tailscale/cmd/containerboot/main.go

1282 lines
47 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
//go:build linux
// The containerboot binary is a wrapper for starting tailscaled in a container.
// It handles reading the desired mode of operation out of environment
// variables, bringing up and authenticating Tailscale, and any other
// kubernetes-specific side jobs.
//
// As with most container things, configuration is passed through environment
// variables. All configuration is optional.
//
// - TS_AUTHKEY: the authkey to use for login.
// - TS_HOSTNAME: the hostname to request for the node.
// - TS_ROUTES: subnet routes to advertise. Explicitly setting it to an empty
// value will cause containerboot to stop acting as a subnet router for any
// previously advertised routes. To accept routes, use TS_EXTRA_ARGS to pass
// in --accept-routes.
// - TS_DEST_IP: proxy all incoming Tailscale traffic to the given
// destination defined by an IP address.
// - TS_EXPERIMENTAL_DEST_DNS_NAME: proxy all incoming Tailscale traffic to the given
// destination defined by a DNS name. The DNS name will be periodically resolved and firewall rules updated accordingly.
// This is currently intended to be used by the Kubernetes operator (ExternalName Services).
// This is an experimental env var and will likely change in the future.
// - TS_TAILNET_TARGET_IP: proxy all incoming non-Tailscale traffic to the given
// destination defined by an IP.
// - TS_TAILNET_TARGET_FQDN: proxy all incoming non-Tailscale traffic to the given
// destination defined by a MagicDNS name.
// - TS_TAILSCALED_EXTRA_ARGS: extra arguments to 'tailscaled'.
// - TS_EXTRA_ARGS: extra arguments to 'tailscale up'.
// - TS_USERSPACE: run with userspace networking (the default)
// instead of kernel networking.
// - TS_STATE_DIR: the directory in which to store tailscaled
// state. The data should persist across container
// restarts.
// - TS_ACCEPT_DNS: whether to use the tailnet's DNS configuration.
// - TS_KUBE_SECRET: the name of the Kubernetes secret in which to
// store tailscaled state.
// - TS_SOCKS5_SERVER: the address on which to listen for SOCKS5
// proxying into the tailnet.
// - TS_OUTBOUND_HTTP_PROXY_LISTEN: the address on which to listen
// for HTTP proxying into the tailnet.
// - TS_SOCKET: the path where the tailscaled LocalAPI socket should
// be created.
// - TS_AUTH_ONCE: if true, only attempt to log in if not already
// logged in. If false (the default, for backwards
// compatibility), forcibly log in every time the
// container starts.
// - TS_SERVE_CONFIG: if specified, is the file path where the ipn.ServeConfig is located.
// It will be applied once tailscaled is up and running. If the file contains
// ${TS_CERT_DOMAIN}, it will be replaced with the value of the available FQDN.
// It cannot be used in conjunction with TS_DEST_IP. The file is watched for changes,
// and will be re-applied when it changes.
// - EXPERIMENTAL_TS_CONFIGFILE_PATH: if specified, a path to tailscaled
// config. If this is set, TS_HOSTNAME, TS_EXTRA_ARGS, TS_AUTHKEY,
// TS_ROUTES, TS_ACCEPT_DNS env vars must not be set. If this is set,
// containerboot only runs `tailscaled --config <path-to-this-configfile>`
// and not `tailscale up` or `tailscale set`.
// The config file contents are currently read once on container start.
// NB: This env var is currently experimental and the logic will likely change!
// - EXPERIMENTAL_ALLOW_PROXYING_CLUSTER_TRAFFIC_VIA_INGRESS: if set to true
// and if this containerboot instance is an L7 ingress proxy (created by
// the Kubernetes operator), set up rules to allow proxying cluster traffic,
// received on the Pod IP of this node, to the ingress target in the cluster.
// This, in conjunction with MagicDNS name resolution in cluster, can be
// useful for cases where a cluster workload needs to access a target in
// cluster using the same hostname (in this case, the MagicDNS name of the ingress proxy)
// as a non-cluster workload on tailnet.
// This is only meant to be configured by the Kubernetes operator.
//
// When running on Kubernetes, containerboot defaults to storing state in the
// "tailscale" kube secret. To store state on local disk instead, set
// TS_KUBE_SECRET="" and TS_STATE_DIR=/path/to/storage/dir. The state dir should
// be persistent storage.
//
// Additionally, if TS_AUTHKEY is not set and the TS_KUBE_SECRET contains an
// "authkey" field, that key is used as the tailscale authkey.
package main
import (
"bytes"
"context"
"encoding/json"
"errors"
"fmt"
"io/fs"
"log"
"math"
"net"
"net/netip"
"os"
"os/exec"
"os/signal"
"path/filepath"
"reflect"
"slices"
"strconv"
"strings"
"sync"
"sync/atomic"
"syscall"
"time"
"github.com/fsnotify/fsnotify"
"golang.org/x/sys/unix"
"tailscale.com/client/tailscale"
"tailscale.com/ipn"
"tailscale.com/ipn/conffile"
"tailscale.com/tailcfg"
"tailscale.com/types/logger"
"tailscale.com/types/ptr"
"tailscale.com/util/deephash"
"tailscale.com/util/linuxfw"
)
func newNetfilterRunner(logf logger.Logf) (linuxfw.NetfilterRunner, error) {
if defaultBool("TS_TEST_FAKE_NETFILTER", false) {
return linuxfw.NewFakeIPTablesRunner(), nil
}
return linuxfw.New(logf, "")
}
func main() {
log.SetPrefix("boot: ")
tailscale.I_Acknowledge_This_API_Is_Unstable = true
cfg := &settings{
AuthKey: defaultEnvs([]string{"TS_AUTHKEY", "TS_AUTH_KEY"}, ""),
Hostname: defaultEnv("TS_HOSTNAME", ""),
Routes: defaultEnvStringPointer("TS_ROUTES"),
ServeConfigPath: defaultEnv("TS_SERVE_CONFIG", ""),
ProxyTargetIP: defaultEnv("TS_DEST_IP", ""),
ProxyTargetDNSName: defaultEnv("TS_EXPERIMENTAL_DEST_DNS_NAME", ""),
TailnetTargetIP: defaultEnv("TS_TAILNET_TARGET_IP", ""),
TailnetTargetFQDN: defaultEnv("TS_TAILNET_TARGET_FQDN", ""),
DaemonExtraArgs: defaultEnv("TS_TAILSCALED_EXTRA_ARGS", ""),
ExtraArgs: defaultEnv("TS_EXTRA_ARGS", ""),
InKubernetes: os.Getenv("KUBERNETES_SERVICE_HOST") != "",
UserspaceMode: defaultBool("TS_USERSPACE", true),
StateDir: defaultEnv("TS_STATE_DIR", ""),
AcceptDNS: defaultEnvBoolPointer("TS_ACCEPT_DNS"),
KubeSecret: defaultEnv("TS_KUBE_SECRET", "tailscale"),
SOCKSProxyAddr: defaultEnv("TS_SOCKS5_SERVER", ""),
HTTPProxyAddr: defaultEnv("TS_OUTBOUND_HTTP_PROXY_LISTEN", ""),
Socket: defaultEnv("TS_SOCKET", "/tmp/tailscaled.sock"),
AuthOnce: defaultBool("TS_AUTH_ONCE", false),
Root: defaultEnv("TS_TEST_ONLY_ROOT", "/"),
TailscaledConfigFilePath: defaultEnv("EXPERIMENTAL_TS_CONFIGFILE_PATH", ""),
AllowProxyingClusterTrafficViaIngress: defaultBool("EXPERIMENTAL_ALLOW_PROXYING_CLUSTER_TRAFFIC_VIA_INGRESS", false),
PodIP: defaultEnv("POD_IP", ""),
}
if err := cfg.validate(); err != nil {
log.Fatalf("invalid configuration: %v", err)
}
if !cfg.UserspaceMode {
if err := ensureTunFile(cfg.Root); err != nil {
log.Fatalf("Unable to create tuntap device file: %v", err)
}
if cfg.ProxyTargetIP != "" || cfg.ProxyTargetDNSName != "" || cfg.Routes != nil || cfg.TailnetTargetIP != "" || cfg.TailnetTargetFQDN != "" {
if err := ensureIPForwarding(cfg.Root, cfg.ProxyTargetIP, cfg.TailnetTargetIP, cfg.TailnetTargetFQDN, cfg.Routes); err != nil {
log.Printf("Failed to enable IP forwarding: %v", err)
log.Printf("To run tailscale as a proxy or router container, IP forwarding must be enabled.")
if cfg.InKubernetes {
log.Fatalf("You can either set the sysctls as a privileged initContainer, or run the tailscale container with privileged=true.")
} else {
log.Fatalf("You can fix this by running the container with privileged=true, or the equivalent in your container runtime that permits access to sysctls.")
}
}
}
}
if cfg.InKubernetes {
initKube(cfg.Root)
}
// Context is used for all setup stuff until we're in steady
// state, so that if something is hanging we eventually time out
// and crashloop the container.
bootCtx, cancel := context.WithTimeout(context.Background(), 60*time.Second)
defer cancel()
if cfg.InKubernetes && cfg.KubeSecret != "" {
canPatch, err := kc.CheckSecretPermissions(bootCtx, cfg.KubeSecret)
if err != nil {
log.Fatalf("Some Kubernetes permissions are missing, please check your RBAC configuration: %v", err)
}
cfg.KubernetesCanPatch = canPatch
if cfg.AuthKey == "" && !isOneStepConfig(cfg) {
key, err := findKeyInKubeSecret(bootCtx, cfg.KubeSecret)
if err != nil {
log.Fatalf("Getting authkey from kube secret: %v", err)
}
if key != "" {
// This behavior of pulling authkeys from kube secrets was added
// at the same time as the patch permission, so we can enforce
// that we must be able to patch out the authkey after
// authenticating if you want to use this feature. This avoids
// us having to deal with the case where we might leave behind
// an unnecessary reusable authkey in a secret, like a rake in
// the grass.
if !cfg.KubernetesCanPatch {
log.Fatalf("authkey found in TS_KUBE_SECRET, but the pod doesn't have patch permissions on the secret to manage the authkey.")
}
log.Print("Using authkey found in kube secret")
cfg.AuthKey = key
} else {
log.Print("No authkey found in kube secret and TS_AUTHKEY not provided, login will be interactive if needed.")
}
}
}
client, daemonProcess, err := startTailscaled(bootCtx, cfg)
if err != nil {
log.Fatalf("failed to bring up tailscale: %v", err)
}
killTailscaled := func() {
if err := daemonProcess.Signal(unix.SIGTERM); err != nil {
log.Fatalf("error shutting tailscaled down: %v", err)
}
}
defer killTailscaled()
w, err := client.WatchIPNBus(bootCtx, ipn.NotifyInitialNetMap|ipn.NotifyInitialPrefs|ipn.NotifyInitialState)
if err != nil {
log.Fatalf("failed to watch tailscaled for updates: %v", err)
}
// Now that we've started tailscaled, we can symlink the socket to the
// default location if needed.
const defaultTailscaledSocketPath = "/var/run/tailscale/tailscaled.sock"
if cfg.Socket != "" && cfg.Socket != defaultTailscaledSocketPath {
// If we were given a socket path, symlink it to the default location so
// that the CLI can find it without any extra flags.
// See #6849.
dir := filepath.Dir(defaultTailscaledSocketPath)
err := os.MkdirAll(dir, 0700)
if err == nil {
err = syscall.Symlink(cfg.Socket, defaultTailscaledSocketPath)
}
if err != nil {
log.Printf("[warning] failed to symlink socket: %v\n\tTo interact with the Tailscale CLI please use `tailscale --socket=%q`", err, cfg.Socket)
}
}
// Because we're still shelling out to `tailscale up` to get access to its
// flag parser, we have to stop watching the IPN bus so that we can block on
// the subcommand without stalling anything. Then once it's done, we resume
// watching the bus.
//
// Depending on the requested mode of operation, this auth step happens at
// different points in containerboot's lifecycle, hence the helper function.
didLogin := false
authTailscale := func() error {
if didLogin {
return nil
}
didLogin = true
w.Close()
if err := tailscaleUp(bootCtx, cfg); err != nil {
return fmt.Errorf("failed to auth tailscale: %v", err)
}
w, err = client.WatchIPNBus(bootCtx, ipn.NotifyInitialNetMap|ipn.NotifyInitialState)
if err != nil {
return fmt.Errorf("rewatching tailscaled for updates after auth: %v", err)
}
return nil
}
if isTwoStepConfigAlwaysAuth(cfg) {
if err := authTailscale(); err != nil {
log.Fatalf("failed to auth tailscale: %v", err)
}
}
authLoop:
for {
n, err := w.Next()
if err != nil {
log.Fatalf("failed to read from tailscaled: %v", err)
}
if n.State != nil {
switch *n.State {
case ipn.NeedsLogin:
if isOneStepConfig(cfg) {
// This could happen if this is the
// first time tailscaled was run for
// this device and the auth key was not
// passed via the configfile.
log.Fatalf("invalid state: tailscaled daemon started with a config file, but tailscale is not logged in: ensure you pass a valid auth key in the config file.")
}
if err := authTailscale(); err != nil {
log.Fatalf("failed to auth tailscale: %v", err)
}
case ipn.NeedsMachineAuth:
log.Printf("machine authorization required, please visit the admin panel")
case ipn.Running:
// Technically, all we want is to keep monitoring the bus for
// netmap updates. However, in order to make the container crash
// if tailscale doesn't initially come up, the watch has a
// startup deadline on it. So, we have to break out of this
// watch loop, cancel the watch, and watch again with no
// deadline to continue monitoring for changes.
break authLoop
default:
log.Printf("tailscaled in state %q, waiting", *n.State)
}
}
}
w.Close()
ctx, cancel := contextWithExitSignalWatch()
defer cancel()
if isTwoStepConfigAuthOnce(cfg) {
// Now that we are authenticated, we can set/reset any of the
// settings that we need to.
if err := tailscaleSet(ctx, cfg); err != nil {
log.Fatalf("failed to auth tailscale: %v", err)
}
}
if cfg.ServeConfigPath != "" {
// Remove any serve config that may have been set by a previous run of
// containerboot, but only if we're providing a new one.
if err := client.SetServeConfig(ctx, new(ipn.ServeConfig)); err != nil {
log.Fatalf("failed to unset serve config: %v", err)
}
}
if cfg.InKubernetes && cfg.KubeSecret != "" && cfg.KubernetesCanPatch && isTwoStepConfigAuthOnce(cfg) {
// We were told to only auth once, so any secret-bound
// authkey is no longer needed. We don't strictly need to
// wipe it, but it's good hygiene.
log.Printf("Deleting authkey from kube secret")
if err := deleteAuthKey(ctx, cfg.KubeSecret); err != nil {
log.Fatalf("deleting authkey from kube secret: %v", err)
}
}
w, err = client.WatchIPNBus(ctx, ipn.NotifyInitialNetMap|ipn.NotifyInitialState)
if err != nil {
log.Fatalf("rewatching tailscaled for updates after auth: %v", err)
}
var (
wantProxy = cfg.ProxyTargetIP != "" || cfg.ProxyTargetDNSName != "" || cfg.TailnetTargetIP != "" || cfg.TailnetTargetFQDN != "" || cfg.AllowProxyingClusterTrafficViaIngress
wantDeviceInfo = cfg.InKubernetes && cfg.KubeSecret != "" && cfg.KubernetesCanPatch
startupTasksDone = false
currentIPs deephash.Sum // tailscale IPs assigned to device
currentDeviceInfo deephash.Sum // device ID and fqdn
currentEgressIPs deephash.Sum
addrs []netip.Prefix
backendAddrs []net.IP
certDomain = new(atomic.Pointer[string])
certDomainChanged = make(chan bool, 1)
)
if cfg.ServeConfigPath != "" {
go watchServeConfigChanges(ctx, cfg.ServeConfigPath, certDomainChanged, certDomain, client)
}
var nfr linuxfw.NetfilterRunner
if wantProxy {
nfr, err = newNetfilterRunner(log.Printf)
if err != nil {
log.Fatalf("error creating new netfilter runner: %v", err)
}
}
// Setup for proxies that are configured to proxy to a target specified
// by a DNS name (TS_EXPERIMENTAL_DEST_DNS_NAME).
const defaultCheckPeriod = time.Minute * 10 // how often to check what IPs the DNS name resolves to
var (
tc = make(chan string, 1)
failedResolveAttempts int
t *time.Timer = time.AfterFunc(defaultCheckPeriod, func() {
if cfg.ProxyTargetDNSName != "" {
tc <- "recheck"
}
})
)
defer t.Stop()
// resetTimer resets timer for when to next attempt to resolve the DNS
// name for the proxy configured with TS_EXPERIMENTAL_DEST_DNS_NAME. The
// timer gets reset to 10 minutes from now unless the last resolution
// attempt failed. If one or more consecutive previous resolution
// attempts failed, the next resolution attempt will happen after the smallest
// of (10 minutes, 2 ^ number-of-consecutive-failed-resolution-attempts
// seconds) i.e 2s, 4s, 8s ... 10 minutes.
resetTimer := func(lastResolveFailed bool) {
if !lastResolveFailed {
log.Printf("reconfigureTimer: next DNS resolution attempt in %s", defaultCheckPeriod)
t.Reset(defaultCheckPeriod)
failedResolveAttempts = 0
return
}
minDelay := 2 // 2 seconds
nextTick := time.Second * time.Duration(math.Pow(float64(minDelay), float64(failedResolveAttempts)))
if nextTick > defaultCheckPeriod {
nextTick = defaultCheckPeriod // cap at 10 minutes
}
log.Printf("reconfigureTimer: last DNS resolution attempt failed, next DNS resolution attempt in %v", nextTick)
t.Reset(nextTick)
failedResolveAttempts++
}
notifyChan := make(chan ipn.Notify)
errChan := make(chan error)
go func() {
for {
n, err := w.Next()
if err != nil {
errChan <- err
break
} else {
notifyChan <- n
}
}
}()
var wg sync.WaitGroup
runLoop:
for {
select {
case <-ctx.Done():
// Although killTailscaled() is deferred earlier, if we
// have started the reaper defined below, we need to
// kill tailscaled and let reaper clean up child
// processes.
killTailscaled()
break runLoop
case err := <-errChan:
log.Fatalf("failed to read from tailscaled: %v", err)
case n := <-notifyChan:
if n.State != nil && *n.State != ipn.Running {
// Something's gone wrong and we've left the authenticated state.
// Our container image never recovered gracefully from this, and the
// control flow required to make it work now is hard. So, just crash
// the container and rely on the container runtime to restart us,
// whereupon we'll go through initial auth again.
log.Fatalf("tailscaled left running state (now in state %q), exiting", *n.State)
}
if n.NetMap != nil {
addrs = n.NetMap.SelfNode.Addresses().AsSlice()
newCurrentIPs := deephash.Hash(&addrs)
ipsHaveChanged := newCurrentIPs != currentIPs
if cfg.TailnetTargetFQDN != "" {
var (
egressAddrs []netip.Prefix
newCurentEgressIPs deephash.Sum
egressIPsHaveChanged bool
node tailcfg.NodeView
nodeFound bool
)
for _, n := range n.NetMap.Peers {
if strings.EqualFold(n.Name(), cfg.TailnetTargetFQDN) {
node = n
nodeFound = true
break
}
}
if !nodeFound {
log.Printf("Tailscale node %q not found; it either does not exist, or not reachable because of ACLs", cfg.TailnetTargetFQDN)
break
}
egressAddrs = node.Addresses().AsSlice()
newCurentEgressIPs = deephash.Hash(&egressAddrs)
egressIPsHaveChanged = newCurentEgressIPs != currentEgressIPs
if egressIPsHaveChanged && len(egressAddrs) != 0 {
for _, egressAddr := range egressAddrs {
ea := egressAddr.Addr()
// TODO (irbekrm): make it work for IPv6 too.
if ea.Is6() {
log.Println("Not installing egress forwarding rules for IPv6 as this is currently not supported")
continue
}
log.Printf("Installing forwarding rules for destination %v", ea.String())
if err := installEgressForwardingRule(ctx, ea.String(), addrs, nfr); err != nil {
log.Fatalf("installing egress proxy rules for destination %s: %v", ea.String(), err)
}
}
}
currentEgressIPs = newCurentEgressIPs
}
if cfg.ProxyTargetIP != "" && len(addrs) != 0 && ipsHaveChanged {
log.Printf("Installing proxy rules")
if err := installIngressForwardingRule(ctx, cfg.ProxyTargetIP, addrs, nfr); err != nil {
log.Fatalf("installing ingress proxy rules: %v", err)
}
}
if cfg.ProxyTargetDNSName != "" && len(addrs) != 0 && ipsHaveChanged {
newBackendAddrs, err := resolveDNS(ctx, cfg.ProxyTargetDNSName)
if err != nil {
log.Printf("[unexpected] error resolving DNS name %s: %v", cfg.ProxyTargetDNSName, err)
resetTimer(true)
continue
}
backendsHaveChanged := !(slices.EqualFunc(backendAddrs, newBackendAddrs, func(ip1 net.IP, ip2 net.IP) bool {
return slices.ContainsFunc(newBackendAddrs, func(ip net.IP) bool { return ip.Equal(ip1) })
}))
if backendsHaveChanged {
log.Printf("installing ingress proxy rules for backends %v", newBackendAddrs)
if err := installIngressForwardingRuleForDNSTarget(ctx, newBackendAddrs, addrs, nfr); err != nil {
log.Fatalf("error installing ingress proxy rules: %v", err)
}
}
resetTimer(false)
backendAddrs = newBackendAddrs
}
if cfg.ServeConfigPath != "" && len(n.NetMap.DNS.CertDomains) != 0 {
cd := n.NetMap.DNS.CertDomains[0]
prev := certDomain.Swap(ptr.To(cd))
if prev == nil || *prev != cd {
select {
case certDomainChanged <- true:
default:
}
}
}
if cfg.TailnetTargetIP != "" && ipsHaveChanged && len(addrs) != 0 {
log.Printf("Installing forwarding rules for destination %v", cfg.TailnetTargetIP)
if err := installEgressForwardingRule(ctx, cfg.TailnetTargetIP, addrs, nfr); err != nil {
log.Fatalf("installing egress proxy rules: %v", err)
}
}
// If this is a L7 cluster ingress proxy (set up
// by Kubernetes operator) and proxying of
// cluster traffic to the ingress target is
// enabled, set up proxy rule each time the
// tailnet IPs of this node change (including
// the first time they become available).
if cfg.AllowProxyingClusterTrafficViaIngress && cfg.ServeConfigPath != "" && ipsHaveChanged && len(addrs) != 0 {
log.Printf("installing rules to forward traffic for %s to node's tailnet IP", cfg.PodIP)
if err := installTSForwardingRuleForDestination(ctx, cfg.PodIP, addrs, nfr); err != nil {
log.Fatalf("installing rules to forward traffic to node's tailnet IP: %v", err)
}
}
currentIPs = newCurrentIPs
deviceInfo := []any{n.NetMap.SelfNode.StableID(), n.NetMap.SelfNode.Name()}
if cfg.InKubernetes && cfg.KubernetesCanPatch && cfg.KubeSecret != "" && deephash.Update(&currentDeviceInfo, &deviceInfo) {
if err := storeDeviceInfo(ctx, cfg.KubeSecret, n.NetMap.SelfNode.StableID(), n.NetMap.SelfNode.Name(), n.NetMap.SelfNode.Addresses().AsSlice()); err != nil {
log.Fatalf("storing device ID in kube secret: %v", err)
}
}
}
if !startupTasksDone {
if (!wantProxy || currentIPs != deephash.Sum{}) && (!wantDeviceInfo || currentDeviceInfo != deephash.Sum{}) {
// This log message is used in tests to detect when all
// post-auth configuration is done.
log.Println("Startup complete, waiting for shutdown signal")
startupTasksDone = true
// Reap all processes, since we are PID1 and need to collect zombies. We can
// only start doing this once we've stopped shelling out to things
// `tailscale up`, otherwise this goroutine can reap the CLI subprocesses
// and wedge bringup.
reaper := func() {
defer wg.Done()
for {
var status unix.WaitStatus
pid, err := unix.Wait4(-1, &status, 0, nil)
if errors.Is(err, unix.EINTR) {
continue
}
if err != nil {
log.Fatalf("Waiting for exited processes: %v", err)
}
if pid == daemonProcess.Pid {
log.Printf("Tailscaled exited")
os.Exit(0)
}
}
}
wg.Add(1)
go reaper()
}
}
case <-tc:
newBackendAddrs, err := resolveDNS(ctx, cfg.ProxyTargetDNSName)
if err != nil {
log.Printf("[unexpected] error resolving DNS name %s: %v", cfg.ProxyTargetDNSName, err)
resetTimer(true)
continue
}
backendsHaveChanged := !(slices.EqualFunc(backendAddrs, newBackendAddrs, func(ip1 net.IP, ip2 net.IP) bool {
return slices.ContainsFunc(newBackendAddrs, func(ip net.IP) bool { return ip.Equal(ip1) })
}))
if backendsHaveChanged && len(addrs) != 0 {
log.Printf("Backend address change detected, installing proxy rules for backends %v", newBackendAddrs)
if err := installIngressForwardingRuleForDNSTarget(ctx, newBackendAddrs, addrs, nfr); err != nil {
log.Fatalf("installing ingress proxy rules for DNS target %s: %v", cfg.ProxyTargetDNSName, err)
}
}
backendAddrs = newBackendAddrs
resetTimer(false)
}
}
wg.Wait()
}
// watchServeConfigChanges watches path for changes, and when it sees one, reads
// the serve config from it, replacing ${TS_CERT_DOMAIN} with certDomain, and
// applies it to lc. It exits when ctx is canceled. cdChanged is a channel that
// is written to when the certDomain changes, causing the serve config to be
// re-read and applied.
func watchServeConfigChanges(ctx context.Context, path string, cdChanged <-chan bool, certDomainAtomic *atomic.Pointer[string], lc *tailscale.LocalClient) {
if certDomainAtomic == nil {
panic("cd must not be nil")
}
var tickChan <-chan time.Time
var eventChan <-chan fsnotify.Event
if w, err := fsnotify.NewWatcher(); err != nil {
log.Printf("failed to create fsnotify watcher, timer-only mode: %v", err)
ticker := time.NewTicker(5 * time.Second)
defer ticker.Stop()
tickChan = ticker.C
} else {
defer w.Close()
if err := w.Add(filepath.Dir(path)); err != nil {
log.Fatalf("failed to add fsnotify watch: %v", err)
}
eventChan = w.Events
}
var certDomain string
var prevServeConfig *ipn.ServeConfig
for {
select {
case <-ctx.Done():
return
case <-cdChanged:
certDomain = *certDomainAtomic.Load()
case <-tickChan:
case <-eventChan:
// We can't do any reasonable filtering on the event because of how
// k8s handles these mounts. So just re-read the file and apply it
// if it's changed.
}
if certDomain == "" {
continue
}
sc, err := readServeConfig(path, certDomain)
if err != nil {
log.Fatalf("failed to read serve config: %v", err)
}
if prevServeConfig != nil && reflect.DeepEqual(sc, prevServeConfig) {
continue
}
log.Printf("Applying serve config")
if err := lc.SetServeConfig(ctx, sc); err != nil {
log.Fatalf("failed to set serve config: %v", err)
}
prevServeConfig = sc
}
}
// readServeConfig reads the ipn.ServeConfig from path, replacing
// ${TS_CERT_DOMAIN} with certDomain.
func readServeConfig(path, certDomain string) (*ipn.ServeConfig, error) {
if path == "" {
return nil, nil
}
j, err := os.ReadFile(path)
if err != nil {
return nil, err
}
j = bytes.ReplaceAll(j, []byte("${TS_CERT_DOMAIN}"), []byte(certDomain))
var sc ipn.ServeConfig
if err := json.Unmarshal(j, &sc); err != nil {
return nil, err
}
return &sc, nil
}
func startTailscaled(ctx context.Context, cfg *settings) (*tailscale.LocalClient, *os.Process, error) {
args := tailscaledArgs(cfg)
// tailscaled runs without context, since it needs to persist
// beyond the startup timeout in ctx.
cmd := exec.Command("tailscaled", args...)
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
cmd.SysProcAttr = &syscall.SysProcAttr{
Setpgid: true,
}
log.Printf("Starting tailscaled")
if err := cmd.Start(); err != nil {
return nil, nil, fmt.Errorf("starting tailscaled failed: %v", err)
}
// Wait for the socket file to appear, otherwise API ops will racily fail.
log.Printf("Waiting for tailscaled socket")
for {
if ctx.Err() != nil {
log.Fatalf("Timed out waiting for tailscaled socket")
}
_, err := os.Stat(cfg.Socket)
if errors.Is(err, fs.ErrNotExist) {
time.Sleep(100 * time.Millisecond)
continue
} else if err != nil {
log.Fatalf("Waiting for tailscaled socket: %v", err)
}
break
}
tsClient := &tailscale.LocalClient{
Socket: cfg.Socket,
UseSocketOnly: true,
}
return tsClient, cmd.Process, nil
}
// tailscaledArgs uses cfg to construct the argv for tailscaled.
func tailscaledArgs(cfg *settings) []string {
args := []string{"--socket=" + cfg.Socket}
switch {
case cfg.InKubernetes && cfg.KubeSecret != "":
args = append(args, "--state=kube:"+cfg.KubeSecret)
if cfg.StateDir == "" {
cfg.StateDir = "/tmp"
}
fallthrough
case cfg.StateDir != "":
args = append(args, "--statedir="+cfg.StateDir)
default:
args = append(args, "--state=mem:", "--statedir=/tmp")
}
if cfg.UserspaceMode {
args = append(args, "--tun=userspace-networking")
} else if err := ensureTunFile(cfg.Root); err != nil {
log.Fatalf("ensuring that /dev/net/tun exists: %v", err)
}
if cfg.SOCKSProxyAddr != "" {
args = append(args, "--socks5-server="+cfg.SOCKSProxyAddr)
}
if cfg.HTTPProxyAddr != "" {
args = append(args, "--outbound-http-proxy-listen="+cfg.HTTPProxyAddr)
}
if cfg.TailscaledConfigFilePath != "" {
args = append(args, "--config="+cfg.TailscaledConfigFilePath)
}
if cfg.DaemonExtraArgs != "" {
args = append(args, strings.Fields(cfg.DaemonExtraArgs)...)
}
return args
}
// tailscaleUp uses cfg to run 'tailscale up' everytime containerboot starts, or
// if TS_AUTH_ONCE is set, only the first time containerboot starts.
func tailscaleUp(ctx context.Context, cfg *settings) error {
args := []string{"--socket=" + cfg.Socket, "up"}
if cfg.AcceptDNS != nil && *cfg.AcceptDNS {
args = append(args, "--accept-dns=true")
} else {
args = append(args, "--accept-dns=false")
}
if cfg.AuthKey != "" {
args = append(args, "--authkey="+cfg.AuthKey)
}
// --advertise-routes can be passed an empty string to configure a
// device (that might have previously advertised subnet routes) to not
// advertise any routes. Respect an empty string passed by a user and
// use it to explicitly unset the routes.
if cfg.Routes != nil {
args = append(args, "--advertise-routes="+*cfg.Routes)
}
if cfg.Hostname != "" {
args = append(args, "--hostname="+cfg.Hostname)
}
if cfg.ExtraArgs != "" {
args = append(args, strings.Fields(cfg.ExtraArgs)...)
}
log.Printf("Running 'tailscale up'")
cmd := exec.CommandContext(ctx, "tailscale", args...)
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
if err := cmd.Run(); err != nil {
return fmt.Errorf("tailscale up failed: %v", err)
}
return nil
}
// tailscaleSet uses cfg to run 'tailscale set' to set any known configuration
// options that are passed in via environment variables. This is run after the
// node is in Running state and only if TS_AUTH_ONCE is set.
func tailscaleSet(ctx context.Context, cfg *settings) error {
args := []string{"--socket=" + cfg.Socket, "set"}
if cfg.AcceptDNS != nil && *cfg.AcceptDNS {
args = append(args, "--accept-dns=true")
} else {
args = append(args, "--accept-dns=false")
}
// --advertise-routes can be passed an empty string to configure a
// device (that might have previously advertised subnet routes) to not
// advertise any routes. Respect an empty string passed by a user and
// use it to explicitly unset the routes.
if cfg.Routes != nil {
args = append(args, "--advertise-routes="+*cfg.Routes)
}
if cfg.Hostname != "" {
args = append(args, "--hostname="+cfg.Hostname)
}
log.Printf("Running 'tailscale set'")
cmd := exec.CommandContext(ctx, "tailscale", args...)
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
if err := cmd.Run(); err != nil {
return fmt.Errorf("tailscale set failed: %v", err)
}
return nil
}
// ensureTunFile checks that /dev/net/tun exists, creating it if
// missing.
func ensureTunFile(root string) error {
// Verify that /dev/net/tun exists, in some container envs it
// needs to be mknod-ed.
if _, err := os.Stat(filepath.Join(root, "dev/net")); errors.Is(err, fs.ErrNotExist) {
if err := os.MkdirAll(filepath.Join(root, "dev/net"), 0755); err != nil {
return err
}
}
if _, err := os.Stat(filepath.Join(root, "dev/net/tun")); errors.Is(err, fs.ErrNotExist) {
dev := unix.Mkdev(10, 200) // tuntap major and minor
if err := unix.Mknod(filepath.Join(root, "dev/net/tun"), 0600|unix.S_IFCHR, int(dev)); err != nil {
return err
}
}
return nil
}
// ensureIPForwarding enables IPv4/IPv6 forwarding for the container.
func ensureIPForwarding(root, clusterProxyTargetIP, tailnetTargetIP, tailnetTargetFQDN string, routes *string) error {
var (
v4Forwarding, v6Forwarding bool
)
if clusterProxyTargetIP != "" {
proxyIP, err := netip.ParseAddr(clusterProxyTargetIP)
if err != nil {
return fmt.Errorf("invalid cluster destination IP: %v", err)
}
if proxyIP.Is4() {
v4Forwarding = true
} else {
v6Forwarding = true
}
}
if tailnetTargetIP != "" {
proxyIP, err := netip.ParseAddr(tailnetTargetIP)
if err != nil {
return fmt.Errorf("invalid tailnet destination IP: %v", err)
}
if proxyIP.Is4() {
v4Forwarding = true
} else {
v6Forwarding = true
}
}
// Currently we only proxy traffic to the IPv4 address of the tailnet
// target.
if tailnetTargetFQDN != "" {
v4Forwarding = true
}
if routes != nil && *routes != "" {
for _, route := range strings.Split(*routes, ",") {
cidr, err := netip.ParsePrefix(route)
if err != nil {
return fmt.Errorf("invalid subnet route: %v", err)
}
if cidr.Addr().Is4() {
v4Forwarding = true
} else {
v6Forwarding = true
}
}
}
return enableIPForwarding(v4Forwarding, v6Forwarding, root)
}
func enableIPForwarding(v4Forwarding, v6Forwarding bool, root string) error {
var paths []string
if v4Forwarding {
paths = append(paths, filepath.Join(root, "proc/sys/net/ipv4/ip_forward"))
}
if v6Forwarding {
paths = append(paths, filepath.Join(root, "proc/sys/net/ipv6/conf/all/forwarding"))
}
// In some common configurations (e.g. default docker,
// kubernetes), the container environment denies write access to
// most sysctls, including IP forwarding controls. Check the
// sysctl values before trying to change them, so that we
// gracefully do nothing if the container's already been set up
// properly by e.g. a k8s initContainer.
for _, path := range paths {
bs, err := os.ReadFile(path)
if err != nil {
return fmt.Errorf("reading %q: %w", path, err)
}
if v := strings.TrimSpace(string(bs)); v != "1" {
if err := os.WriteFile(path, []byte("1"), 0644); err != nil {
return fmt.Errorf("enabling %q: %w", path, err)
}
}
}
return nil
}
func installEgressForwardingRule(ctx context.Context, dstStr string, tsIPs []netip.Prefix, nfr linuxfw.NetfilterRunner) error {
dst, err := netip.ParseAddr(dstStr)
if err != nil {
return err
}
var local netip.Addr
for _, pfx := range tsIPs {
if !pfx.IsSingleIP() {
continue
}
if pfx.Addr().Is4() != dst.Is4() {
continue
}
local = pfx.Addr()
break
}
if !local.IsValid() {
return fmt.Errorf("no tailscale IP matching family of %s found in %v", dstStr, tsIPs)
}
if err := nfr.DNATNonTailscaleTraffic("tailscale0", dst); err != nil {
return fmt.Errorf("installing egress proxy rules: %w", err)
}
if err := nfr.AddSNATRuleForDst(local, dst); err != nil {
return fmt.Errorf("installing egress proxy rules: %w", err)
}
if err := nfr.ClampMSSToPMTU("tailscale0", dst); err != nil {
return fmt.Errorf("installing egress proxy rules: %w", err)
}
return nil
}
// installTSForwardingRuleForDestination accepts a destination address and a
// list of node's tailnet addresses, sets up rules to forward traffic for
// destination to the tailnet IP matching the destination IP family.
// Destination can be Pod IP of this node.
func installTSForwardingRuleForDestination(ctx context.Context, dstFilter string, tsIPs []netip.Prefix, nfr linuxfw.NetfilterRunner) error {
dst, err := netip.ParseAddr(dstFilter)
if err != nil {
return err
}
var local netip.Addr
for _, pfx := range tsIPs {
if !pfx.IsSingleIP() {
continue
}
if pfx.Addr().Is4() != dst.Is4() {
continue
}
local = pfx.Addr()
break
}
if !local.IsValid() {
return fmt.Errorf("no tailscale IP matching family of %s found in %v", dstFilter, tsIPs)
}
if err := nfr.AddDNATRule(dst, local); err != nil {
return fmt.Errorf("installing rule for forwarding traffic to tailnet IP: %w", err)
}
return nil
}
func installIngressForwardingRule(ctx context.Context, dstStr string, tsIPs []netip.Prefix, nfr linuxfw.NetfilterRunner) error {
dst, err := netip.ParseAddr(dstStr)
if err != nil {
return err
}
var local netip.Addr
for _, pfx := range tsIPs {
if !pfx.IsSingleIP() {
continue
}
if pfx.Addr().Is4() != dst.Is4() {
continue
}
local = pfx.Addr()
break
}
if !local.IsValid() {
return fmt.Errorf("no tailscale IP matching family of %s found in %v", dstStr, tsIPs)
}
if err := nfr.AddDNATRule(local, dst); err != nil {
return fmt.Errorf("installing ingress proxy rules: %w", err)
}
if err := nfr.ClampMSSToPMTU("tailscale0", dst); err != nil {
return fmt.Errorf("installing ingress proxy rules: %w", err)
}
return nil
}
func installIngressForwardingRuleForDNSTarget(ctx context.Context, backendAddrs []net.IP, tsIPs []netip.Prefix, nfr linuxfw.NetfilterRunner) error {
var (
tsv4 netip.Addr
tsv6 netip.Addr
v4Backends []netip.Addr
v6Backends []netip.Addr
)
for _, pfx := range tsIPs {
if pfx.IsSingleIP() && pfx.Addr().Is4() {
tsv4 = pfx.Addr()
continue
}
if pfx.IsSingleIP() && pfx.Addr().Is6() {
tsv6 = pfx.Addr()
continue
}
}
// TODO: log if more than one backend address is found and firewall is
// in nftables mode that only the first IP will be used.
for _, ip := range backendAddrs {
if ip.To4() != nil {
v4Backends = append(v4Backends, netip.AddrFrom4([4]byte(ip.To4())))
}
if ip.To16() != nil {
v6Backends = append(v6Backends, netip.AddrFrom16([16]byte(ip.To16())))
}
}
// Enable IP forwarding here as opposed to at the start of containerboot
// as the IPv4/IPv6 requirements might have changed.
// For Kubernetes operator proxies, forwarding for both IPv4 and IPv6 is
// enabled by an init container, so in practice enabling forwarding here
// is only needed if this proxy has been configured by manually setting
// TS_EXPERIMENTAL_DEST_DNS_NAME env var for a containerboot instance.
if err := enableIPForwarding(len(v4Backends) != 0, len(v6Backends) != 0, ""); err != nil {
log.Printf("[unexpected] failed to ensure IP forwarding: %v", err)
}
updateFirewall := func(dst netip.Addr, backendTargets []netip.Addr) error {
if err := nfr.DNATWithLoadBalancer(dst, backendTargets); err != nil {
return fmt.Errorf("installing DNAT rules for ingress backends %+#v: %w", backendTargets, err)
}
// The backend might advertize MSS higher than that of the
// tailscale interfaces. Clamp MSS of packets going out via
// tailscale0 interface to its MTU to prevent broken connections
// in environments where path MTU discovery is not working.
if err := nfr.ClampMSSToPMTU("tailscale0", dst); err != nil {
return fmt.Errorf("adding rule to clamp traffic via tailscale0: %v", err)
}
return nil
}
if len(v4Backends) != 0 {
if !tsv4.IsValid() {
log.Printf("backend targets %v contain at least one IPv4 address, but this node's Tailscale IPs do not contain a valid IPv4 address: %v", backendAddrs, tsIPs)
} else if err := updateFirewall(tsv4, v4Backends); err != nil {
return fmt.Errorf("Installing IPv4 firewall rules: %w", err)
}
}
if len(v6Backends) != 0 && !tsv6.IsValid() {
if !tsv6.IsValid() {
log.Printf("backend targets %v contain at least one IPv6 address, but this node's Tailscale IPs do not contain a valid IPv6 address: %v", backendAddrs, tsIPs)
} else if !nfr.HasIPV6NAT() {
log.Printf("backend targets %v contain at least one IPv6 address, but the chosen firewall mode does not support IPv6 NAT", backendAddrs)
} else if err := updateFirewall(tsv6, v6Backends); err != nil {
return fmt.Errorf("Installing IPv6 firewall rules: %w", err)
}
}
return nil
}
// settings is all the configuration for containerboot.
type settings struct {
AuthKey string
Hostname string
Routes *string
// ProxyTargetIP is the destination IP to which all incoming
// Tailscale traffic should be proxied. If empty, no proxying
// is done. This is typically a locally reachable IP.
ProxyTargetIP string
// ProxyTargetDNSName is a DNS name to whose backing IP addresses all
// incoming Tailscale traffic should be proxied.
ProxyTargetDNSName string
// TailnetTargetIP is the destination IP to which all incoming
// non-Tailscale traffic should be proxied. This is typically a
// Tailscale IP.
TailnetTargetIP string
// TailnetTargetFQDN is an MagicDNS name to which all incoming
// non-Tailscale traffic should be proxied. This must be a full Tailnet
// node FQDN.
TailnetTargetFQDN string
ServeConfigPath string
DaemonExtraArgs string
ExtraArgs string
InKubernetes bool
UserspaceMode bool
StateDir string
AcceptDNS *bool
KubeSecret string
SOCKSProxyAddr string
HTTPProxyAddr string
Socket string
AuthOnce bool
Root string
KubernetesCanPatch bool
TailscaledConfigFilePath string
// If set to true and, if this containerboot instance is a Kubernetes
// ingress proxy, set up rules to forward incoming cluster traffic to be
// forwarded to the ingress target in cluster.
AllowProxyingClusterTrafficViaIngress bool
// PodIP is the IP of the Pod if running in Kubernetes. This is used
// when setting up rules to proxy cluster traffic to cluster ingress
// target.
PodIP string
}
func (s *settings) validate() error {
if s.TailscaledConfigFilePath != "" {
if _, err := conffile.Load(s.TailscaledConfigFilePath); err != nil {
return fmt.Errorf("error validating tailscaled configfile contents: %w", err)
}
}
if s.ProxyTargetIP != "" && s.UserspaceMode {
return errors.New("TS_DEST_IP is not supported with TS_USERSPACE")
}
if s.ProxyTargetDNSName != "" && s.UserspaceMode {
return errors.New("TS_EXPERIMENTAL_DEST_DNS_NAME is not supported with TS_USERSPACE")
}
if s.ProxyTargetDNSName != "" && s.ProxyTargetIP != "" {
return errors.New("TS_EXPERIMENTAL_DEST_DNS_NAME and TS_DEST_IP cannot both be set")
}
if s.TailnetTargetIP != "" && s.UserspaceMode {
return errors.New("TS_TAILNET_TARGET_IP is not supported with TS_USERSPACE")
}
if s.TailnetTargetFQDN != "" && s.UserspaceMode {
return errors.New("TS_TAILNET_TARGET_FQDN is not supported with TS_USERSPACE")
}
if s.TailnetTargetFQDN != "" && s.TailnetTargetIP != "" {
return errors.New("Both TS_TAILNET_TARGET_IP and TS_TAILNET_FQDN cannot be set")
}
if s.TailscaledConfigFilePath != "" && (s.AcceptDNS != nil || s.AuthKey != "" || s.Routes != nil || s.ExtraArgs != "" || s.Hostname != "") {
return errors.New("EXPERIMENTAL_TS_CONFIGFILE_PATH cannot be set in combination with TS_HOSTNAME, TS_EXTRA_ARGS, TS_AUTHKEY, TS_ROUTES, TS_ACCEPT_DNS.")
}
if s.AllowProxyingClusterTrafficViaIngress && s.UserspaceMode {
return errors.New("EXPERIMENTAL_ALLOW_PROXYING_CLUSTER_TRAFFIC_VIA_INGRESS is not supported in userspace mode")
}
if s.AllowProxyingClusterTrafficViaIngress && s.ServeConfigPath == "" {
return errors.New("EXPERIMENTAL_ALLOW_PROXYING_CLUSTER_TRAFFIC_VIA_INGRESS is set but this is not a cluster ingress proxy")
}
if s.AllowProxyingClusterTrafficViaIngress && s.PodIP == "" {
return errors.New("EXPERIMENTAL_ALLOW_PROXYING_CLUSTER_TRAFFIC_VIA_INGRESS is set but POD_IP is not set")
}
return nil
}
func resolveDNS(ctx context.Context, name string) ([]net.IP, error) {
// TODO (irbekrm): look at using recursive.Resolver instead to resolve
// the DNS names as well as retrieve TTLs. It looks though that this
// seems to return very short TTLs (shorter than on the actual records).
ip4s, err := net.DefaultResolver.LookupIP(ctx, "ip4", name)
if err != nil {
if e, ok := err.(*net.DNSError); !(ok && e.IsNotFound) {
return nil, fmt.Errorf("error looking up IPv4 addresses: %v", err)
}
}
ip6s, err := net.DefaultResolver.LookupIP(ctx, "ip6", name)
if err != nil {
if e, ok := err.(*net.DNSError); !(ok && e.IsNotFound) {
return nil, fmt.Errorf("error looking up IPv6 addresses: %v", err)
}
}
if len(ip4s) == 0 && len(ip6s) == 0 {
return nil, fmt.Errorf("no IPv4 or IPv6 addresses found for host: %s", name)
}
return append(ip4s, ip6s...), nil
}
// defaultEnv returns the value of the given envvar name, or defVal if
// unset.
func defaultEnv(name, defVal string) string {
if v, ok := os.LookupEnv(name); ok {
return v
}
return defVal
}
// defaultEnvStringPointer returns a pointer to the given envvar value if set, else
// returns nil. This is useful in cases where we need to distinguish between a
// variable being set to empty string vs unset.
func defaultEnvStringPointer(name string) *string {
if v, ok := os.LookupEnv(name); ok {
return &v
}
return nil
}
// defaultEnvBoolPointer returns a pointer to the given envvar value if set, else
// returns nil. This is useful in cases where we need to distinguish between a
// variable being explicitly set to false vs unset.
func defaultEnvBoolPointer(name string) *bool {
v := os.Getenv(name)
ret, err := strconv.ParseBool(v)
if err != nil {
return nil
}
return &ret
}
func defaultEnvs(names []string, defVal string) string {
for _, name := range names {
if v, ok := os.LookupEnv(name); ok {
return v
}
}
return defVal
}
// defaultBool returns the boolean value of the given envvar name, or
// defVal if unset or not a bool.
func defaultBool(name string, defVal bool) bool {
v := os.Getenv(name)
ret, err := strconv.ParseBool(v)
if err != nil {
return defVal
}
return ret
}
// contextWithExitSignalWatch watches for SIGTERM/SIGINT signals. It returns a
// context that gets cancelled when a signal is received and a cancel function
// that can be called to free the resources when the watch should be stopped.
func contextWithExitSignalWatch() (context.Context, func()) {
closeChan := make(chan string)
ctx, cancel := context.WithCancel(context.Background())
signalChan := make(chan os.Signal, 1)
signal.Notify(signalChan, syscall.SIGINT, syscall.SIGTERM)
go func() {
select {
case <-signalChan:
cancel()
case <-closeChan:
return
}
}()
f := func() {
closeChan <- "goodbye"
}
return ctx, f
}
// isTwoStepConfigAuthOnce returns true if the Tailscale node should be configured
// in two steps and login should only happen once.
// Step 1: run 'tailscaled'
// Step 2):
// A) if this is the first time starting this node run 'tailscale up --authkey <authkey> <config opts>'
// B) if this is not the first time starting this node run 'tailscale set <config opts>'.
func isTwoStepConfigAuthOnce(cfg *settings) bool {
return cfg.AuthOnce && cfg.TailscaledConfigFilePath == ""
}
// isTwoStepConfigAlwaysAuth returns true if the Tailscale node should be configured
// in two steps and we should log in every time it starts.
// Step 1: run 'tailscaled'
// Step 2): run 'tailscale up --authkey <authkey> <config opts>'
func isTwoStepConfigAlwaysAuth(cfg *settings) bool {
return !cfg.AuthOnce && cfg.TailscaledConfigFilePath == ""
}
// isOneStepConfig returns true if the Tailscale node should always be ran and
// configured in a single step by running 'tailscaled <config opts>'
func isOneStepConfig(cfg *settings) bool {
return cfg.TailscaledConfigFilePath != ""
}