol},
TransportProtocols: []stack.TransportProtocolFactory{tcp.NewProtocol, udp.NewProtocol, icmp.NewProtocol4, icmp.NewProtocol6},
})
sackEnabledOpt := tcpip.TCPSACKEnabled(true) // TCP SACK is disabled by default
tcpipErr := ipstack.SetTransportProtocolOption(tcp.ProtocolNumber, &sackEnabledOpt)
if tcpipErr != nil {
return nil, fmt.Errorf("could not enable TCP SACK: %v", tcpipErr)
}
if runtime.GOOS == "windows" {
// See https://github.com/tailscale/tailscale/issues/9707
// Windows w/RACK performs poorly. ACKs do not appear to be handled in a
// timely manner, leading to spurious retransmissions and a reduced
// congestion window.
tcpRecoveryOpt := tcpip.TCPRecovery(0)
tcpipErr = ipstack.SetTransportProtocolOption(tcp.ProtocolNumber, &tcpRecoveryOpt)
if tcpipErr != nil {
return nil, fmt.Errorf("could not disable TCP RACK: %v", tcpipErr)
}
}
linkEP := channel.New(512, uint32(tstun.DefaultTUNMTU()), "")
if tcpipProblem := ipstack.CreateNIC(nicID, linkEP); tcpipProblem != nil {
return nil, fmt.Errorf("could not create netstack NIC: %v", tcpipProblem)
}
// By default the netstack NIC will only accept packets for the IPs
// registered to it. Since in some cases we dynamically register IPs
// based on the packets that arrive, the NIC needs to accept all
// incoming packets. The NIC won't receive anything it isn't meant to
// since WireGuard will only send us packets that are meant for us.
ipstack.SetPromiscuousMode(nicID, true)
// Add IPv4 and IPv6 default routes, so all incoming packets from the Tailscale side
// are handled by the one fake NIC we use.
ipv4Subnet, err := tcpip.NewSubnet(tcpip.AddrFromSlice(make([]byte, 4)), tcpip.MaskFromBytes(make([]byte, 4)))
if err != nil {
return nil, fmt.Errorf("could not create IPv4 subnet: %v", err)
}
ipv6Subnet, err := tcpip.NewSubnet(tcpip.AddrFromSlice(make([]byte, 16)), tcpip.MaskFromBytes(make([]byte, 16)))
if err != nil {
return nil, fmt.Errorf("could not create IPv6 subnet: %v", err)
}
ipstack.SetRouteTable([]tcpip.Route{
{
Destination: ipv4Subnet,
NIC: nicID,
},
{
Destination: ipv6Subnet,
NIC: nicID,
},
})
ns := &Impl{
logf: logf,
ipstack: ipstack,
linkEP: linkEP,
tundev: tundev,
e: e,
pm: pm,
mc: mc,
dialer: dialer,
connsOpenBySubnetIP: make(map[netip.Addr]int),
connsInFlightByClient: make(map[netip.Addr]int),
packetsInFlight: make(map[stack.TransportEndpointID]struct{}),
dns: dns,
driveForLocal: driveForLocal,
}
ns.ctx, ns.ctxCancel = context.WithCancel(context.Background())
ns.atomicIsLocalIPFunc.Store(tsaddr.FalseContainsIPFunc())
ns.tundev.PostFilterPacketInboundFromWireGuard = ns.injectInbound
ns.tundev.PreFilterPacketOutboundToWireGuardNetstackIntercept = ns.handleLocalPackets
stacksForMetrics.Store(ns, struct{}{})
return ns, nil
}
func (ns *Impl) Close() error {
stacksForMetrics.Delete(ns)
ns.ctxCancel()
ns.ipstack.Close()
ns.ipstack.Wait()
return nil
}
// A single process might have several netstacks running at the same time.
// Exported clientmetric counters will have a sum of counters of all of them.
var stacksForMetrics syncs.Map[*Impl, struct{}]
func init() {
// Please take care to avoid exporting clientmetrics with the same metric
// names as the ones used by Impl.ExpVar. Both get exposed via the same HTTP
// endpoint, and name collisions will result in Prometheus scraping errors.
clientmetric.NewCounterFunc("netstack_tcp_forward_dropped_attempts", func() int64 {
var total uint64
stacksForMetrics.Range(func(ns *Impl, _ struct{}) bool {
delta := ns.ipstack.Stats().TCP.ForwardMaxInFlightDrop.Value()
if total+delta > math.MaxInt64 {
total = math.MaxInt64
return false
}
total += delta
return true
})
return int64(total)
})
}
type protocolHandlerFunc func(stack.TransportEndpointID, *stack.PacketBuffer) bool
// wrapUDPProtocolHandler wraps the protocol handler we pass to netstack for UDP.
func (ns *Impl) wrapUDPProtocolHandler(h protocolHandlerFunc) protocolHandlerFunc {
return func(tei stack.TransportEndpointID, pb *stack.PacketBuffer) bool {
addr := tei.LocalAddress
ip, ok := netip.AddrFromSlice(addr.AsSlice())
if !ok {
ns.logf("netstack: could not parse local address for incoming connection")
return false
}
// Dynamically reconfigure ns's subnet addresses as needed for
// outbound traffic.
ip = ip.Unmap()
if !ns.isLocalIP(ip) {
ns.addSubnetAddress(ip)
}
return h(tei, pb)
}
}
var (
metricPerClientForwardLimit = clientmetric.NewCounter("netstack_tcp_forward_dropped_attempts_per_client")
)
// wrapTCPProtocolHandler wraps the protocol handler we pass to netstack for TCP.
func (ns *Impl) wrapTCPProtocolHandler(h protocolHandlerFunc) protocolHandlerFunc {
// 'handled' is whether the packet should be accepted by netstack; if
// true, then the TCP connection is accepted by the transport layer and
// passes through our acceptTCP handler/etc. If false, then the packet
// is dropped and the TCP connection is rejected (typically with an
// ICMP Port Unreachable or ICMP Protocol Unreachable message).
return func(tei stack.TransportEndpointID, pb *stack.PacketBuffer) (handled bool) {
localIP, ok := netip.AddrFromSlice(tei.LocalAddress.AsSlice())
if !ok {
ns.logf("netstack: could not parse local address for incoming connection")
return false
}
localIP = localIP.Unmap()
remoteIP, ok := netip.AddrFromSlice(tei.RemoteAddress.AsSlice())
if !ok {
ns.logf("netstack: could not parse remote address for incoming connection")
return false
}
// If we have too many in-flight connections for this client, abort
// early and don't open a new one.
//
// NOTE: the counter is decremented in
// decrementInFlightTCPForward, called from the acceptTCP
// function, below.
ns.mu.Lock()
if _, ok := ns.packetsInFlight[tei]; ok {
// We're already handling this packet; just bail early
// (this is also what would happen in the TCP
// forwarder).
ns.mu.Unlock()
return true
}
// Check the per-client limit.
inFlight := ns.connsInFlightByClient[remoteIP]
tooManyInFlight := inFlight >= maxInFlightConnectionAttemptsPerClient()
if !tooManyInFlight {
ns.connsInFlightByClient[remoteIP]++
}
// We're handling this packet now; see the comment on the
// packetsInFlight field for more details.
ns.packetsInFlight[tei] = struct{}{}
ns.mu.Unlock()
if debugNetstack() {
ns.logf("[v2] netstack: in-flight connections for client %v: %d", remoteIP, inFlight)
}
if tooManyInFlight {
ns.logf("netstack: ignoring a new TCP connection from %v to %v because the client already has %d in-flight connections", localIP, remoteIP, inFlight)
metricPerClientForwardLimit.Add(1)
ns.forwardInFlightPerClientDropped.Add(1)
return false // unhandled
}
// On return, if this packet isn't handled by the inner handler
// we're wrapping (`h`), we need to decrement the per-client
// in-flight count and remove the ID from our tracking map.
// This can happen if the underlying forwarder's limit has been
// reached, at which point it will return false to indicate
// that it's not handling the packet, and it will not run
// acceptTCP. If we don't decrement here, then we would
// eventually increment the per-client counter up to the limit
// and never decrement because we'd never hit the codepath in
// acceptTCP, below, or just drop all packets from the same
// endpoint due to the packetsInFlight check.
defer func() {
if !handled {
ns.mu.Lock()
delete(ns.packetsInFlight, tei)
ns.connsInFlightByClient[remoteIP]--
new := ns.connsInFlightByClient[remoteIP]
ns.mu.Unlock()
ns.logf("netstack: decrementing connsInFlightByClient[%v] because the packet was not handled; new value is %d", remoteIP, new)
}
}()
// Dynamically reconfigure ns's subnet addresses as needed for
// outbound traffic.
if !ns.isLocalIP(localIP) {
ns.addSubnetAddress(localIP)
}
return h(tei, pb)
}
}
func (ns *Impl) decrementInFlightTCPForward(tei stack.TransportEndpointID, remoteAddr netip.Addr) {
ns.mu.Lock()
defer ns.mu.Unlock()
// Remove this packet so future SYNs from this address will be handled.
delete(ns.packetsInFlight, tei)
was := ns.connsInFlightByClient[remoteAddr]
newVal := was - 1
if newVal == 0 {
delete(ns.connsInFlightByClient, remoteAddr) // free up space in the map
} else {
ns.connsInFlightByClient[remoteAddr] = newVal
}
}
// Start sets up all the handlers so netstack can start working. Implements
// wgengine.FakeImpl.
func (ns *Impl) Start(lb *ipnlocal.LocalBackend) error {
if lb == nil {
panic("nil LocalBackend")
}
ns.lb = lb
// size = 0 means use default buffer size
const tcpReceiveBufferSize = 0
tcpFwd := tcp.NewForwarder(ns.ipstack, tcpReceiveBufferSize, maxInFlightConnectionAttempts(), ns.acceptTCP)
udpFwd := udp.NewForwarder(ns.ipstack, ns.acceptUDP)
ns.ipstack.SetTransportProtocolHandler(tcp.ProtocolNumber, ns.wrapTCPProtocolHandler(tcpFwd.HandlePacket))
ns.ipstack.SetTransportProtocolHandler(udp.ProtocolNumber, ns.wrapUDPProtocolHandler(udpFwd.HandlePacket))
go ns.inject()
return nil
}
func (ns *Impl) addSubnetAddress(ip netip.Addr) {
ns.mu.Lock()
ns.connsOpenBySubnetIP[ip]++
needAdd := ns.connsOpenBySubnetIP[ip] == 1
ns.mu.Unlock()
// Only register address into netstack for first concurrent connection.
if needAdd {
pa := tcpip.ProtocolAddress{
AddressWithPrefix: tcpip.AddrFromSlice(ip.AsSlice()).WithPrefix(),
}
if ip.Is4() {
pa.Protocol = ipv4.ProtocolNumber
} else if ip.Is6() {
pa.Protocol = ipv6.ProtocolNumber
}
ns.ipstack.AddProtocolAddress(nicID, pa, stack.AddressProperties{
PEB: stack.CanBePrimaryEndpoint, // zero value default
ConfigType: stack.AddressConfigStatic, // zero value default
})
}
}
func (ns *Impl) removeSubnetAddress(ip netip.Addr) {
ns.mu.Lock()
defer ns.mu.Unlock()
ns.connsOpenBySubnetIP[ip]--
// Only unregister address from netstack after last concurrent connection.
if ns.connsOpenBySubnetIP[ip] == 0 {
ns.ipstack.RemoveAddress(nicID, tcpip.AddrFromSlice(ip.AsSlice()))
delete(ns.connsOpenBySubnetIP, ip)
}
}
func ipPrefixToAddressWithPrefix(ipp netip.Prefix) tcpip.AddressWithPrefix {
return tcpip.AddressWithPrefix{
Address: tcpip.AddrFromSlice(ipp.Addr().AsSlice()),
PrefixLen: int(ipp.Bits()),
}
}
var v4broadcast = netaddr.IPv4(255, 255, 255, 255)
// UpdateNetstackIPs updates the set of local IPs that netstack should handle
// from nm.
//
// TODO(bradfitz): don't pass the whole netmap here; just pass the two
// address slice views.
func (ns *Impl) UpdateNetstackIPs(nm *netmap.NetworkMap) {
var selfNode tailcfg.NodeView
if nm != nil {
ns.atomicIsLocalIPFunc.Store(tsaddr.NewContainsIPFunc(nm.GetAddresses()))
selfNode = nm.SelfNode
} else {
ns.atomicIsLocalIPFunc.Store(tsaddr.FalseContainsIPFunc())
}
oldPfx := make(map[netip.Prefix]bool)
for _, protocolAddr := range ns.ipstack.AllAddresses()[nicID] {
ap := protocolAddr.AddressWithPrefix
ip := netaddrIPFromNetstackIP(ap.Address)
if ip == v4broadcast && ap.PrefixLen == 32 {
// Don't add 255.255.255.255/32 to oldIPs so we don't
// delete it later. We didn't install it, so it's not
// ours to delete.
continue
}
p := netip.PrefixFrom(ip, ap.PrefixLen)
oldPfx[p] = true
}
newPfx := make(map[netip.Prefix]bool)
if selfNode.Valid() {
for i := range selfNode.Addresses().Len() {
p := selfNode.Addresses().At(i)
newPfx[p] = true
}
if ns.ProcessSubnets {
for i := range selfNode.AllowedIPs().Len() {
p := selfNode.AllowedIPs().At(i)
newPfx[p] = true
}
}
}
pfxToAdd := make(map[netip.Prefix]bool)
for p := range newPfx {
if !oldPfx[p] {
pfxToAdd[p] = true
}
}
pfxToRemove := make(map[netip.Prefix]bool)
for p := range oldPfx {
if !newPfx[p] {
pfxToRemove[p] = true
}
}
ns.mu.Lock()
for ip := range ns.connsOpenBySubnetIP {
// TODO(maisem): this looks like a bug, remove or document. It seems as
// though we might end up either leaking the address on the netstack
// NIC, or where we do accounting for connsOpenBySubnetIP from 1 to 0,
// we might end up removing the address from the netstack NIC that was
// still being advertised.
delete(pfxToRemove, netip.PrefixFrom(ip, ip.BitLen()))
}
ns.mu.Unlock()
for p := range pfxToRemove {
err := ns.ipstack.RemoveAddress(nicID, tcpip.AddrFromSlice(p.Addr().AsSlice()))
if err != nil {
ns.logf("netstack: could not deregister IP %s: %v", p, err)
} else {
ns.logf("[v2] netstack: deregistered IP %s", p)
}
}
for p := range pfxToAdd {
if !p.IsValid() {
ns.logf("netstack: [unexpected] skipping invalid IP (%v/%v)", p.Addr(), p.Bits())
continue
}
tcpAddr := tcpip.ProtocolAddress{
AddressWithPrefix: ipPrefixToAddressWithPrefix(p),
}
if p.Addr().Is6() {
tcpAddr.Protocol = ipv6.ProtocolNumber
} else {
tcpAddr.Protocol = ipv4.ProtocolNumber
}
var tcpErr tcpip.Error // not error
tcpErr = ns.ipstack.AddProtocolAddress(nicID, tcpAddr, stack.AddressProperties{
PEB: stack.CanBePrimaryEndpoint, // zero value default
ConfigType: stack.AddressConfigStatic, // zero value default
})
if tcpErr != nil {
ns.logf("netstack: could not register IP %s: %v", p, tcpErr)
} else {
ns.logf("[v2] netstack: registered IP %s", p)
}
}
}
// handleLocalPackets is hooked into the tun datapath for packets leaving
// the host and arriving at tailscaled. This method returns filter.DropSilently
// to intercept a packet for handling, for instance traffic to quad-100.
func (ns *Impl) handleLocalPackets(p *packet.Parsed, t *tstun.Wrapper) filter.Response {
if ns.ctx.Err() != nil {
return filter.DropSilently
}
// Determine if we care about this local packet.
dst := p.Dst.Addr()
switch {
case dst == serviceIP || dst == serviceIPv6:
// We want to intercept some traffic to the "service IP" (e.g.
// 100.100.100.100 for IPv4). However, of traffic to the
// service IP, we only care about UDP 53, and TCP on port 53,
// 80, and 8080.
switch p.IPProto {
case ipproto.TCP:
if port := p.Dst.Port(); port != 53 && port != 80 && port != 8080 {
return filter.Accept
}
case ipproto.UDP:
if port := p.Dst.Port(); port != 53 {
return filter.Accept
}
}
case viaRange.Contains(dst):
// We need to handle 4via6 packets leaving the host if the via
// route is for this host; otherwise the packet will be dropped
// because nothing will translate it.
var shouldHandle bool
if p.IPVersion == 6 && !ns.isLocalIP(dst) {
shouldHandle = ns.lb != nil && ns.lb.ShouldHandleViaIP(dst)
}
if !shouldHandle {
// Unhandled means that we let the regular processing
// occur without doing anything ourselves.
return filter.Accept
}
if debugNetstack() {
ns.logf("netstack: handling local 4via6 packet: version=%d proto=%v dst=%v src=%v",
p.IPVersion, p.IPProto, p.Dst, p.Src)
}
// If this is a ping message, handle it and don't pass to
// netstack.
pingIP, handlePing := ns.shouldHandlePing(p)
if handlePing {
ns.logf("netstack: handling local 4via6 ping: dst=%v pingIP=%v", dst, pingIP)
var pong []byte // the reply to the ping, if our relayed ping works
if dst.Is4() {
h := p.ICMP4Header()
h.ToResponse()
pong = packet.Generate(&h, p.Payload())
} else if dst.Is6() {
h := p.ICMP6Header()
h.ToResponse()
pong = packet.Generate(&h, p.Payload())
}
go ns.userPing(pingIP, pong, userPingDirectionInbound)
return filter.DropSilently
}
// Fall through to writing inbound so netstack handles the
// 4via6 via connection.
default:
// Not traffic to the service IP or a 4via6 IP, so we don't
// care about the packet; resume processing.
return filter.Accept
}
var pn tcpip.NetworkProtocolNumber
switch p.IPVersion {
case 4:
pn = header.IPv4ProtocolNumber
case 6:
pn = header.IPv6ProtocolNumber
}
if debugPackets {
ns.logf("[v2] service packet in (from %v): % x", p.Src, p.Buffer())
}
packetBuf := stack.NewPacketBuffer(stack.PacketBufferOptions{
Payload: buffer.MakeWithData(bytes.Clone(p.Buffer())),
})
ns.linkEP.InjectInbound(pn, packetBuf)
packetBuf.DecRef()
return filter.DropSilently
}
func (ns *Impl) DialContextTCP(ctx context.Context, ipp netip.AddrPort) (*gonet.TCPConn, error) {
remoteAddress := tcpip.FullAddress{
NIC: nicID,
Addr: tcpip.AddrFromSlice(ipp.Addr().AsSlice()),
Port: ipp.Port(),
}
var ipType tcpip.NetworkProtocolNumber
if ipp.Addr().Is4() {
ipType = ipv4.ProtocolNumber
} else {
ipType = ipv6.ProtocolNumber
}
return gonet.DialContextTCP(ctx, ns.ipstack, remoteAddress, ipType)
}
func (ns *Impl) DialContextUDP(ctx context.Context, ipp netip.AddrPort) (*gonet.UDPConn, error) {
remoteAddress := &tcpip.FullAddress{
NIC: nicID,
Addr: tcpip.AddrFromSlice(ipp.Addr().AsSlice()),
Port: ipp.Port(),
}
var ipType tcpip.NetworkProtocolNumber
if ipp.Addr().Is4() {
ipType = ipv4.ProtocolNumber
} else {
ipType = ipv6.ProtocolNumber
}
return gonet.DialUDP(ns.ipstack, nil, remoteAddress, ipType)
}
// The inject goroutine reads in packets that netstack generated, and delivers
// them to the correct path.
func (ns *Impl) inject() {
for {
pkt := ns.linkEP.ReadContext(ns.ctx)
if pkt.IsNil() {
if ns.ctx.Err() != nil {
// Return without logging.
return
}
ns.logf("[v2] ReadContext-for-write = ok=false")
continue
}
if debugPackets {
ns.logf("[v2] packet Write out: % x", stack.PayloadSince(pkt.NetworkHeader()).AsSlice())
}
// In the normal case, netstack synthesizes the bytes for
// traffic which should transit back into WG and go to peers.
// However, some uses of netstack (presently, magic DNS)
// send traffic destined for the local device, hence must
// be injected 'inbound'.
sendToHost := ns.shouldSendToHost(pkt)
// pkt has a non-zero refcount, so injection methods takes
// ownership of one count and will decrement on completion.
if sendToHost {
if err := ns.tundev.InjectInboundPacketBuffer(pkt); err != nil {
log.Printf("netstack inject inbound: %v", err)
return
}
} else {
if err := ns.tundev.InjectOutboundPacketBuffer(pkt); err != nil {
log.Printf("netstack inject outbound: %v", err)
return
}
}
}
}
// shouldSendToHost determines if the provided packet should be sent to the
// host (i.e the current machine running Tailscale), in which case it will
// return true. It will return false if the packet should be sent outbound, for
// transit via WireGuard to another Tailscale node.
func (ns *Impl) shouldSendToHost(pkt *stack.PacketBuffer) bool {
// Determine if the packet is from a service IP (100.100.100.100 or the
// IPv6 variant), in which case it needs to go back into the machine's
// network (inbound) instead of out.
hdr := pkt.Network()
switch v := hdr.(type) {
case header.IPv4:
srcIP := netip.AddrFrom4(v.SourceAddress().As4())
if serviceIP == srcIP {
return true
}
case header.IPv6:
srcIP := netip.AddrFrom16(v.SourceAddress().As16())
if srcIP == serviceIPv6 {
return true
}
if viaRange.Contains(srcIP) {
// Only send to the host if this 4via6 route is
// something this node handles.
if ns.lb != nil && ns.lb.ShouldHandleViaIP(srcIP) {
dstIP := netip.AddrFrom16(v.DestinationAddress().As16())
// Also, only forward to the host if the packet
// is destined for a local IP; otherwise, we'd
// send traffic that's intended for another
// peer from the local 4via6 address to the
// host instead of outbound to WireGuard. See:
// https://github.com/tailscale/tailscale/issues/12448
if ns.isLocalIP(dstIP) {
return true
}
if debugNetstack() {
ns.logf("netstack: sending 4via6 packet to host: src=%v dst=%v", srcIP, dstIP)
}
}
}
default:
// unknown; don't forward to host
if debugNetstack() {
ns.logf("netstack: unexpected packet in shouldSendToHost: %T", v)
}
}
return false
}
// isLocalIP reports whether ip is a Tailscale IP assigned to this
// node directly (but not a subnet-routed IP).
func (ns *Impl) isLocalIP(ip netip.Addr) bool {
return ns.atomicIsLocalIPFunc.Load()(ip)
}
func (ns *Impl) peerAPIPortAtomic(ip netip.Addr) *atomic.Uint32 {
if ip.Is4() {
return &ns.peerapiPort4Atomic
} else {
return &ns.peerapiPort6Atomic
}
}
var viaRange = tsaddr.TailscaleViaRange()
// shouldProcessInbound reports whether an inbound packet (a packet from a
// WireGuard peer) should be handled by netstack.
func (ns *Impl) shouldProcessInbound(p *packet.Parsed, t *tstun.Wrapper) bool {
// Handle incoming peerapi connections in netstack.
dstIP := p.Dst.Addr()
isLocal := ns.isLocalIP(dstIP)
// Handle TCP connection to the Tailscale IP(s) in some cases:
if ns.lb != nil && p.IPProto == ipproto.TCP && isLocal {
var peerAPIPort uint16
if p.TCPFlags&packet.TCPSynAck == packet.TCPSyn {
if port, ok := ns.lb.GetPeerAPIPort(dstIP); ok {
peerAPIPort = port
ns.peerAPIPortAtomic(dstIP).Store(uint32(port))
}
} else {
peerAPIPort = uint16(ns.peerAPIPortAtomic(dstIP).Load())
}
dport := p.Dst.Port()
if dport == peerAPIPort {
return true
}
// Also handle SSH connections, webserver, etc, if enabled:
if ns.lb.ShouldInterceptTCPPort(dport) {
return true
}
}
if p.IPVersion == 6 && !isLocal && viaRange.Contains(dstIP) {
return ns.lb != nil && ns.lb.ShouldHandleViaIP(dstIP)
}
if ns.ProcessLocalIPs && isLocal {
return true
}
if ns.ProcessSubnets && !isLocal {
return true
}
return false
}
var userPingSem = syncs.NewSemaphore(20) // 20 child ping processes at once
type userPingDirection int
const (
// userPingDirectionOutbound is used when the pong packet is to be sent
// "outbound"i.e. from this node to a peer via WireGuard.
userPingDirectionOutbound userPingDirection = iota
// userPingDirectionInbound is used when the pong packet is to be sent
// "inbound"i.e. from Tailscale to another process on this host.
userPingDirectionInbound
)
// userPing tried to ping dstIP and if it succeeds, injects pingResPkt
// into the tundev.
//
// It's used in userspace/netstack mode when we don't have kernel
// support or raw socket access. As such, this does the dumbest thing
// that can work: runs the ping command. It's not super efficient, so
// it bounds the number of pings going on at once. The idea is that
// people only use ping occasionally to see if their internet's working
// so this doesn't need to be great.
// On Apple platforms, this function doesn't run the ping command. Instead,
// it sends a non-privileged ping.
//
// The 'direction' parameter is used to determine where the response "pong"
// packet should be written, if the ping succeeds. See the documentation on the
// constants for more details.
//
// TODO(bradfitz): when we're running on Windows as the system user, use
// raw socket APIs instead of ping child processes.
func (ns *Impl) userPing(dstIP netip.Addr, pingResPkt []byte, direction userPingDirection) {
if !userPingSem.TryAcquire() {
return
}
defer userPingSem.Release()
t0 := time.Now()
err := ns.sendOutboundUserPing(dstIP, 3*time.Second)
d := time.Since(t0)
if err != nil {
if d < time.Second/2 {
// If it failed quicker than the 3 second
// timeout we gave above (500 ms is a
// reasonable threshold), then assume the ping
// failed for problems finding/running
// ping. We don't want to log if the host is
// just down.
ns.logf("exec ping of %v failed in %v: %v", dstIP, d, err)
}
return
}
if debugNetstack() {
ns.logf("exec pinged %v in %v", dstIP, time.Since(t0))
}
if direction == userPingDirectionOutbound {
if err := ns.tundev.InjectOutbound(pingResPkt); err != nil {
ns.logf("InjectOutbound ping response: %v", err)
}
} else if direction == userPingDirectionInbound {
if err := ns.tundev.InjectInboundCopy(pingResPkt); err != nil {
ns.logf("InjectInboundCopy ping response: %v", err)
}
}
}
// injectInbound is installed as a packet hook on the 'inbound' (from a
// WireGuard peer) path. Returning filter.Accept releases the packet to
// continue normally (typically being delivered to the host networking stack),
// whereas returning filter.DropSilently is done when netstack intercepts the
// packet and no further processing towards to host should be done.
func (ns *Impl) injectInbound(p *packet.Parsed, t *tstun.Wrapper) filter.Response {
if ns.ctx.Err() != nil {
return filter.DropSilently
}
if !ns.shouldProcessInbound(p, t) {
// Let the host network stack (if any) deal with it.
return filter.Accept
}
destIP := p.Dst.Addr()
// If this is an echo request and we're a subnet router, handle pings
// ourselves instead of forwarding the packet on.
pingIP, handlePing := ns.shouldHandlePing(p)
if handlePing {
var pong []byte // the reply to the ping, if our relayed ping works
if destIP.Is4() {
h := p.ICMP4Header()
h.ToResponse()
pong = packet.Generate(&h, p.Payload())
} else if destIP.Is6() {
h := p.ICMP6Header()
h.ToResponse()
pong = packet.Generate(&h, p.Payload())
}
go ns.userPing(pingIP, pong, userPingDirectionOutbound)
return filter.DropSilently
}
var pn tcpip.NetworkProtocolNumber
switch p.IPVersion {
case 4:
pn = header.IPv4ProtocolNumber
case 6:
pn = header.IPv6ProtocolNumber
}
if debugPackets {
ns.logf("[v2] packet in (from %v): % x", p.Src, p.Buffer())
}
packetBuf := stack.NewPacketBuffer(stack.PacketBufferOptions{
Payload: buffer.MakeWithData(bytes.Clone(p.Buffer())),
})
ns.linkEP.InjectInbound(pn, packetBuf)
packetBuf.DecRef()
// We've now delivered this to netstack, so we're done.
// Instead of returning a filter.Accept here (which would also
// potentially deliver it to the host OS), and instead of
// filter.Drop (which would log about rejected traffic),
// instead return filter.DropSilently which just quietly stops
// processing it in the tstun TUN wrapper.
return filter.DropSilently
}
// shouldHandlePing returns whether or not netstack should handle an incoming
// ICMP echo request packet, and the IP address that should be pinged from this
// process. The IP address can be different from the destination in the packet
// if the destination is a 4via6 address.
func (ns *Impl) shouldHandlePing(p *packet.Parsed) (_ netip.Addr, ok bool) {
if !p.IsEchoRequest() {
return netip.Addr{}, false
}
destIP := p.Dst.Addr()
// We need to handle pings for all 4via6 addresses, even if this
// netstack instance normally isn't responsible for processing subnets.
//
// For example, on Linux, subnet router traffic could be handled via
// tun+iptables rules for most packets, but we still need to handle
// ICMP echo requests over 4via6 since the host networking stack
// doesn't know what to do with a 4via6 address.
//
// shouldProcessInbound returns 'true' to say that we should process
// all IPv6 packets with a destination address in the 'via' range, so
// check before we check the "ProcessSubnets" boolean below.
if viaRange.Contains(destIP) {
// The input echo request was to a 4via6 address, which we cannot
// simply ping as-is from this process. Translate the destination to an
// IPv4 address, so that our relayed ping (in userPing) is pinging the
// underlying destination IP.
//
// ICMPv4 and ICMPv6 are different protocols with different on-the-wire
// representations, so normally you can't send an ICMPv6 message over
// IPv4 and expect to get a useful result. However, in this specific
// case things are safe because the 'userPing' function doesn't make
// use of the input packet.
return tsaddr.UnmapVia(destIP), true
}
// If we get here, we don't do anything unless this netstack instance
// is responsible for processing subnet traffic.
if !ns.ProcessSubnets {
return netip.Addr{}, false
}
// For non-4via6 addresses, we don't handle pings if they're destined
// for a Tailscale IP.
if tsaddr.IsTailscaleIP(destIP) {
return netip.Addr{}, false
}
// This netstack instance is processing subnet traffic, so handle the
// ping ourselves.
return destIP, true
}
func netaddrIPFromNetstackIP(s tcpip.Address) netip.Addr {
switch s.Len() {
case 4:
s := s.As4()
return netaddr.IPv4(s[0], s[1], s[2], s[3])
case 16:
s := s.As16()
return netip.AddrFrom16(s).Unmap()
}
return netip.Addr{}
}
func (ns *Impl) acceptTCP(r *tcp.ForwarderRequest) {
reqDetails := r.ID()
if debugNetstack() {
ns.logf("[v2] TCP ForwarderRequest: %s", stringifyTEI(reqDetails))
}
clientRemoteIP := netaddrIPFromNetstackIP(reqDetails.RemoteAddress)
if !clientRemoteIP.IsValid() {
ns.logf("invalid RemoteAddress in TCP ForwarderRequest: %s", stringifyTEI(reqDetails))
r.Complete(true) // sends a RST
return
}
// After we've returned from this function or have otherwise reached a
// non-pending state, decrement the per-client in-flight count and
// remove this endpoint from our packet tracking map so future TCP
// connections aren't dropped.
inFlightCompleted := false
tei := r.ID()
defer func() {
if !inFlightCompleted {
ns.decrementInFlightTCPForward(tei, clientRemoteIP)
}
}()
clientRemotePort := reqDetails.RemotePort
clientRemoteAddrPort := netip.AddrPortFrom(clientRemoteIP, clientRemotePort)
dialIP := netaddrIPFromNetstackIP(reqDetails.LocalAddress)
isTailscaleIP := tsaddr.IsTailscaleIP(dialIP)
dstAddrPort := netip.AddrPortFrom(dialIP, reqDetails.LocalPort)
if viaRange.Contains(dialIP) {
isTailscaleIP = false
dialIP = tsaddr.UnmapVia(dialIP)
}
defer func() {
if !isTailscaleIP {
// if this is a subnet IP, we added this in before the TCP handshake
// so netstack is happy TCP-handshaking as a subnet IP
ns.removeSubnetAddress(dialIP)
}
}()
var wq waiter.Queue
// We can't actually create the endpoint or complete the inbound
// request until we're sure that the connection can be handled by this
// endpoint. This function sets up the TCP connection and should be
// called immediately before a connection is handled.
getConnOrReset := func(opts ...tcpip.SettableSocketOption) *gonet.TCPConn {
ep, err := r.CreateEndpoint(&wq)
if err != nil {
ns.logf("CreateEndpoint error for %s: %v", stringifyTEI(reqDetails), err)
r.Complete(true) // sends a RST
return nil
}
r.Complete(false)
for _, opt := range opts {
ep.SetSockOpt(opt)
}
// SetKeepAlive so that idle connections to peers that have forgotten about
// the connection or gone completely offline eventually time out.
// Applications might be setting this on a forwarded connection, but from
// userspace we can not see those, so the best we can do is to always
// perform them with conservative timing.
// TODO(tailscale/tailscale#4522): Netstack defaults match the Linux
// defaults, and results in a little over two hours before the socket would
// be closed due to keepalive. A shorter default might be better, or seeking
// a default from the host IP stack. This also might be a useful
// user-tunable, as in userspace mode this can have broad implications such
// as lingering connections to fork style daemons. On the other side of the
// fence, the long duration timers are low impact values for battery powered
// peers.
ep.SocketOptions().SetKeepAlive(true)
// This function is called when we're ready to use the
// underlying connection, and thus it's no longer in a
// "in-flight" state; decrement our per-client limit right now,
// and tell the defer in acceptTCP that it doesn't need to do
// so upon return.
ns.decrementInFlightTCPForward(tei, clientRemoteIP)
inFlightCompleted = true
// The ForwarderRequest.CreateEndpoint above asynchronously
// starts the TCP handshake. Note that the gonet.TCPConn
// methods c.RemoteAddr() and c.LocalAddr() will return nil
// until the handshake actually completes. But we have the
// remote address in reqDetails instead, so we don't use
// gonet.TCPConn.RemoteAddr. The byte copies in both
// directions to/from the gonet.TCPConn in forwardTCP will
// block until the TCP handshake is complete.
return gonet.NewTCPConn(&wq, ep)
}
// Local Services (DNS and WebDAV)
hittingServiceIP := dialIP == serviceIP || dialIP == serviceIPv6
hittingDNS := hittingServiceIP && reqDetails.LocalPort == 53
if hittingDNS {
c := getConnOrReset()
if c == nil {
return
}
addrPort := netip.AddrPortFrom(clientRemoteIP, reqDetails.RemotePort)
go ns.dns.HandleTCPConn(c, addrPort)
return
}
if ns.lb != nil {
handler, opts := ns.lb.TCPHandlerForDst(clientRemoteAddrPort, dstAddrPort)
if handler != nil {
c := getConnOrReset(opts...) // will send a RST if it fails
if c == nil {
return
}
handler(c)
return
}
}
if ns.GetTCPHandlerForFlow != nil {
handler, ok := ns.GetTCPHandlerForFlow(clientRemoteAddrPort, dstAddrPort)
if ok {
if handler == nil {
r.Complete(true)
return
}
c := getConnOrReset() // will send a RST if it fails
if c == nil {
return
}
handler(c)
return
}
}
if isTailscaleIP {
dialIP = netaddr.IPv4(127, 0, 0, 1)
}
dialAddr := netip.AddrPortFrom(dialIP, uint16(reqDetails.LocalPort))
if !ns.forwardTCP(getConnOrReset, clientRemoteIP, &wq, dialAddr) {
r.Complete(true) // sends a RST
}
}
func (ns *Impl) forwardTCP(getClient func(...tcpip.SettableSocketOption) *gonet.TCPConn, clientRemoteIP netip.Addr, wq *waiter.Queue, dialAddr netip.AddrPort) (handled bool) {
dialAddrStr := dialAddr.String()
if debugNetstack() {
ns.logf("[v2] netstack: forwarding incoming connection to %s", dialAddrStr)
}
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
waitEntry, notifyCh := waiter.NewChannelEntry(waiter.EventHUp) // TODO(bradfitz): right EventMask?
wq.EventRegister(&waitEntry)
defer wq.EventUnregister(&waitEntry)
done := make(chan bool)
// netstack doesn't close the notification channel automatically if there was no
// hup signal, so we close done after we're done to not leak the goroutine below.
defer close(done)
go func() {
select {
case <-notifyCh:
if debugNetstack() {
ns.logf("[v2] netstack: forwardTCP notifyCh fired; canceling context for %s", dialAddrStr)
}
case <-done:
}
cancel()
}()
// Attempt to dial the outbound connection before we accept the inbound one.
var dialFunc func(context.Context, string, string) (net.Conn, error)
if ns.forwardDialFunc != nil {
dialFunc = ns.forwardDialFunc
} else {
var stdDialer net.Dialer
dialFunc = stdDialer.DialContext
}
server, err := dialFunc(ctx, "tcp", dialAddrStr)
if err != nil {
ns.logf("netstack: could not connect to local server at %s: %v", dialAddr.String(), err)
return
}
defer server.Close()
// If we get here, either the getClient call below will succeed and
// return something we can Close, or it will fail and will properly
// respond to the client with a RST. Either way, the caller no longer
// needs to clean up the client connection.
handled = true
// We dialed the connection; we can complete the client's TCP handshake.
client := getClient()
if client == nil {
return
}
defer client.Close()
backendLocalAddr := server.LocalAddr().(*net.TCPAddr)
backendLocalIPPort := netaddr.Unmap(backendLocalAddr.AddrPort())
ns.pm.RegisterIPPortIdentity(backendLocalIPPort, clientRemoteIP)
defer ns.pm.UnregisterIPPortIdentity(backendLocalIPPort)
connClosed := make(chan error, 2)
go func() {
_, err := io.Copy(server, client)
connClosed <- err
}()
go func() {
_, err := io.Copy(client, server)
connClosed <- err
}()
err = <-connClosed
if err != nil {
ns.logf("proxy connection closed with error: %v", err)
}
ns.logf("[v2] netstack: forwarder connection to %s closed", dialAddrStr)
return
}
// ListenPacket listens for incoming packets for the given network and address.
// Address must be of the form "ip:port" or "[ip]:port".
//
// As of 2024-05-18, only udp4 and udp6 are supported.
func (ns *Impl) ListenPacket(network, address string) (net.PacketConn, error) {
ap, err := netip.ParseAddrPort(address)
if err != nil {
return nil, fmt.Errorf("netstack: ParseAddrPort(%q): %v", address, err)
}
var networkProto tcpip.NetworkProtocolNumber
switch network {
case "udp":
return nil, fmt.Errorf("netstack: udp not supported; use udp4 or udp6")
case "udp4":
networkProto = ipv4.ProtocolNumber
if !ap.Addr().Is4() {
return nil, fmt.Errorf("netstack: udp4 requires an IPv4 address")
}
case "udp6":
networkProto = ipv6.ProtocolNumber
if !ap.Addr().Is6() {
return nil, fmt.Errorf("netstack: udp6 requires an IPv6 address")
}
default:
return nil, fmt.Errorf("netstack: unsupported network %q", network)
}
var wq waiter.Queue
ep, nserr := ns.ipstack.NewEndpoint(udp.ProtocolNumber, networkProto, &wq)
if nserr != nil {
return nil, fmt.Errorf("netstack: NewEndpoint: %v", nserr)
}
localAddress := tcpip.FullAddress{
NIC: nicID,
Addr: tcpip.AddrFromSlice(ap.Addr().AsSlice()),
Port: ap.Port(),
}
if err := ep.Bind(localAddress); err != nil {
ep.Close()
return nil, fmt.Errorf("netstack: Bind(%v): %v", localAddress, err)
}
return gonet.NewUDPConn(&wq, ep), nil
}
func (ns *Impl) acceptUDP(r *udp.ForwarderRequest) {
sess := r.ID()
if debugNetstack() {
ns.logf("[v2] UDP ForwarderRequest: %v", stringifyTEI(sess))
}
var wq waiter.Queue
ep, err := r.CreateEndpoint(&wq)
if err != nil {
ns.logf("acceptUDP: could not create endpoint: %v", err)
return
}
dstAddr, ok := ipPortOfNetstackAddr(sess.LocalAddress, sess.LocalPort)
if !ok {
ep.Close()
return
}
srcAddr, ok := ipPortOfNetstackAddr(sess.RemoteAddress, sess.RemotePort)
if !ok {
ep.Close()
return
}
// Handle magicDNS traffic (via UDP) here.
if dst := dstAddr.Addr(); dst == serviceIP || dst == serviceIPv6 {
if dstAddr.Port() != 53 {
ep.Close()
return // Only MagicDNS traffic runs on the service IPs for now.
}
c := gonet.NewUDPConn(&wq, ep)
go ns.handleMagicDNSUDP(srcAddr, c)
return
}
if get := ns.GetUDPHandlerForFlow; get != nil {
h, intercept := get(srcAddr, dstAddr)
if intercept {
if h == nil {
ep.Close()
return
}
go h(gonet.NewUDPConn(&wq, ep))
return
}
}
c := gonet.NewUDPConn(&wq, ep)
go ns.forwardUDP(c, srcAddr, dstAddr)
}
// Buffer pool for forwarding UDP packets. Implementations are advised not to
// exceed 512 bytes per DNS request due to fragmenting but in reality can and do
// send much larger packets, so use the maximum possible UDP packet size.
var udpBufPool = &sync.Pool{
New: func() any {
b := make([]byte, maxUDPPacketSize)
return &b
},
}
func (ns *Impl) handleMagicDNSUDP(srcAddr netip.AddrPort, c *gonet.UDPConn) {
// Packets are being generated by the local host, so there should be
// very, very little latency. 150ms was chosen as something of an upper
// bound on resource usage, while hopefully still being long enough for
// a heavily loaded system.
const readDeadline = 150 * time.Millisecond
defer c.Close()
bufp := udpBufPool.Get().(*[]byte)
defer udpBufPool.Put(bufp)
q := *bufp
// libresolv from glibc is quite adamant that transmitting multiple DNS
// requests down the same UDP socket is valid. To support this, we read
// in a loop (with a tight deadline so we don't chew too many resources).
//
// See: https://github.com/bminor/glibc/blob/f7fbb99652eceb1b6b55e4be931649df5946497c/resolv/res_send.c#L995
for {
c.SetReadDeadline(time.Now().Add(readDeadline))
n, _, err := c.ReadFrom(q)
if err != nil {
if oe, ok := err.(*net.OpError); !(ok && oe.Timeout()) {
ns.logf("dns udp read: %v", err) // log non-timeout errors
}
return
}
resp, err := ns.dns.Query(context.Background(), q[:n], "udp", srcAddr)
if err != nil {
ns.logf("dns udp query: %v", err)
return
}
c.Write(resp)
}
}
// forwardUDP proxies between client (with addr clientAddr) and dstAddr.
//
// dstAddr may be either a local Tailscale IP, in which we case we proxy to
// 127.0.0.1, or any other IP (from an advertised subnet), in which case we
// proxy to it directly.
func (ns *Impl) forwardUDP(client *gonet.UDPConn, clientAddr, dstAddr netip.AddrPort) {
port, srcPort := dstAddr.Port(), clientAddr.Port()
if debugNetstack() {
ns.logf("[v2] netstack: forwarding incoming UDP connection on port %v", port)
}
var backendListenAddr *net.UDPAddr
var backendRemoteAddr *net.UDPAddr
isLocal := ns.isLocalIP(dstAddr.Addr())
if isLocal {
backendRemoteAddr = &net.UDPAddr{IP: net.ParseIP("127.0.0.1"), Port: int(port)}
backendListenAddr = &net.UDPAddr{IP: net.ParseIP("127.0.0.1"), Port: int(srcPort)}
} else {
if dstIP := dstAddr.Addr(); viaRange.Contains(dstIP) {
dstAddr = netip.AddrPortFrom(tsaddr.UnmapVia(dstIP), dstAddr.Port())
}
backendRemoteAddr = net.UDPAddrFromAddrPort(dstAddr)
if dstAddr.Addr().Is4() {
backendListenAddr = &net.UDPAddr{IP: net.ParseIP("0.0.0.0"), Port: int(srcPort)}
} else {
backendListenAddr = &net.UDPAddr{IP: net.ParseIP("::"), Port: int(srcPort)}
}
}
backendConn, err := net.ListenUDP("udp", backendListenAddr)
if err != nil {
ns.logf("netstack: could not bind local port %v: %v, trying again with random port", backendListenAddr.Port, err)
backendListenAddr.Port = 0
backendConn, err = net.ListenUDP("udp", backendListenAddr)
if err != nil {
ns.logf("netstack: could not create UDP socket, preventing forwarding to %v: %v", dstAddr, err)
return
}
}
backendLocalAddr := backendConn.LocalAddr().(*net.UDPAddr)
backendLocalIPPort := netip.AddrPortFrom(backendListenAddr.AddrPort().Addr().Unmap().WithZone(backendLocalAddr.Zone), backendLocalAddr.AddrPort().Port())
if !backendLocalIPPort.IsValid() {
ns.logf("could not get backend local IP:port from %v:%v", backendLocalAddr.IP, backendLocalAddr.Port)
}
if isLocal {
ns.pm.RegisterIPPortIdentity(backendLocalIPPort, dstAddr.Addr())
}
ctx, cancel := context.WithCancel(context.Background())
idleTimeout := 2 * time.Minute
if port == 53 {
// Make DNS packet copies time out much sooner.
//
// TODO(bradfitz): make DNS queries over UDP forwarding even
// cheaper by adding an additional idleTimeout post-DNS-reply.
// For instance, after the DNS response goes back out, then only
// wait a few seconds (or zero, really)
idleTimeout = 30 * time.Second
}
timer := time.AfterFunc(idleTimeout, func() {
if isLocal {
ns.pm.UnregisterIPPortIdentity(backendLocalIPPort)
}
ns.logf("netstack: UDP session between %s and %s timed out", backendListenAddr, backendRemoteAddr)
cancel()
client.Close()
backendConn.Close()
})
extend := func() {
timer.Reset(idleTimeout)
}
startPacketCopy(ctx, cancel, client, net.UDPAddrFromAddrPort(clientAddr), backendConn, ns.logf, extend)
startPacketCopy(ctx, cancel, backendConn, backendRemoteAddr, client, ns.logf, extend)
if isLocal {
// Wait for the copies to be done before decrementing the
// subnet address count to potentially remove the route.
<-ctx.Done()
ns.removeSubnetAddress(dstAddr.Addr())
}
}
func startPacketCopy(ctx context.Context, cancel context.CancelFunc, dst net.PacketConn, dstAddr net.Addr, src net.PacketConn, logf logger.Logf, extend func()) {
if debugNetstack() {
logf("[v2] netstack: startPacketCopy to %v (%T) from %T", dstAddr, dst, src)
}
go func() {
defer cancel() // tear down the other direction's copy
bufp := udpBufPool.Get().(*[]byte)
defer udpBufPool.Put(bufp)
pkt := *bufp
for {
select {
case <-ctx.Done():
return
default:
n, srcAddr, err := src.ReadFrom(pkt)
if err != nil {
if ctx.Err() == nil {
logf("read packet from %s failed: %v", srcAddr, err)
}
return
}
_, err = dst.WriteTo(pkt[:n], dstAddr)
if err != nil {
if ctx.Err() == nil {
logf("write packet to %s failed: %v", dstAddr, err)
}
return
}
if debugNetstack() {
logf("[v2] wrote UDP packet %s -> %s", srcAddr, dstAddr)
}
extend()
}
}
}()
}
func stringifyTEI(tei stack.TransportEndpointID) string {
localHostPort := net.JoinHostPort(tei.LocalAddress.String(), strconv.Itoa(int(tei.LocalPort)))
remoteHostPort := net.JoinHostPort(tei.RemoteAddress.String(), strconv.Itoa(int(tei.RemotePort)))
return fmt.Sprintf("%s -> %s", remoteHostPort, localHostPort)
}
func ipPortOfNetstackAddr(a tcpip.Address, port uint16) (ipp netip.AddrPort, ok bool) {
if addr, ok := netip.AddrFromSlice(a.AsSlice()); ok {
return netip.AddrPortFrom(addr, port), true
}
return netip.AddrPort{}, false
}
func readStatCounter(sc *tcpip.StatCounter) int64 {
vv := sc.Value()
if vv > math.MaxInt64 {
return int64(math.MaxInt64)
}
return int64(vv)
}
// ExpVar returns an expvar variable suitable for registering with expvar.Publish.
func (ns *Impl) ExpVar() expvar.Var {
m := new(metrics.Set)
// Global metrics
stats := ns.ipstack.Stats()
m.Set("counter_dropped_packets", expvar.Func(func() any {
return readStatCounter(stats.DroppedPackets)
}))
// IP statistics
ipStats := ns.ipstack.Stats().IP
ipMetrics := []struct {
name string
field *tcpip.StatCounter
}{
{"packets_received", ipStats.PacketsReceived},
{"valid_packets_received", ipStats.ValidPacketsReceived},
{"disabled_packets_received", ipStats.DisabledPacketsReceived},
{"invalid_destination_addresses_received", ipStats.InvalidDestinationAddressesReceived},
{"invalid_source_addresses_received", ipStats.InvalidSourceAddressesReceived},
{"packets_delivered", ipStats.PacketsDelivered},
{"packets_sent", ipStats.PacketsSent},
{"outgoing_packet_errors", ipStats.OutgoingPacketErrors},
{"malformed_packets_received", ipStats.MalformedPacketsReceived},
{"malformed_fragments_received", ipStats.MalformedFragmentsReceived},
{"iptables_prerouting_dropped", ipStats.IPTablesPreroutingDropped},
{"iptables_input_dropped", ipStats.IPTablesInputDropped},
{"iptables_forward_dropped", ipStats.IPTablesForwardDropped},
{"iptables_output_dropped", ipStats.IPTablesOutputDropped},
{"iptables_postrouting_dropped", ipStats.IPTablesPostroutingDropped},
{"option_timestamp_received", ipStats.OptionTimestampReceived},
{"option_record_route_received", ipStats.OptionRecordRouteReceived},
{"option_router_alert_received", ipStats.OptionRouterAlertReceived},
{"option_unknown_received", ipStats.OptionUnknownReceived},
}
for _, metric := range ipMetrics {
metric := metric
m.Set("counter_ip_"+metric.name, expvar.Func(func() any {
return readStatCounter(metric.field)
}))
}
// IP forwarding statistics
fwdStats := ipStats.Forwarding
fwdMetrics := []struct {
name string
field *tcpip.StatCounter
}{
{"unrouteable", fwdStats.Unrouteable},
{"exhausted_ttl", fwdStats.ExhaustedTTL},
{"initializing_source", fwdStats.InitializingSource},
{"link_local_source", fwdStats.LinkLocalSource},
{"link_local_destination", fwdStats.LinkLocalDestination},
{"packet_too_big", fwdStats.PacketTooBig},
{"host_unreachable", fwdStats.HostUnreachable},
{"extension_header_problem", fwdStats.ExtensionHeaderProblem},
{"unexpected_multicast_input_interface", fwdStats.UnexpectedMulticastInputInterface},
{"unknown_output_endpoint", fwdStats.UnknownOutputEndpoint},
{"no_multicast_pending_queue_buffer_space", fwdStats.NoMulticastPendingQueueBufferSpace},
{"outgoing_device_no_buffer_space", fwdStats.OutgoingDeviceNoBufferSpace},
{"errors", fwdStats.Errors},
}
for _, metric := range fwdMetrics {
metric := metric
m.Set("counter_ip_forward_"+metric.name, expvar.Func(func() any {
return readStatCounter(metric.field)
}))
}
// TCP metrics
tcpStats := ns.ipstack.Stats().TCP
tcpMetrics := []struct {
name string
field *tcpip.StatCounter
}{
{"active_connection_openings", tcpStats.ActiveConnectionOpenings},
{"passive_connection_openings", tcpStats.PassiveConnectionOpenings},
{"established_resets", tcpStats.EstablishedResets},
{"established_closed", tcpStats.EstablishedClosed},
{"established_timeout", tcpStats.EstablishedTimedout},
{"listen_overflow_syn_drop", tcpStats.ListenOverflowSynDrop},
{"listen_overflow_ack_drop", tcpStats.ListenOverflowAckDrop},
{"listen_overflow_syn_cookie_sent", tcpStats.ListenOverflowSynCookieSent},
{"listen_overflow_syn_cookie_rcvd", tcpStats.ListenOverflowSynCookieRcvd},
{"listen_overflow_invalid_syn_cookie_rcvd", tcpStats.ListenOverflowInvalidSynCookieRcvd},
{"failed_connection_attempts", tcpStats.FailedConnectionAttempts},
{"valid_segments_received", tcpStats.ValidSegmentsReceived},
{"invalid_segments_received", tcpStats.InvalidSegmentsReceived},
{"segments_sent", tcpStats.SegmentsSent},
{"segment_send_errors", tcpStats.SegmentSendErrors},
{"resets_sent", tcpStats.ResetsSent},
{"resets_received", tcpStats.ResetsReceived},
{"retransmits", tcpStats.Retransmits},
{"fast_recovery", tcpStats.FastRecovery},
{"sack_recovery", tcpStats.SACKRecovery},
{"tlp_recovery", tcpStats.TLPRecovery},
{"slow_start_retransmits", tcpStats.SlowStartRetransmits},
{"fast_retransmit", tcpStats.FastRetransmit},
{"timeouts", tcpStats.Timeouts},
{"checksum_errors", tcpStats.ChecksumErrors},
{"failed_port_reservations", tcpStats.FailedPortReservations},
{"segments_acked_with_dsack", tcpStats.SegmentsAckedWithDSACK},
{"spurious_recovery", tcpStats.SpuriousRecovery},
{"spurious_rto_recovery", tcpStats.SpuriousRTORecovery},
{"forward_max_in_flight_drop", tcpStats.ForwardMaxInFlightDrop},
}
for _, metric := range tcpMetrics {
metric := metric
m.Set("counter_tcp_"+metric.name, expvar.Func(func() any {
return readStatCounter(metric.field)
}))
}
m.Set("gauge_tcp_current_established", expvar.Func(func() any {
return readStatCounter(tcpStats.CurrentEstablished)
}))
m.Set("gauge_tcp_current_connected", expvar.Func(func() any {
return readStatCounter(tcpStats.CurrentConnected)
}))
// UDP metrics
udpStats := ns.ipstack.Stats().UDP
udpMetrics := []struct {
name string
field *tcpip.StatCounter
}{
{"packets_received", udpStats.PacketsReceived},
{"unknown_port_errors", udpStats.UnknownPortErrors},
{"receive_buffer_errors", udpStats.ReceiveBufferErrors},
{"malformed_packets_received", udpStats.MalformedPacketsReceived},
{"packets_sent", udpStats.PacketsSent},
{"packet_send_errors", udpStats.PacketSendErrors},
{"checksum_errors", udpStats.ChecksumErrors},
}
for _, metric := range udpMetrics {
metric := metric
m.Set("counter_udp_"+metric.name, expvar.Func(func() any {
return readStatCounter(metric.field)
}))
}
// Export gauges that show the current TCP forwarding limits.
m.Set("gauge_tcp_forward_in_flight_limit", expvar.Func(func() any {
return maxInFlightConnectionAttempts()
}))
m.Set("gauge_tcp_forward_in_flight_per_client_limit", expvar.Func(func() any {
return maxInFlightConnectionAttemptsPerClient()
}))
// This metric tracks the number of in-flight TCP forwarding
// connections that are "in-flight"i.e. waiting to complete.
m.Set("gauge_tcp_forward_in_flight", expvar.Func(func() any {
ns.mu.Lock()
defer ns.mu.Unlock()
var sum int64
for _, n := range ns.connsInFlightByClient {
sum += int64(n)
}
return sum
}))
m.Set("counter_tcp_forward_max_in_flight_per_client_drop", &ns.forwardInFlightPerClientDropped)
// This metric tracks how many (if any) of the per-client limit on
// in-flight TCP forwarding requests have been reached.
m.Set("gauge_tcp_forward_in_flight_per_client_limit_reached", expvar.Func(func() any {
ns.mu.Lock()
defer ns.mu.Unlock()
limit := maxInFlightConnectionAttemptsPerClient()
var count int64
for _, n := range ns.connsInFlightByClient {
if n == limit {
count++
}
}
return count
}))
return m
}