tailscale/ipn/ipnlocal/cert.go

706 lines
21 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
//go:build !js
package ipnlocal
import (
"bytes"
"context"
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
"crypto/tls"
"crypto/x509"
"crypto/x509/pkix"
"encoding/json"
"encoding/pem"
"errors"
"fmt"
"io"
"log"
insecurerand "math/rand"
"net"
"os"
"path/filepath"
"runtime"
"strings"
"sync"
"time"
"github.com/tailscale/golang-x-crypto/acme"
"golang.org/x/exp/slices"
"tailscale.com/atomicfile"
"tailscale.com/envknob"
"tailscale.com/hostinfo"
"tailscale.com/ipn"
"tailscale.com/ipn/ipnstate"
"tailscale.com/ipn/store"
"tailscale.com/ipn/store/mem"
"tailscale.com/types/logger"
"tailscale.com/version"
"tailscale.com/version/distro"
)
// Process-wide cache. (A new *Handler is created per connection,
// effectively per request)
var (
// acmeMu guards all ACME operations, so concurrent requests
// for certs don't slam ACME. The first will go through and
// populate the on-disk cache and the rest should use that.
acmeMu sync.Mutex
renewMu sync.Mutex // lock order: acmeMu before renewMu
renewCertAt = map[string]time.Time{}
)
// certDir returns (creating if needed) the directory in which cached
// cert keypairs are stored.
func (b *LocalBackend) certDir() (string, error) {
d := b.TailscaleVarRoot()
// As a workaround for Synology DSM6 not having a "var" directory, use the
// app's "etc" directory (on a small partition) to hold certs at least.
// See https://github.com/tailscale/tailscale/issues/4060#issuecomment-1186592251
if d == "" && runtime.GOOS == "linux" && distro.Get() == distro.Synology && distro.DSMVersion() == 6 {
d = "/var/packages/Tailscale/etc" // base; we append "certs" below
}
if d == "" {
return "", errors.New("no TailscaleVarRoot")
}
full := filepath.Join(d, "certs")
if err := os.MkdirAll(full, 0700); err != nil {
return "", err
}
return full, nil
}
var acmeDebug = envknob.RegisterBool("TS_DEBUG_ACME")
// GetCertPEM gets the TLSCertKeyPair for domain, either from cache or via the
// ACME process. ACME process is used for new domain certs, existing expired
// certs or existing certs that should get renewed due to upcoming expiry.
//
// syncRenewal changes renewal behavior for existing certs that are still valid
// but need renewal. When syncRenewal is set, the method blocks until a new
// cert is issued. When syncRenewal is not set, existing cert is returned right
// away and renewal is kicked off in a background goroutine.
func (b *LocalBackend) GetCertPEM(ctx context.Context, domain string, syncRenewal bool) (*TLSCertKeyPair, error) {
if !validLookingCertDomain(domain) {
return nil, errors.New("invalid domain")
}
logf := logger.WithPrefix(b.logf, fmt.Sprintf("cert(%q): ", domain))
now := b.clock.Now()
traceACME := func(v any) {
if !acmeDebug() {
return
}
j, _ := json.MarshalIndent(v, "", "\t")
log.Printf("acme %T: %s", v, j)
}
cs, err := b.getCertStore()
if err != nil {
return nil, err
}
if pair, err := getCertPEMCached(cs, domain, now); err == nil {
shouldRenew, err := b.shouldStartDomainRenewal(cs, domain, now, pair)
if err != nil {
logf("error checking for certificate renewal: %v", err)
} else if !shouldRenew {
return pair, nil
}
if !syncRenewal {
logf("starting async renewal")
// Start renewal in the background.
go b.getCertPEM(context.Background(), cs, logf, traceACME, domain, now)
}
// Synchronous renewal happens below.
}
pair, err := b.getCertPEM(ctx, cs, logf, traceACME, domain, now)
if err != nil {
logf("getCertPEM: %v", err)
return nil, err
}
return pair, nil
}
func (b *LocalBackend) shouldStartDomainRenewal(cs certStore, domain string, now time.Time, pair *TLSCertKeyPair) (bool, error) {
renewMu.Lock()
defer renewMu.Unlock()
if renewAt, ok := renewCertAt[domain]; ok {
return now.After(renewAt), nil
}
renewTime, err := b.domainRenewalTimeByARI(cs, pair)
if err != nil {
// Log any ARI failure and fall back to checking for renewal by expiry.
b.logf("acme: ARI check failed: %v; falling back to expiry-based check", err)
renewTime, err = b.domainRenewalTimeByExpiry(pair)
if err != nil {
return false, err
}
}
renewCertAt[domain] = renewTime
return now.After(renewTime), nil
}
func (b *LocalBackend) domainRenewed(domain string) {
renewMu.Lock()
defer renewMu.Unlock()
delete(renewCertAt, domain)
}
func (b *LocalBackend) domainRenewalTimeByExpiry(pair *TLSCertKeyPair) (time.Time, error) {
block, _ := pem.Decode(pair.CertPEM)
if block == nil {
return time.Time{}, fmt.Errorf("parsing certificate PEM")
}
cert, err := x509.ParseCertificate(block.Bytes)
if err != nil {
return time.Time{}, fmt.Errorf("parsing certificate: %w", err)
}
certLifetime := cert.NotAfter.Sub(cert.NotBefore)
if certLifetime < 0 {
return time.Time{}, fmt.Errorf("negative certificate lifetime %v", certLifetime)
}
// Per https://github.com/tailscale/tailscale/issues/8204, check
// whether we're more than 2/3 of the way through the certificate's
// lifetime, which is the officially-recommended best practice by Let's
// Encrypt.
renewalDuration := certLifetime * 2 / 3
renewAt := cert.NotBefore.Add(renewalDuration)
return renewAt, nil
}
func (b *LocalBackend) domainRenewalTimeByARI(cs certStore, pair *TLSCertKeyPair) (time.Time, error) {
var blocks []*pem.Block
rest := pair.CertPEM
for len(rest) > 0 {
var block *pem.Block
block, rest = pem.Decode(rest)
if block == nil {
return time.Time{}, fmt.Errorf("parsing certificate PEM")
}
blocks = append(blocks, block)
}
if len(blocks) < 2 {
return time.Time{}, fmt.Errorf("could not parse certificate chain from certStore, got %d PEM block(s)", len(blocks))
}
ac, err := acmeClient(cs)
if err != nil {
return time.Time{}, err
}
ctx, cancel := context.WithTimeout(b.ctx, 5*time.Second)
defer cancel()
ri, err := ac.FetchRenewalInfo(ctx, blocks[0].Bytes, blocks[1].Bytes)
if err != nil {
return time.Time{}, fmt.Errorf("failed to fetch renewal info from ACME server: %w", err)
}
if acmeDebug() {
b.logf("acme: ARI response: %+v", ri)
}
// Select a random time in the suggested window and renew if that time has
// passed. Time is randomized per recommendation in
// https://datatracker.ietf.org/doc/draft-ietf-acme-ari/
start, end := ri.SuggestedWindow.Start, ri.SuggestedWindow.End
renewTime := start.Add(time.Duration(insecurerand.Int63n(int64(end.Sub(start)))))
return renewTime, nil
}
// certStore provides a way to perist and retrieve TLS certificates.
// As of 2023-02-01, we use store certs in directories on disk everywhere
// except on Kubernetes, where we use the state store.
type certStore interface {
// Read returns the cert and key for domain, if they exist and are valid
// for now. If they're expired, it returns errCertExpired.
// If they don't exist, it returns ipn.ErrStateNotExist.
Read(domain string, now time.Time) (*TLSCertKeyPair, error)
// WriteCert writes the cert for domain.
WriteCert(domain string, cert []byte) error
// WriteKey writes the key for domain.
WriteKey(domain string, key []byte) error
// ACMEKey returns the value previously stored via WriteACMEKey.
// It is a PEM encoded ECDSA key.
ACMEKey() ([]byte, error)
// WriteACMEKey stores the provided PEM encoded ECDSA key.
WriteACMEKey([]byte) error
}
var errCertExpired = errors.New("cert expired")
func (b *LocalBackend) getCertStore() (certStore, error) {
switch b.store.(type) {
case *store.FileStore:
case *mem.Store:
default:
if hostinfo.GetEnvType() == hostinfo.Kubernetes {
// We're running in Kubernetes with a custom StateStore,
// use that instead of the cert directory.
// TODO(maisem): expand this to other environments?
return certStateStore{StateStore: b.store}, nil
}
}
dir, err := b.certDir()
if err != nil {
return nil, err
}
return certFileStore{dir: dir}, nil
}
// certFileStore implements certStore by storing the cert & key files in the named directory.
type certFileStore struct {
dir string
// This field allows a test to override the CA root(s) for certificate
// verification. If nil the default system pool is used.
testRoots *x509.CertPool
}
const acmePEMName = "acme-account.key.pem"
func (f certFileStore) ACMEKey() ([]byte, error) {
pemName := filepath.Join(f.dir, acmePEMName)
v, err := os.ReadFile(pemName)
if err != nil {
if os.IsNotExist(err) {
return nil, ipn.ErrStateNotExist
}
return nil, err
}
return v, nil
}
func (f certFileStore) WriteACMEKey(b []byte) error {
pemName := filepath.Join(f.dir, acmePEMName)
return atomicfile.WriteFile(pemName, b, 0600)
}
func (f certFileStore) Read(domain string, now time.Time) (*TLSCertKeyPair, error) {
certPEM, err := os.ReadFile(certFile(f.dir, domain))
if err != nil {
if os.IsNotExist(err) {
return nil, ipn.ErrStateNotExist
}
return nil, err
}
keyPEM, err := os.ReadFile(keyFile(f.dir, domain))
if err != nil {
if os.IsNotExist(err) {
return nil, ipn.ErrStateNotExist
}
return nil, err
}
if !validCertPEM(domain, keyPEM, certPEM, f.testRoots, now) {
return nil, errCertExpired
}
return &TLSCertKeyPair{CertPEM: certPEM, KeyPEM: keyPEM, Cached: true}, nil
}
func (f certFileStore) WriteCert(domain string, cert []byte) error {
return atomicfile.WriteFile(certFile(f.dir, domain), cert, 0644)
}
func (f certFileStore) WriteKey(domain string, key []byte) error {
return atomicfile.WriteFile(keyFile(f.dir, domain), key, 0600)
}
// certStateStore implements certStore by storing the cert & key files in an ipn.StateStore.
type certStateStore struct {
ipn.StateStore
// This field allows a test to override the CA root(s) for certificate
// verification. If nil the default system pool is used.
testRoots *x509.CertPool
}
func (s certStateStore) Read(domain string, now time.Time) (*TLSCertKeyPair, error) {
certPEM, err := s.ReadState(ipn.StateKey(domain + ".crt"))
if err != nil {
return nil, err
}
keyPEM, err := s.ReadState(ipn.StateKey(domain + ".key"))
if err != nil {
return nil, err
}
if !validCertPEM(domain, keyPEM, certPEM, s.testRoots, now) {
return nil, errCertExpired
}
return &TLSCertKeyPair{CertPEM: certPEM, KeyPEM: keyPEM, Cached: true}, nil
}
func (s certStateStore) WriteCert(domain string, cert []byte) error {
return ipn.WriteState(s.StateStore, ipn.StateKey(domain+".crt"), cert)
}
func (s certStateStore) WriteKey(domain string, key []byte) error {
return ipn.WriteState(s.StateStore, ipn.StateKey(domain+".key"), key)
}
func (s certStateStore) ACMEKey() ([]byte, error) {
return s.ReadState(ipn.StateKey(acmePEMName))
}
func (s certStateStore) WriteACMEKey(key []byte) error {
return ipn.WriteState(s.StateStore, ipn.StateKey(acmePEMName), key)
}
// TLSCertKeyPair is a TLS public and private key, and whether they were obtained
// from cache or freshly obtained.
type TLSCertKeyPair struct {
CertPEM []byte // public key, in PEM form
KeyPEM []byte // private key, in PEM form
Cached bool // whether result came from cache
}
func keyFile(dir, domain string) string { return filepath.Join(dir, domain+".key") }
func certFile(dir, domain string) string { return filepath.Join(dir, domain+".crt") }
// getCertPEMCached returns a non-nil keyPair and true if a cached keypair for
// domain exists on disk in dir that is valid at the provided now time.
// If the keypair is expired, it returns errCertExpired.
// If the keypair doesn't exist, it returns ipn.ErrStateNotExist.
func getCertPEMCached(cs certStore, domain string, now time.Time) (p *TLSCertKeyPair, err error) {
if !validLookingCertDomain(domain) {
// Before we read files from disk using it, validate it's halfway
// reasonable looking.
return nil, fmt.Errorf("invalid domain %q", domain)
}
return cs.Read(domain, now)
}
func (b *LocalBackend) getCertPEM(ctx context.Context, cs certStore, logf logger.Logf, traceACME func(any), domain string, now time.Time) (*TLSCertKeyPair, error) {
acmeMu.Lock()
defer acmeMu.Unlock()
// In case this method was triggered multiple times in parallel (when
// serving incoming requests), check whether one of the other goroutines
// already renewed the cert before us.
if p, err := getCertPEMCached(cs, domain, now); err == nil {
// shouldStartDomainRenewal caches its result so it's OK to call this
// frequently.
shouldRenew, err := b.shouldStartDomainRenewal(cs, domain, now, p)
if err != nil {
logf("error checking for certificate renewal: %v", err)
} else if !shouldRenew {
return p, nil
}
} else if !errors.Is(err, ipn.ErrStateNotExist) && !errors.Is(err, errCertExpired) {
return nil, err
}
ac, err := acmeClient(cs)
if err != nil {
return nil, err
}
a, err := ac.GetReg(ctx, "" /* pre-RFC param */)
switch {
case err == nil:
// Great, already registered.
logf("already had ACME account.")
case err == acme.ErrNoAccount:
a, err = ac.Register(ctx, new(acme.Account), acme.AcceptTOS)
if err == acme.ErrAccountAlreadyExists {
// Potential race. Double check.
a, err = ac.GetReg(ctx, "" /* pre-RFC param */)
}
if err != nil {
return nil, fmt.Errorf("acme.Register: %w", err)
}
logf("registered ACME account.")
traceACME(a)
default:
return nil, fmt.Errorf("acme.GetReg: %w", err)
}
if a.Status != acme.StatusValid {
return nil, fmt.Errorf("unexpected ACME account status %q", a.Status)
}
// Before hitting LetsEncrypt, see if this is a domain that Tailscale will do DNS challenges for.
st := b.StatusWithoutPeers()
if err := checkCertDomain(st, domain); err != nil {
return nil, err
}
order, err := ac.AuthorizeOrder(ctx, []acme.AuthzID{{Type: "dns", Value: domain}})
if err != nil {
return nil, err
}
traceACME(order)
for _, aurl := range order.AuthzURLs {
az, err := ac.GetAuthorization(ctx, aurl)
if err != nil {
return nil, err
}
traceACME(az)
for _, ch := range az.Challenges {
if ch.Type == "dns-01" {
rec, err := ac.DNS01ChallengeRecord(ch.Token)
if err != nil {
return nil, err
}
key := "_acme-challenge." + domain
// Do a best-effort lookup to see if we've already created this DNS name
// in a previous attempt. Don't burn too much time on it, though. Worst
// case we ask the server to create something that already exists.
var resolver net.Resolver
lookupCtx, lookupCancel := context.WithTimeout(ctx, 500*time.Millisecond)
txts, _ := resolver.LookupTXT(lookupCtx, key)
lookupCancel()
if slices.Contains(txts, rec) {
logf("TXT record already existed")
} else {
logf("starting SetDNS call...")
err = b.SetDNS(ctx, key, rec)
if err != nil {
return nil, fmt.Errorf("SetDNS %q => %q: %w", key, rec, err)
}
logf("did SetDNS")
}
chal, err := ac.Accept(ctx, ch)
if err != nil {
return nil, fmt.Errorf("Accept: %v", err)
}
traceACME(chal)
break
}
}
}
orderURI := order.URI
order, err = ac.WaitOrder(ctx, orderURI)
if err != nil {
if ctx.Err() != nil {
return nil, ctx.Err()
}
if oe, ok := err.(*acme.OrderError); ok {
logf("acme: WaitOrder: OrderError status %q", oe.Status)
} else {
logf("acme: WaitOrder error: %v", err)
}
return nil, err
}
traceACME(order)
certPrivKey, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
if err != nil {
return nil, err
}
var privPEM bytes.Buffer
if err := encodeECDSAKey(&privPEM, certPrivKey); err != nil {
return nil, err
}
if err := cs.WriteKey(domain, privPEM.Bytes()); err != nil {
return nil, err
}
csr, err := certRequest(certPrivKey, domain, nil)
if err != nil {
return nil, err
}
logf("requesting cert...")
der, _, err := ac.CreateOrderCert(ctx, order.FinalizeURL, csr, true)
if err != nil {
return nil, fmt.Errorf("CreateOrder: %v", err)
}
logf("got cert")
var certPEM bytes.Buffer
for _, b := range der {
pb := &pem.Block{Type: "CERTIFICATE", Bytes: b}
if err := pem.Encode(&certPEM, pb); err != nil {
return nil, err
}
}
if err := cs.WriteCert(domain, certPEM.Bytes()); err != nil {
return nil, err
}
b.domainRenewed(domain)
return &TLSCertKeyPair{CertPEM: certPEM.Bytes(), KeyPEM: privPEM.Bytes()}, nil
}
// certRequest generates a CSR for the given common name cn and optional SANs.
func certRequest(key crypto.Signer, cn string, ext []pkix.Extension, san ...string) ([]byte, error) {
req := &x509.CertificateRequest{
Subject: pkix.Name{CommonName: cn},
DNSNames: san,
ExtraExtensions: ext,
}
return x509.CreateCertificateRequest(rand.Reader, req, key)
}
func encodeECDSAKey(w io.Writer, key *ecdsa.PrivateKey) error {
b, err := x509.MarshalECPrivateKey(key)
if err != nil {
return err
}
pb := &pem.Block{Type: "EC PRIVATE KEY", Bytes: b}
return pem.Encode(w, pb)
}
// parsePrivateKey is a copy of x/crypto/acme's parsePrivateKey.
//
// Attempt to parse the given private key DER block. OpenSSL 0.9.8 generates
// PKCS#1 private keys by default, while OpenSSL 1.0.0 generates PKCS#8 keys.
// OpenSSL ecparam generates SEC1 EC private keys for ECDSA. We try all three.
//
// Inspired by parsePrivateKey in crypto/tls/tls.go.
func parsePrivateKey(der []byte) (crypto.Signer, error) {
if key, err := x509.ParsePKCS1PrivateKey(der); err == nil {
return key, nil
}
if key, err := x509.ParsePKCS8PrivateKey(der); err == nil {
switch key := key.(type) {
case *rsa.PrivateKey:
return key, nil
case *ecdsa.PrivateKey:
return key, nil
default:
return nil, errors.New("acme/autocert: unknown private key type in PKCS#8 wrapping")
}
}
if key, err := x509.ParseECPrivateKey(der); err == nil {
return key, nil
}
return nil, errors.New("acme/autocert: failed to parse private key")
}
func acmeKey(cs certStore) (crypto.Signer, error) {
if v, err := cs.ACMEKey(); err == nil {
priv, _ := pem.Decode(v)
if priv == nil || !strings.Contains(priv.Type, "PRIVATE") {
return nil, errors.New("acme/autocert: invalid account key found in cache")
}
return parsePrivateKey(priv.Bytes)
} else if err != nil && !errors.Is(err, ipn.ErrStateNotExist) {
return nil, err
}
privKey, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
if err != nil {
return nil, err
}
var pemBuf bytes.Buffer
if err := encodeECDSAKey(&pemBuf, privKey); err != nil {
return nil, err
}
if err := cs.WriteACMEKey(pemBuf.Bytes()); err != nil {
return nil, err
}
return privKey, nil
}
func acmeClient(cs certStore) (*acme.Client, error) {
key, err := acmeKey(cs)
if err != nil {
return nil, fmt.Errorf("acmeKey: %w", err)
}
// Note: if we add support for additional ACME providers (other than
// LetsEncrypt), we should make sure that they support ARI extension (see
// shouldStartDomainRenewalARI).
return &acme.Client{
Key: key,
UserAgent: "tailscaled/" + version.Long(),
}, nil
}
// validCertPEM reports whether the given certificate is valid for domain at now.
//
// If roots != nil, it is used instead of the system root pool. This is meant
// to support testing, and production code should pass roots == nil.
func validCertPEM(domain string, keyPEM, certPEM []byte, roots *x509.CertPool, now time.Time) bool {
if len(keyPEM) == 0 || len(certPEM) == 0 {
return false
}
tlsCert, err := tls.X509KeyPair(certPEM, keyPEM)
if err != nil {
return false
}
var leaf *x509.Certificate
intermediates := x509.NewCertPool()
for i, certDER := range tlsCert.Certificate {
cert, err := x509.ParseCertificate(certDER)
if err != nil {
return false
}
if i == 0 {
leaf = cert
} else {
intermediates.AddCert(cert)
}
}
if leaf == nil {
return false
}
_, err = leaf.Verify(x509.VerifyOptions{
DNSName: domain,
CurrentTime: now,
Roots: roots,
Intermediates: intermediates,
})
return err == nil
}
// validLookingCertDomain reports whether name looks like a valid domain name that
// we might be able to get a cert for.
//
// It's a light check primarily for double checking before it's used
// as part of a filesystem path. The actual validation happens in checkCertDomain.
func validLookingCertDomain(name string) bool {
if name == "" ||
strings.Contains(name, "..") ||
strings.ContainsAny(name, ":/\\\x00") ||
!strings.Contains(name, ".") {
return false
}
return true
}
func checkCertDomain(st *ipnstate.Status, domain string) error {
if domain == "" {
return errors.New("missing domain name")
}
for _, d := range st.CertDomains {
if d == domain {
return nil
}
}
// Transitional way while server doesn't yet populate CertDomains: also permit the client
// attempting Self.DNSName.
okay := st.CertDomains[:len(st.CertDomains):len(st.CertDomains)]
if st.Self != nil {
if v := strings.Trim(st.Self.DNSName, "."); v != "" {
if v == domain {
return nil
}
okay = append(okay, v)
}
}
switch len(okay) {
case 0:
return errors.New("your Tailscale account does not support getting TLS certs")
case 1:
return fmt.Errorf("invalid domain %q; only %q is permitted", domain, okay[0])
default:
return fmt.Errorf("invalid domain %q; must be one of %q", domain, okay)
}
}