tailscale/net/art/table.go

645 lines
23 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
// Package art provides a routing table that implements the Allotment Routing
// Table (ART) algorithm by Donald Knuth, as described in the paper by Yoichi
// Hariguchi.
//
// ART outperforms the traditional radix tree implementations for route lookups,
// insertions, and deletions.
//
// For more information, see Yoichi Hariguchi's paper:
// https://cseweb.ucsd.edu//~varghese/TEACH/cs228/artlookup.pdf
package art
import (
"bytes"
"encoding/binary"
"fmt"
"io"
"math/bits"
"net/netip"
"strings"
"sync"
)
const (
debugInsert = false
debugDelete = false
)
// Table is an IPv4 and IPv6 routing table.
type Table[T any] struct {
v4 strideTable[T]
v6 strideTable[T]
initOnce sync.Once
}
func (t *Table[T]) init() {
t.initOnce.Do(func() {
t.v4.prefix = netip.PrefixFrom(netip.IPv4Unspecified(), 0)
t.v6.prefix = netip.PrefixFrom(netip.IPv6Unspecified(), 0)
})
}
func (t *Table[T]) tableForAddr(addr netip.Addr) *strideTable[T] {
if addr.Is6() {
return &t.v6
}
return &t.v4
}
// Get does a route lookup for addr and returns the associated value, or nil if
// no route matched.
func (t *Table[T]) Get(addr netip.Addr) *T {
t.init()
// Ideally we would use addr.AsSlice here, but AsSlice is just
// barely complex enough that it can't be inlined, and that in
// turn causes the slice to escape to the heap. Using As16 and
// manual slicing here helps the compiler keep Get alloc-free.
st := t.tableForAddr(addr)
rawAddr := addr.As16()
bs := rawAddr[:]
if addr.Is4() {
bs = bs[12:]
}
i := 0
// With path compression, we might skip over some address bits while walking
// to a strideTable leaf. This means the leaf answer we find might not be
// correct, because path compression took us down the wrong subtree. When
// that happens, we have to backtrack and figure out which most specific
// route further up the tree is relevant to addr, and return that.
//
// So, as we walk down the stride tables, each time we find a non-nil route
// result, we have to remember it and the associated strideTable prefix.
//
// We could also deal with this edge case of path compression by checking
// the strideTable prefix on each table as we descend, but that means we
// have to pay N prefix.Contains checks on every route lookup (where N is
// the number of strideTables in the path), rather than only paying M prefix
// comparisons in the edge case (where M is the number of strideTables in
// the path with a non-nil route of their own).
const maxDepth = 16
type prefixAndRoute struct {
prefix netip.Prefix
route *T
}
strideMatch := make([]prefixAndRoute, 0, maxDepth)
findLeaf:
for {
rt, child := st.getValAndChild(bs[i])
if rt != nil {
// This strideTable contains a route that may be relevant to our
// search, remember it.
strideMatch = append(strideMatch, prefixAndRoute{st.prefix, rt})
}
if child == nil {
// No sub-routes further down, the last thing we recorded
// in strideRoutes is tentatively the result, barring
// misdirection from path compression.
break findLeaf
}
st = child
// Path compression means we may be skipping over some intermediate
// tables. We have to skip forward to whatever depth st now references.
i = st.prefix.Bits() / 8
}
// Walk backwards through the hits we recorded in strideRoutes and
// stridePrefixes, returning the first one whose subtree matches addr.
//
// In the common case where path compression did not mislead us, we'll
// return on the first loop iteration because the last route we recorded was
// the correct most-specific route.
for i := len(strideMatch) - 1; i >= 0; i-- {
if m := strideMatch[i]; m.prefix.Contains(addr) {
return m.route
}
}
// We either found no route hits at all (both previous loops terminated
// immediately), or we went on a wild goose chase down a compressed path for
// the wrong prefix, and also found no usable routes on the way back up to
// the root. This is a miss.
return nil
}
// Insert adds pfx to the table, with value val.
// If pfx is already present in the table, its value is set to val.
func (t *Table[T]) Insert(pfx netip.Prefix, val *T) {
t.init()
if val == nil {
panic("Table.Insert called with nil value")
}
// The standard library doesn't enforce normalized prefixes (where
// the non-prefix bits are all zero). These algorithms require
// normalized prefixes, so do it upfront.
pfx = pfx.Masked()
if debugInsert {
defer func() {
fmt.Printf("%s", t.debugSummary())
}()
fmt.Printf("\ninsert: start pfx=%s\n", pfx)
}
st := t.tableForAddr(pfx.Addr())
// This algorithm is full of off-by-one headaches that boil down
// to the fact that pfx.Bits() has (2^n)+1 values, rather than
// just 2^n. For example, an IPv4 prefix length can be 0 through
// 32, which is 33 values.
//
// This extra possible value creates a lot of problems as we do
// bits and bytes math to traverse strideTables below. So, we
// treat the default route 0/0 specially here, that way the rest
// of the logic goes back to having 2^n values to reason about,
// which can be done in a nice and regular fashion with no edge
// cases.
if pfx.Bits() == 0 {
if debugInsert {
fmt.Printf("insert: default route\n")
}
st.insert(0, 0, val)
return
}
// No matter what we do as we traverse strideTables, our final
// action will be to insert the last 1-8 bits of pfx into a
// strideTable somewhere.
//
// We calculate upfront the byte position of the end of the
// prefix; the number of bits within that byte that contain prefix
// data; and the prefix of the strideTable into which we'll
// eventually insert.
//
// We need this in a couple different branches of the code below,
// and because the possible values are 1-indexed (1 through 32 for
// ipv4, 1 through 128 for ipv6), the math is very slightly
// unusual to account for the off-by-one indexing. Do it once up
// here, with this large comment, rather than reproduce the subtle
// math in multiple places further down.
finalByteIdx := (pfx.Bits() - 1) / 8
finalBits := pfx.Bits() - (finalByteIdx * 8)
finalStridePrefix, err := pfx.Addr().Prefix(finalByteIdx * 8)
if err != nil {
panic(fmt.Sprintf("invalid prefix requested: %s/%d", pfx.Addr(), finalByteIdx*8))
}
if debugInsert {
fmt.Printf("insert: finalByteIdx=%d finalBits=%d finalStridePrefix=%s\n", finalByteIdx, finalBits, finalStridePrefix)
}
// The strideTable we want to insert into is potentially at the
// end of a chain of strideTables, each one encoding 8 bits of the
// prefix.
//
// We're expecting to walk down a path of tables, although with
// prefix compression we may end up skipping some links in the
// chain, or taking wrong turns and having to course correct.
//
// As we walk down the tree, byteIdx is the byte of bs we're
// currently examining to choose our next step, and numBits is the
// number of bits that remain in pfx, starting with the byte at
// byteIdx inclusive.
bs := pfx.Addr().AsSlice()
byteIdx := 0
numBits := pfx.Bits()
for {
if debugInsert {
fmt.Printf("insert: loop byteIdx=%d numBits=%d st.prefix=%s\n", byteIdx, numBits, st.prefix)
}
if numBits <= 8 {
if debugInsert {
fmt.Printf("insert: existing leaf st.prefix=%s addr=%d/%d\n", st.prefix, bs[finalByteIdx], finalBits)
}
// We've reached the end of the prefix, whichever
// strideTable we're looking at now is the place where we
// need to insert.
st.insert(bs[finalByteIdx], finalBits, val)
return
}
// Otherwise, we need to go down at least one more level of
// strideTables. With prefix compression, each level of
// descent can have one of three outcomes: we find a place
// where prefix compression is possible; a place where prefix
// compression made us take a "wrong turn"; or a point along
// our intended path that we have to keep following.
child, created := st.getOrCreateChild(bs[byteIdx])
switch {
case created:
// The subtree we need for pfx doesn't exist yet. The rest
// of the path, if we were to create it, will consist of a
// bunch of strideTables with a single child each. We can
// use path compression to elide those intermediates, and
// jump straight to the final strideTable that hosts this
// prefix.
child.prefix = finalStridePrefix
child.insert(bs[finalByteIdx], finalBits, val)
if debugInsert {
fmt.Printf("insert: new leaf st.prefix=%s child.prefix=%s addr=%d/%d\n", st.prefix, child.prefix, bs[finalByteIdx], finalBits)
}
return
case !prefixStrictlyContains(child.prefix, pfx):
// child already exists, but its prefix does not contain
// our destination. This means that the path between st
// and child was compressed by a previous insertion, and
// somewhere in the (implicit) compressed path we took a
// wrong turn, into the wrong part of st's subtree.
//
// This is okay, because pfx and child.prefix must have a
// common ancestor node somewhere between st and child. We
// can figure out what node that is, and materialize it.
//
// Once we've done that, we can immediately complete the
// remainder of the insertion in one of two ways, without
// further traversal. See a little further down for what
// those are.
if debugInsert {
fmt.Printf("insert: wrong turn, pfx=%s child.prefix=%s\n", pfx, child.prefix)
}
intermediatePrefix, addrOfExisting, addrOfNew := computePrefixSplit(child.prefix, pfx)
intermediate := &strideTable[T]{prefix: intermediatePrefix} // TODO: make this whole thing be st.AddIntermediate or something?
st.setChild(bs[byteIdx], intermediate)
intermediate.setChild(addrOfExisting, child)
if debugInsert {
fmt.Printf("insert: new intermediate st.prefix=%s intermediate.prefix=%s child.prefix=%s\n", st.prefix, intermediate.prefix, child.prefix)
}
// Now, we have a chain of st -> intermediate -> child.
//
// pfx either lives in a different child of intermediate,
// or in intermediate itself. For example, if we created
// the intermediate 1.2.0.0/16, pfx=1.2.3.4/32 would have
// to go into a new child of intermediate, but
// pfx=1.2.0.0/18 would go into intermediate directly.
if remain := pfx.Bits() - intermediate.prefix.Bits(); remain <= 8 {
// pfx lives in intermediate.
if debugInsert {
fmt.Printf("insert: into intermediate intermediate.prefix=%s addr=%d/%d\n", intermediate.prefix, bs[finalByteIdx], finalBits)
}
intermediate.insert(bs[finalByteIdx], finalBits, val)
} else {
// pfx lives in a different child subtree of
// intermediate. By definition this subtree doesn't
// exist at all, otherwise we'd never have entered
// this entire "wrong turn" codepath in the first
// place.
//
// This means we can apply prefix compression as we
// create this new child, and we're done.
st, created = intermediate.getOrCreateChild(addrOfNew)
if !created {
panic("new child path unexpectedly exists during path decompression")
}
st.prefix = finalStridePrefix
st.insert(bs[finalByteIdx], finalBits, val)
if debugInsert {
fmt.Printf("insert: new child st.prefix=%s addr=%d/%d\n", st.prefix, bs[finalByteIdx], finalBits)
}
}
return
default:
// An expected child table exists along pfx's
// path. Continue traversing downwards.
st = child
byteIdx = child.prefix.Bits() / 8
numBits = pfx.Bits() - child.prefix.Bits()
if debugInsert {
fmt.Printf("insert: descend st.prefix=%s\n", st.prefix)
}
}
}
}
// Delete removes pfx from the table, if it is present.
func (t *Table[T]) Delete(pfx netip.Prefix) {
t.init()
// The standard library doesn't enforce normalized prefixes (where
// the non-prefix bits are all zero). These algorithms require
// normalized prefixes, so do it upfront.
pfx = pfx.Masked()
if debugDelete {
defer func() {
fmt.Printf("%s", t.debugSummary())
}()
fmt.Printf("\ndelete: start pfx=%s table:\n%s", pfx, t.debugSummary())
}
st := t.tableForAddr(pfx.Addr())
// This algorithm is full of off-by-one headaches, just like
// Insert. See the comment in Insert for more details. Bottom
// line: we handle the default route as a special case, and that
// simplifies the rest of the code slightly.
if pfx.Bits() == 0 {
if debugDelete {
fmt.Printf("delete: default route\n")
}
st.delete(0, 0)
return
}
// Deletion may drive the refcount of some strideTables down to
// zero. We need to clean up these dangling tables, so we have to
// keep track of which tables we touch on the way down, and which
// strideEntry index each child is registered in.
//
// Note that the strideIndex and strideTables entries are off-by-one.
// The child table pointer is recorded at i+1, but it is referenced by a
// particular index in the parent table, at index i.
//
// In other words: entry number strideIndexes[0] in
// strideTables[0] is the same pointer as strideTables[1].
//
// This results in some slightly odd array accesses further down
// in this code, because in a single loop iteration we have to
// write to strideTables[N] and strideIndexes[N-1].
strideIdx := 0
strideTables := [16]*strideTable[T]{st}
strideIndexes := [15]int{}
// Similar to Insert, navigate down the tree of strideTables,
// looking for the one that houses this prefix. This part is
// easier than with insertion, since we can bail if the path ends
// early or takes an unexpected detour. However, unlike
// insertion, there's a whole post-deletion cleanup phase later
// on.
//
// As we walk down the tree, byteIdx is the byte of bs we're
// currently examining to choose our next step, and numBits is the
// number of bits that remain in pfx, starting with the byte at
// byteIdx inclusive.
bs := pfx.Addr().AsSlice()
byteIdx := 0
numBits := pfx.Bits()
for numBits > 8 {
if debugDelete {
fmt.Printf("delete: loop byteIdx=%d numBits=%d st.prefix=%s\n", byteIdx, numBits, st.prefix)
}
child, idx := st.getChild(bs[byteIdx])
if child == nil {
// Prefix can't exist in the table, because one of the
// necessary strideTables doesn't exist.
if debugDelete {
fmt.Printf("delete: missing necessary child pfx=%s\n", pfx)
}
return
}
strideIndexes[strideIdx] = idx
strideTables[strideIdx+1] = child
strideIdx++
// Path compression means byteIdx can jump forwards
// unpredictably. Recompute the next byte to look at from the
// child we just found.
byteIdx = child.prefix.Bits() / 8
numBits = pfx.Bits() - child.prefix.Bits()
st = child
if debugDelete {
fmt.Printf("delete: descend st.prefix=%s\n", st.prefix)
}
}
// We reached a leaf stride table that seems to be in the right
// spot. But path compression might have led us to the wrong
// table.
if !prefixStrictlyContains(st.prefix, pfx) {
// Wrong table, the requested prefix can't exist since its
// path led us to the wrong place.
if debugDelete {
fmt.Printf("delete: wrong leaf table pfx=%s\n", pfx)
}
return
}
if debugDelete {
fmt.Printf("delete: delete from st.prefix=%s addr=%d/%d\n", st.prefix, bs[byteIdx], numBits)
}
if st.delete(bs[byteIdx], numBits) == nil {
// We're in the right strideTable, but pfx wasn't in
// it. Refcounts haven't changed, so we can skip cleanup.
if debugDelete {
fmt.Printf("delete: prefix not present pfx=%s\n", pfx)
}
return
}
// st.delete reduced st's refcount by one. This table may now be
// reclaimable, and depending on how we can reclaim it, the parent
// tables may also need to be reclaimed. This loop ends as soon as
// an iteration takes no action, or takes an action that doesn't
// alter the parent table's refcounts.
//
// We start our walk back at strideTables[strideIdx], which
// contains st.
for strideIdx > 0 {
cur := strideTables[strideIdx]
if debugDelete {
fmt.Printf("delete: GC? strideIdx=%d st.prefix=%s\n", strideIdx, cur.prefix)
}
if cur.routeRefs > 0 {
// the strideTable has other route entries, it cannot be
// deleted or compacted.
if debugDelete {
fmt.Printf("delete: has other routes st.prefix=%s\n", cur.prefix)
}
return
}
switch cur.childRefs {
case 0:
// no routeRefs and no childRefs, this table can be
// deleted. This will alter the parent table's refcount,
// so we'll have to look at it as well (in the next loop
// iteration).
if debugDelete {
fmt.Printf("delete: remove st.prefix=%s\n", cur.prefix)
}
strideTables[strideIdx-1].deleteChild(strideIndexes[strideIdx-1])
strideIdx--
case 1:
// This table has no routes, and a single child. Compact
// this table out of existence by making the parent point
// directly at the one child. This does not affect the
// parent's refcounts, so the parent can't be eligible for
// deletion or compaction, and we can stop.
child := strideTables[strideIdx].findFirstChild() // only 1 child exists, by definition
parent := strideTables[strideIdx-1]
if debugDelete {
fmt.Printf("delete: compact parent.prefix=%s st.prefix=%s child.prefix=%s\n", parent.prefix, cur.prefix, child.prefix)
}
strideTables[strideIdx-1].setChildByIndex(strideIndexes[strideIdx-1], child)
return
default:
// This table has two or more children, so it's acting as a "fork in
// the road" between two prefix subtrees. It cannot be deleted, and
// thus no further cleanups are possible.
if debugDelete {
fmt.Printf("delete: fork table st.prefix=%s\n", cur.prefix)
}
return
}
}
}
// debugSummary prints the tree of allocated strideTables in t, with each
// strideTable's refcount.
func (t *Table[T]) debugSummary() string {
t.init()
var ret bytes.Buffer
fmt.Fprintf(&ret, "v4: ")
strideSummary(&ret, &t.v4, 4)
fmt.Fprintf(&ret, "v6: ")
strideSummary(&ret, &t.v6, 4)
return ret.String()
}
func strideSummary[T any](w io.Writer, st *strideTable[T], indent int) {
fmt.Fprintf(w, "%s: %d routes, %d children\n", st.prefix, st.routeRefs, st.childRefs)
indent += 4
st.treeDebugStringRec(w, 1, indent)
for i := firstHostIndex; i <= lastHostIndex; i++ {
if child := st.entries[i].child; child != nil {
addr, len := inversePrefixIndex(i)
fmt.Fprintf(w, "%s%d/%d (%02x/%d): ", strings.Repeat(" ", indent), addr, len, addr, len)
strideSummary(w, child, indent)
}
}
}
// prefixStrictlyContains reports whether child is a prefix within
// parent, but not parent itself.
func prefixStrictlyContains(parent, child netip.Prefix) bool {
return parent.Overlaps(child) && parent.Bits() < child.Bits()
}
// computePrefixSplit returns the smallest common prefix that contains
// both a and b. lastCommon is 8-bit aligned, with aStride and bStride
// indicating the value of the 8-bit stride immediately following
// lastCommon.
//
// computePrefixSplit is used in constructing an intermediate
// strideTable when a new prefix needs to be inserted in a compressed
// table. It can be read as: given that a is already in the table, and
// b is being inserted, what is the prefix of the new intermediate
// strideTable that needs to be created, and at what addresses in that
// new strideTable should a and b's subsequent strideTables be
// attached?
//
// Note as a special case, this can be called with a==b. An example of
// when this happens:
// - We want to insert the prefix 1.2.0.0/16
// - A strideTable exists for 1.2.0.0/16, because another child
// prefix already exists (e.g. 1.2.3.4/32)
// - The 1.0.0.0/8 strideTable does not exist, because path
// compression removed it.
//
// In this scenario, the caller of computePrefixSplit ends up making a
// "wrong turn" while traversing strideTables: it was looking for the
// 1.0.0.0/8 table, but ended up at the 1.2.0.0/16 table. When this
// happens, it will invoke computePrefixSplit(1.2.0.0/16, 1.2.0.0/16),
// and we return 1.0.0.0/8 as the missing intermediate.
func computePrefixSplit(a, b netip.Prefix) (lastCommon netip.Prefix, aStride, bStride uint8) {
a = a.Masked()
b = b.Masked()
if a.Bits() == 0 || b.Bits() == 0 {
panic("computePrefixSplit called with a default route")
}
if a.Addr().Is4() != b.Addr().Is4() {
panic("computePrefixSplit called with mismatched address families")
}
minPrefixLen := a.Bits()
if b.Bits() < minPrefixLen {
minPrefixLen = b.Bits()
}
commonBits := commonBits(a.Addr(), b.Addr(), minPrefixLen)
// We want to know how many 8-bit strides are shared between a and
// b. Naively, this would be commonBits/8, but this introduces an
// off-by-one error. This is due to the way our ART stores
// prefixes whose length falls exactly on a stride boundary.
//
// Consider 192.168.1.0/24 and 192.168.0.0/16. commonBits
// correctly reports that these prefixes have their first 16 bits
// in common. However, in the ART they only share 1 common stride:
// they both use the 192.0.0.0/8 strideTable, but 192.168.0.0/16
// is stored as 168/8 within that table, and not as 0/0 in the
// 192.168.0.0/16 table.
//
// So, when commonBits matches the length of one of the inputs and
// falls on a boundary between strides, the strideTable one
// further up from commonBits/8 is the one we need to create,
// which means we have to adjust the stride count down by one.
if commonBits == minPrefixLen {
commonBits--
}
commonStrides := commonBits / 8
lastCommon, err := a.Addr().Prefix(commonStrides * 8)
if err != nil {
panic(fmt.Sprintf("computePrefixSplit constructing common prefix: %v", err))
}
if a.Addr().Is4() {
aStride = a.Addr().As4()[commonStrides]
bStride = b.Addr().As4()[commonStrides]
} else {
aStride = a.Addr().As16()[commonStrides]
bStride = b.Addr().As16()[commonStrides]
}
return lastCommon, aStride, bStride
}
// commonBits returns the number of common leading bits of a and b.
// If the number of common bits exceeds maxBits, it returns maxBits
// instead.
func commonBits(a, b netip.Addr, maxBits int) int {
if a.Is4() != b.Is4() {
panic("commonStrides called with mismatched address families")
}
var common int
// The following implements an old bit-twiddling trick to compute
// the number of common leading bits: if you XOR two numbers
// together, equal bits become 0 and unequal bits become 1. You
// can then count the number of leading zeros (which is a single
// instruction on modern CPUs) to get the answer.
//
// This code is a little more complex than just XOR + count
// leading zeros, because IPv4 and IPv6 are different sizes, and
// for IPv6 we have to do the math in two 64-bit chunks because Go
// lacks a uint128 type.
if a.Is4() {
aNum, bNum := ipv4AsUint(a), ipv4AsUint(b)
common = bits.LeadingZeros32(aNum ^ bNum)
} else {
aNumHi, aNumLo := ipv6AsUint(a)
bNumHi, bNumLo := ipv6AsUint(b)
common = bits.LeadingZeros64(aNumHi ^ bNumHi)
if common == 64 {
common += bits.LeadingZeros64(aNumLo ^ bNumLo)
}
}
if common > maxBits {
common = maxBits
}
return common
}
// ipv4AsUint returns ip as a uint32.
func ipv4AsUint(ip netip.Addr) uint32 {
bs := ip.As4()
return binary.BigEndian.Uint32(bs[:])
}
// ipv6AsUint returns ip as a pair of uint64s.
func ipv6AsUint(ip netip.Addr) (uint64, uint64) {
bs := ip.As16()
return binary.BigEndian.Uint64(bs[:8]), binary.BigEndian.Uint64(bs[8:])
}