tailscale/wgengine/magicsock/magicsock_test.go

1797 lines
45 KiB
Go

// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package magicsock
import (
"bytes"
"context"
crand "crypto/rand"
"crypto/tls"
"encoding/binary"
"errors"
"fmt"
"io/ioutil"
"math/rand"
"net"
"net/http"
"net/http/httptest"
"os"
"runtime"
"strconv"
"strings"
"sync"
"testing"
"time"
"unsafe"
"go4.org/mem"
"golang.zx2c4.com/wireguard/device"
"golang.zx2c4.com/wireguard/tun/tuntest"
"inet.af/netaddr"
"tailscale.com/derp"
"tailscale.com/derp/derphttp"
"tailscale.com/ipn/ipnstate"
"tailscale.com/net/stun/stuntest"
"tailscale.com/net/tstun"
"tailscale.com/tailcfg"
"tailscale.com/tstest"
"tailscale.com/tstest/natlab"
"tailscale.com/types/key"
"tailscale.com/types/logger"
"tailscale.com/types/netmap"
"tailscale.com/types/nettype"
"tailscale.com/util/cibuild"
"tailscale.com/util/racebuild"
"tailscale.com/wgengine/filter"
"tailscale.com/wgengine/wgcfg"
"tailscale.com/wgengine/wgcfg/nmcfg"
"tailscale.com/wgengine/wglog"
)
func init() {
os.Setenv("IN_TS_TEST", "1")
// Some of these tests lose a disco pong before establishing a
// direct connection, so instead of waiting 5 seconds in the
// test, reduce the wait period.
// (In particular, TestActiveDiscovery.)
discoPingInterval = 100 * time.Millisecond
pingTimeoutDuration = 100 * time.Millisecond
}
// WaitReady waits until the magicsock is entirely initialized and connected
// to its home DERP server. This is normally not necessary, since magicsock
// is intended to be entirely asynchronous, but it helps eliminate race
// conditions in tests. In particular, you can't expect two test magicsocks
// to be able to connect to each other through a test DERP unless they are
// both fully initialized before you try.
func (c *Conn) WaitReady(t testing.TB) {
t.Helper()
timer := time.NewTimer(10 * time.Second)
defer timer.Stop()
select {
case <-c.derpStarted:
return
case <-c.connCtx.Done():
t.Fatalf("magicsock.Conn closed while waiting for readiness")
case <-timer.C:
t.Fatalf("timeout waiting for readiness")
}
}
func runDERPAndStun(t *testing.T, logf logger.Logf, l nettype.PacketListener, stunIP netaddr.IP) (derpMap *tailcfg.DERPMap, cleanup func()) {
d := derp.NewServer(key.NewNode(), logf)
httpsrv := httptest.NewUnstartedServer(derphttp.Handler(d))
httpsrv.Config.ErrorLog = logger.StdLogger(logf)
httpsrv.Config.TLSNextProto = make(map[string]func(*http.Server, *tls.Conn, http.Handler))
httpsrv.StartTLS()
stunAddr, stunCleanup := stuntest.ServeWithPacketListener(t, l)
m := &tailcfg.DERPMap{
Regions: map[int]*tailcfg.DERPRegion{
1: {
RegionID: 1,
RegionCode: "test",
Nodes: []*tailcfg.DERPNode{
{
Name: "t1",
RegionID: 1,
HostName: "test-node.unused",
IPv4: "127.0.0.1",
IPv6: "none",
STUNPort: stunAddr.Port,
DERPPort: httpsrv.Listener.Addr().(*net.TCPAddr).Port,
InsecureForTests: true,
STUNTestIP: stunIP.String(),
},
},
},
},
}
cleanup = func() {
httpsrv.CloseClientConnections()
httpsrv.Close()
d.Close()
stunCleanup()
}
return m, cleanup
}
// magicStack is a magicsock, plus all the stuff around it that's
// necessary to send and receive packets to test e2e wireguard
// happiness.
type magicStack struct {
privateKey key.NodePrivate
epCh chan []tailcfg.Endpoint // endpoint updates produced by this peer
conn *Conn // the magicsock itself
tun *tuntest.ChannelTUN // TUN device to send/receive packets
tsTun *tstun.Wrapper // wrapped tun that implements filtering and wgengine hooks
dev *device.Device // the wireguard-go Device that connects the previous things
wgLogger *wglog.Logger // wireguard-go log wrapper
}
// newMagicStack builds and initializes an idle magicsock and
// friends. You need to call conn.SetNetworkMap and dev.Reconfig
// before anything interesting happens.
func newMagicStack(t testing.TB, logf logger.Logf, l nettype.PacketListener, derpMap *tailcfg.DERPMap) *magicStack {
privateKey := key.NewNode()
return newMagicStackWithKey(t, logf, l, derpMap, privateKey)
}
func newMagicStackWithKey(t testing.TB, logf logger.Logf, l nettype.PacketListener, derpMap *tailcfg.DERPMap, privateKey key.NodePrivate) *magicStack {
t.Helper()
epCh := make(chan []tailcfg.Endpoint, 100) // arbitrary
conn, err := NewConn(Options{
Logf: logf,
TestOnlyPacketListener: l,
EndpointsFunc: func(eps []tailcfg.Endpoint) {
epCh <- eps
},
})
if err != nil {
t.Fatalf("constructing magicsock: %v", err)
}
conn.SetDERPMap(derpMap)
if err := conn.SetPrivateKey(privateKey); err != nil {
t.Fatalf("setting private key in magicsock: %v", err)
}
tun := tuntest.NewChannelTUN()
tsTun := tstun.Wrap(logf, tun.TUN())
tsTun.SetFilter(filter.NewAllowAllForTest(logf))
wgLogger := wglog.NewLogger(logf)
dev := wgcfg.NewDevice(tsTun, conn.Bind(), wgLogger.DeviceLogger)
dev.Up()
// Wait for magicsock to connect up to DERP.
conn.WaitReady(t)
// Wait for first endpoint update to be available
deadline := time.Now().Add(2 * time.Second)
for len(epCh) == 0 && time.Now().Before(deadline) {
time.Sleep(100 * time.Millisecond)
}
return &magicStack{
privateKey: privateKey,
epCh: epCh,
conn: conn,
tun: tun,
tsTun: tsTun,
dev: dev,
wgLogger: wgLogger,
}
}
func (s *magicStack) Reconfig(cfg *wgcfg.Config) error {
s.wgLogger.SetPeers(cfg.Peers)
return wgcfg.ReconfigDevice(s.dev, cfg, s.conn.logf)
}
func (s *magicStack) String() string {
pub := s.Public()
return pub.ShortString()
}
func (s *magicStack) Close() {
s.dev.Close()
s.conn.Close()
}
func (s *magicStack) Public() key.NodePublic {
return s.privateKey.Public()
}
func (s *magicStack) Status() *ipnstate.Status {
var sb ipnstate.StatusBuilder
s.conn.UpdateStatus(&sb)
return sb.Status()
}
// IP returns the Tailscale IP address assigned to this magicStack.
//
// Something external needs to provide a NetworkMap and WireGuard
// configs to the magicStack in order for it to acquire an IP
// address. See meshStacks for one possible source of netmaps and IPs.
func (s *magicStack) IP() netaddr.IP {
for deadline := time.Now().Add(5 * time.Second); time.Now().Before(deadline); time.Sleep(10 * time.Millisecond) {
st := s.Status()
if len(st.TailscaleIPs) > 0 {
return st.TailscaleIPs[0]
}
}
panic("timed out waiting for magicstack to get an IP assigned")
}
// meshStacks monitors epCh on all given ms, and plumbs network maps
// and WireGuard configs into everyone to form a full mesh that has up
// to date endpoint info. Think of it as an extremely stripped down
// and purpose-built Tailscale control plane.
func meshStacks(logf logger.Logf, mutateNetmap func(idx int, nm *netmap.NetworkMap), ms ...*magicStack) (cleanup func()) {
ctx, cancel := context.WithCancel(context.Background())
// Serialize all reconfigurations globally, just to keep things
// simpler.
var (
mu sync.Mutex
eps = make([][]tailcfg.Endpoint, len(ms))
)
buildNetmapLocked := func(myIdx int) *netmap.NetworkMap {
me := ms[myIdx]
nm := &netmap.NetworkMap{
PrivateKey: me.privateKey,
NodeKey: me.privateKey.Public(),
Addresses: []netaddr.IPPrefix{netaddr.IPPrefixFrom(netaddr.IPv4(1, 0, 0, byte(myIdx+1)), 32)},
}
for i, peer := range ms {
if i == myIdx {
continue
}
addrs := []netaddr.IPPrefix{netaddr.IPPrefixFrom(netaddr.IPv4(1, 0, 0, byte(i+1)), 32)}
peer := &tailcfg.Node{
ID: tailcfg.NodeID(i + 1),
Name: fmt.Sprintf("node%d", i+1),
Key: peer.privateKey.Public(),
DiscoKey: peer.conn.DiscoPublicKey(),
Addresses: addrs,
AllowedIPs: addrs,
Endpoints: epStrings(eps[i]),
DERP: "127.3.3.40:1",
}
nm.Peers = append(nm.Peers, peer)
}
if mutateNetmap != nil {
mutateNetmap(myIdx, nm)
}
return nm
}
updateEps := func(idx int, newEps []tailcfg.Endpoint) {
mu.Lock()
defer mu.Unlock()
eps[idx] = newEps
for i, m := range ms {
nm := buildNetmapLocked(i)
m.conn.SetNetworkMap(nm)
peerSet := make(map[key.NodePublic]struct{}, len(nm.Peers))
for _, peer := range nm.Peers {
peerSet[peer.Key] = struct{}{}
}
m.conn.UpdatePeers(peerSet)
wg, err := nmcfg.WGCfg(nm, logf, netmap.AllowSingleHosts, "")
if err != nil {
// We're too far from the *testing.T to be graceful,
// blow up. Shouldn't happen anyway.
panic(fmt.Sprintf("failed to construct wgcfg from netmap: %v", err))
}
if err := m.Reconfig(wg); err != nil {
if ctx.Err() != nil || errors.Is(err, errConnClosed) {
// shutdown race, don't care.
return
}
panic(fmt.Sprintf("device reconfig failed: %v", err))
}
}
}
var wg sync.WaitGroup
wg.Add(len(ms))
for i := range ms {
go func(myIdx int) {
defer wg.Done()
for {
select {
case <-ctx.Done():
return
case eps := <-ms[myIdx].epCh:
logf("conn%d endpoints update", myIdx+1)
updateEps(myIdx, eps)
}
}
}(i)
}
return func() {
cancel()
wg.Wait()
}
}
func TestNewConn(t *testing.T) {
tstest.PanicOnLog()
tstest.ResourceCheck(t)
epCh := make(chan string, 16)
epFunc := func(endpoints []tailcfg.Endpoint) {
for _, ep := range endpoints {
epCh <- ep.Addr.String()
}
}
stunAddr, stunCleanupFn := stuntest.Serve(t)
defer stunCleanupFn()
port := pickPort(t)
conn, err := NewConn(Options{
Port: port,
EndpointsFunc: epFunc,
Logf: t.Logf,
})
if err != nil {
t.Fatal(err)
}
defer conn.Close()
conn.SetDERPMap(stuntest.DERPMapOf(stunAddr.String()))
conn.SetPrivateKey(key.NewNode())
go func() {
var pkt [64 << 10]byte
for {
_, _, err := conn.receiveIPv4(pkt[:])
if err != nil {
return
}
}
}()
timeout := time.After(10 * time.Second)
var endpoints []string
suffix := fmt.Sprintf(":%d", port)
collectEndpoints:
for {
select {
case ep := <-epCh:
endpoints = append(endpoints, ep)
if strings.HasSuffix(ep, suffix) {
break collectEndpoints
}
case <-timeout:
t.Fatalf("timeout with endpoints: %v", endpoints)
}
}
}
func pickPort(t testing.TB) uint16 {
t.Helper()
conn, err := net.ListenPacket("udp4", "127.0.0.1:0")
if err != nil {
t.Fatal(err)
}
defer conn.Close()
return uint16(conn.LocalAddr().(*net.UDPAddr).Port)
}
func TestPickDERPFallback(t *testing.T) {
tstest.PanicOnLog()
tstest.ResourceCheck(t)
c := newConn()
dm := &tailcfg.DERPMap{
Regions: map[int]*tailcfg.DERPRegion{
1: {},
2: {},
3: {},
4: {},
5: {},
6: {},
7: {},
8: {},
},
}
c.derpMap = dm
a := c.pickDERPFallback()
if a == 0 {
t.Fatalf("pickDERPFallback returned 0")
}
// Test that it's consistent.
for i := 0; i < 50; i++ {
b := c.pickDERPFallback()
if a != b {
t.Fatalf("got inconsistent %d vs %d values", a, b)
}
}
// Test that that the pointer value of c is blended in and
// distribution over nodes works.
got := map[int]int{}
for i := 0; i < 50; i++ {
c = newConn()
c.derpMap = dm
got[c.pickDERPFallback()]++
}
t.Logf("distribution: %v", got)
if len(got) < 2 {
t.Errorf("expected more than 1 node; got %v", got)
}
// Test that stickiness works.
const someNode = 123456
c.myDerp = someNode
if got := c.pickDERPFallback(); got != someNode {
t.Errorf("not sticky: got %v; want %v", got, someNode)
}
// TODO: test that disco-based clients changing to a new DERP
// region causes this fallback to also move, once disco clients
// have fixed DERP fallback logic.
}
// TestDeviceStartStop exercises the startup and shutdown logic of
// wireguard-go, which is intimately intertwined with magicsock's own
// lifecycle. We seem to be good at generating deadlocks here, so if
// this test fails you should suspect a deadlock somewhere in startup
// or shutdown. It may be an infrequent flake, so run with
// -count=10000 to be sure.
func TestDeviceStartStop(t *testing.T) {
tstest.PanicOnLog()
tstest.ResourceCheck(t)
conn, err := NewConn(Options{
EndpointsFunc: func(eps []tailcfg.Endpoint) {},
Logf: t.Logf,
})
if err != nil {
t.Fatal(err)
}
defer conn.Close()
tun := tuntest.NewChannelTUN()
wgLogger := wglog.NewLogger(t.Logf)
dev := wgcfg.NewDevice(tun.TUN(), conn.Bind(), wgLogger.DeviceLogger)
dev.Up()
dev.Close()
}
// Exercise a code path in sendDiscoMessage if the connection has been closed.
func TestConnClosed(t *testing.T) {
mstun := &natlab.Machine{Name: "stun"}
m1 := &natlab.Machine{Name: "m1"}
m2 := &natlab.Machine{Name: "m2"}
inet := natlab.NewInternet()
sif := mstun.Attach("eth0", inet)
m1if := m1.Attach("eth0", inet)
m2if := m2.Attach("eth0", inet)
d := &devices{
m1: m1,
m1IP: m1if.V4(),
m2: m2,
m2IP: m2if.V4(),
stun: mstun,
stunIP: sif.V4(),
}
logf, closeLogf := logger.LogfCloser(t.Logf)
defer closeLogf()
derpMap, cleanup := runDERPAndStun(t, logf, d.stun, d.stunIP)
defer cleanup()
ms1 := newMagicStack(t, logger.WithPrefix(logf, "conn1: "), d.m1, derpMap)
defer ms1.Close()
ms2 := newMagicStack(t, logger.WithPrefix(logf, "conn2: "), d.m2, derpMap)
defer ms2.Close()
cleanup = meshStacks(t.Logf, nil, ms1, ms2)
defer cleanup()
pkt := tuntest.Ping(ms2.IP().IPAddr().IP, ms1.IP().IPAddr().IP)
if len(ms1.conn.activeDerp) == 0 {
t.Errorf("unexpected DERP empty got: %v want: >0", len(ms1.conn.activeDerp))
}
ms1.conn.Close()
ms2.conn.Close()
// This should hit a c.closed conditional in sendDiscoMessage() and return immediately.
ms1.tun.Outbound <- pkt
select {
case <-ms2.tun.Inbound:
t.Error("unexpected response with connection closed")
case <-time.After(100 * time.Millisecond):
}
if len(ms1.conn.activeDerp) > 0 {
t.Errorf("unexpected DERP active got: %v want:0", len(ms1.conn.activeDerp))
}
}
func makeNestable(t *testing.T) (logf logger.Logf, setT func(t *testing.T)) {
var mu sync.RWMutex
cur := t
setT = func(t *testing.T) {
mu.Lock()
cur = t
mu.Unlock()
}
logf = func(s string, args ...interface{}) {
mu.RLock()
t := cur
t.Helper()
t.Logf(s, args...)
mu.RUnlock()
}
return logf, setT
}
// localhostOnlyListener is a nettype.PacketListener that listens on
// localhost (127.0.0.1 or ::1, depending on the requested network)
// when asked to listen on the unspecified address.
//
// It's used in tests where we set up localhost-to-localhost
// communication, because if you listen on the unspecified address on
// macOS and Windows, you get an interactive firewall consent prompt
// to allow the binding, which breaks our CIs.
type localhostListener struct{}
func (localhostListener) ListenPacket(ctx context.Context, network, address string) (net.PacketConn, error) {
host, port, err := net.SplitHostPort(address)
if err != nil {
return nil, err
}
switch network {
case "udp4":
switch host {
case "", "0.0.0.0":
host = "127.0.0.1"
case "127.0.0.1":
default:
return nil, fmt.Errorf("localhostListener cannot be asked to listen on %q", address)
}
case "udp6":
switch host {
case "", "::":
host = "::1"
case "::1":
default:
return nil, fmt.Errorf("localhostListener cannot be asked to listen on %q", address)
}
}
var conf net.ListenConfig
return conf.ListenPacket(ctx, network, net.JoinHostPort(host, port))
}
func TestTwoDevicePing(t *testing.T) {
l, ip := localhostListener{}, netaddr.IPv4(127, 0, 0, 1)
n := &devices{
m1: l,
m1IP: ip,
m2: l,
m2IP: ip,
stun: l,
stunIP: ip,
}
testTwoDevicePing(t, n)
}
// Legacy clients appear to new code as peers that know about DERP and
// WireGuard, but don't have a disco key. Check that we can still
// communicate successfully with such peers.
func TestNoDiscoKey(t *testing.T) {
tstest.PanicOnLog()
tstest.ResourceCheck(t)
derpMap, cleanup := runDERPAndStun(t, t.Logf, localhostListener{}, netaddr.IPv4(127, 0, 0, 1))
defer cleanup()
m1 := newMagicStack(t, t.Logf, localhostListener{}, derpMap)
defer m1.Close()
m2 := newMagicStack(t, t.Logf, localhostListener{}, derpMap)
defer m2.Close()
removeDisco := func(idx int, nm *netmap.NetworkMap) {
for _, p := range nm.Peers {
p.DiscoKey = key.DiscoPublic{}
}
}
cleanupMesh := meshStacks(t.Logf, removeDisco, m1, m2)
defer cleanupMesh()
// Wait for both peers to know about each other before we try to
// ping.
for {
if s1 := m1.Status(); len(s1.Peer) != 1 {
time.Sleep(10 * time.Millisecond)
continue
}
if s2 := m2.Status(); len(s2.Peer) != 1 {
time.Sleep(10 * time.Millisecond)
continue
}
break
}
pkt := tuntest.Ping(m2.IP().IPAddr().IP, m1.IP().IPAddr().IP)
m1.tun.Outbound <- pkt
select {
case <-m2.tun.Inbound:
t.Logf("ping m1>m2 ok")
case <-time.After(10 * time.Second):
t.Fatalf("timed out waiting for ping to transit")
}
}
func TestDiscokeyChange(t *testing.T) {
tstest.PanicOnLog()
tstest.ResourceCheck(t)
derpMap, cleanup := runDERPAndStun(t, t.Logf, localhostListener{}, netaddr.IPv4(127, 0, 0, 1))
defer cleanup()
m1Key := key.NewNode()
m1 := newMagicStackWithKey(t, t.Logf, localhostListener{}, derpMap, m1Key)
defer m1.Close()
m2 := newMagicStack(t, t.Logf, localhostListener{}, derpMap)
defer m2.Close()
var (
mu sync.Mutex
// Start with some random discoKey that isn't actually m1's key,
// to simulate m2 coming up with knowledge of an old, expired
// discokey. We'll switch to the correct one later in the test.
m1DiscoKey = key.NewDisco().Public()
)
setm1Key := func(idx int, nm *netmap.NetworkMap) {
if idx != 1 {
// only mutate m2's netmap
return
}
if len(nm.Peers) != 1 {
// m1 not in netmap yet.
return
}
mu.Lock()
defer mu.Unlock()
nm.Peers[0].DiscoKey = m1DiscoKey
}
cleanupMesh := meshStacks(t.Logf, setm1Key, m1, m2)
defer cleanupMesh()
// Wait for both peers to know about each other.
for {
if s1 := m1.Status(); len(s1.Peer) != 1 {
time.Sleep(10 * time.Millisecond)
continue
}
if s2 := m2.Status(); len(s2.Peer) != 1 {
time.Sleep(10 * time.Millisecond)
continue
}
break
}
mu.Lock()
m1DiscoKey = m1.conn.DiscoPublicKey()
mu.Unlock()
// Manually trigger an endpoint update to meshStacks, so it hands
// m2 a new netmap.
m1.conn.mu.Lock()
m1.epCh <- m1.conn.lastEndpoints
m1.conn.mu.Unlock()
cleanup = newPinger(t, t.Logf, m1, m2)
defer cleanup()
mustDirect(t, t.Logf, m1, m2)
mustDirect(t, t.Logf, m2, m1)
}
func TestActiveDiscovery(t *testing.T) {
t.Run("simple_internet", func(t *testing.T) {
t.Parallel()
mstun := &natlab.Machine{Name: "stun"}
m1 := &natlab.Machine{Name: "m1"}
m2 := &natlab.Machine{Name: "m2"}
inet := natlab.NewInternet()
sif := mstun.Attach("eth0", inet)
m1if := m1.Attach("eth0", inet)
m2if := m2.Attach("eth0", inet)
n := &devices{
m1: m1,
m1IP: m1if.V4(),
m2: m2,
m2IP: m2if.V4(),
stun: mstun,
stunIP: sif.V4(),
}
testActiveDiscovery(t, n)
})
t.Run("facing_easy_firewalls", func(t *testing.T) {
mstun := &natlab.Machine{Name: "stun"}
m1 := &natlab.Machine{
Name: "m1",
PacketHandler: &natlab.Firewall{},
}
m2 := &natlab.Machine{
Name: "m2",
PacketHandler: &natlab.Firewall{},
}
inet := natlab.NewInternet()
sif := mstun.Attach("eth0", inet)
m1if := m1.Attach("eth0", inet)
m2if := m2.Attach("eth0", inet)
n := &devices{
m1: m1,
m1IP: m1if.V4(),
m2: m2,
m2IP: m2if.V4(),
stun: mstun,
stunIP: sif.V4(),
}
testActiveDiscovery(t, n)
})
t.Run("facing_nats", func(t *testing.T) {
mstun := &natlab.Machine{Name: "stun"}
m1 := &natlab.Machine{
Name: "m1",
PacketHandler: &natlab.Firewall{},
}
nat1 := &natlab.Machine{
Name: "nat1",
}
m2 := &natlab.Machine{
Name: "m2",
PacketHandler: &natlab.Firewall{},
}
nat2 := &natlab.Machine{
Name: "nat2",
}
inet := natlab.NewInternet()
lan1 := &natlab.Network{
Name: "lan1",
Prefix4: netaddr.MustParseIPPrefix("192.168.0.0/24"),
}
lan2 := &natlab.Network{
Name: "lan2",
Prefix4: netaddr.MustParseIPPrefix("192.168.1.0/24"),
}
sif := mstun.Attach("eth0", inet)
nat1WAN := nat1.Attach("wan", inet)
nat1LAN := nat1.Attach("lan1", lan1)
nat2WAN := nat2.Attach("wan", inet)
nat2LAN := nat2.Attach("lan2", lan2)
m1if := m1.Attach("eth0", lan1)
m2if := m2.Attach("eth0", lan2)
lan1.SetDefaultGateway(nat1LAN)
lan2.SetDefaultGateway(nat2LAN)
nat1.PacketHandler = &natlab.SNAT44{
Machine: nat1,
ExternalInterface: nat1WAN,
Firewall: &natlab.Firewall{
TrustedInterface: nat1LAN,
},
}
nat2.PacketHandler = &natlab.SNAT44{
Machine: nat2,
ExternalInterface: nat2WAN,
Firewall: &natlab.Firewall{
TrustedInterface: nat2LAN,
},
}
n := &devices{
m1: m1,
m1IP: m1if.V4(),
m2: m2,
m2IP: m2if.V4(),
stun: mstun,
stunIP: sif.V4(),
}
testActiveDiscovery(t, n)
})
}
type devices struct {
m1 nettype.PacketListener
m1IP netaddr.IP
m2 nettype.PacketListener
m2IP netaddr.IP
stun nettype.PacketListener
stunIP netaddr.IP
}
// newPinger starts continuously sending test packets from srcM to
// dstM, until cleanup is invoked to stop it. Each ping has 1 second
// to transit the network. It is a test failure to lose a ping.
func newPinger(t *testing.T, logf logger.Logf, src, dst *magicStack) (cleanup func()) {
ctx, cancel := context.WithCancel(context.Background())
done := make(chan struct{})
one := func() bool {
// TODO(danderson): requiring exactly zero packet loss
// will probably be too strict for some tests we'd like to
// run (e.g. discovery switching to a new path on
// failure). Figure out what kind of thing would be
// acceptable to test instead of "every ping must
// transit".
pkt := tuntest.Ping(dst.IP().IPAddr().IP, src.IP().IPAddr().IP)
select {
case src.tun.Outbound <- pkt:
case <-ctx.Done():
return false
}
select {
case <-dst.tun.Inbound:
return true
case <-time.After(10 * time.Second):
// Very generous timeout here because depending on
// magicsock setup races, the first handshake might get
// eaten by the receiving end (if wireguard-go hasn't been
// configured quite yet), so we have to wait for at least
// the first retransmit from wireguard before we declare
// failure.
t.Errorf("timed out waiting for ping to transit")
return true
case <-ctx.Done():
// Try a little bit longer to consume the packet we're
// waiting for. This is to deal with shutdown races, where
// natlab may still be delivering a packet to us from a
// goroutine.
select {
case <-dst.tun.Inbound:
case <-time.After(time.Second):
}
return false
}
}
cleanup = func() {
cancel()
<-done
}
// Synchronously transit one ping to get things started. This is
// nice because it means that newPinger returning means we've
// worked through initial connectivity.
if !one() {
cleanup()
return
}
go func() {
logf("sending ping stream from %s (%s) to %s (%s)", src, src.IP(), dst, dst.IP())
defer close(done)
for one() {
}
}()
return cleanup
}
// testActiveDiscovery verifies that two magicStacks tied to the given
// devices can establish a direct p2p connection with each other. See
// TestActiveDiscovery for the various configurations of devices that
// get exercised.
func testActiveDiscovery(t *testing.T, d *devices) {
tstest.PanicOnLog()
tstest.ResourceCheck(t)
tlogf, setT := makeNestable(t)
setT(t)
start := time.Now()
wlogf := func(msg string, args ...interface{}) {
t.Helper()
msg = fmt.Sprintf("%s: %s", time.Since(start).Truncate(time.Microsecond), msg)
tlogf(msg, args...)
}
logf, closeLogf := logger.LogfCloser(wlogf)
defer closeLogf()
derpMap, cleanup := runDERPAndStun(t, logf, d.stun, d.stunIP)
defer cleanup()
m1 := newMagicStack(t, logger.WithPrefix(logf, "conn1: "), d.m1, derpMap)
defer m1.Close()
m2 := newMagicStack(t, logger.WithPrefix(logf, "conn2: "), d.m2, derpMap)
defer m2.Close()
cleanup = meshStacks(logf, nil, m1, m2)
defer cleanup()
m1IP := m1.IP()
m2IP := m2.IP()
logf("IPs: %s %s", m1IP, m2IP)
cleanup = newPinger(t, logf, m1, m2)
defer cleanup()
// Everything is now up and running, active discovery should find
// a direct path between our peers. Wait for it to switch away
// from DERP.
mustDirect(t, logf, m1, m2)
mustDirect(t, logf, m2, m1)
logf("starting cleanup")
}
func mustDirect(t *testing.T, logf logger.Logf, m1, m2 *magicStack) {
lastLog := time.Now().Add(-time.Minute)
// See https://github.com/tailscale/tailscale/issues/654
// and https://github.com/tailscale/tailscale/issues/3247 for discussions of this deadline.
for deadline := time.Now().Add(30 * time.Second); time.Now().Before(deadline); time.Sleep(10 * time.Millisecond) {
pst := m1.Status().Peer[m2.Public()]
if pst.CurAddr != "" {
logf("direct link %s->%s found with addr %s", m1, m2, pst.CurAddr)
return
}
if now := time.Now(); now.Sub(lastLog) > time.Second {
logf("no direct path %s->%s yet, addrs %v", m1, m2, pst.Addrs)
lastLog = now
}
}
t.Errorf("magicsock did not find a direct path from %s to %s", m1, m2)
}
func testTwoDevicePing(t *testing.T, d *devices) {
tstest.PanicOnLog()
tstest.ResourceCheck(t)
// This gets reassigned inside every test, so that the connections
// all log using the "current" t.Logf function. Sigh.
nestedLogf, setT := makeNestable(t)
logf, closeLogf := logger.LogfCloser(nestedLogf)
defer closeLogf()
derpMap, cleanup := runDERPAndStun(t, logf, d.stun, d.stunIP)
defer cleanup()
m1 := newMagicStack(t, logf, d.m1, derpMap)
defer m1.Close()
m2 := newMagicStack(t, logf, d.m2, derpMap)
defer m2.Close()
cleanupMesh := meshStacks(logf, nil, m1, m2)
defer cleanupMesh()
// Wait for magicsock to be told about peers from meshStacks.
tstest.WaitFor(10*time.Second, func() error {
if p := m1.Status().Peer[m2.Public()]; p == nil || !p.InMagicSock {
return errors.New("m1 not ready")
}
if p := m2.Status().Peer[m1.Public()]; p == nil || !p.InMagicSock {
return errors.New("m2 not ready")
}
return nil
})
m1cfg := &wgcfg.Config{
Name: "peer1",
PrivateKey: m1.privateKey,
Addresses: []netaddr.IPPrefix{netaddr.MustParseIPPrefix("1.0.0.1/32")},
Peers: []wgcfg.Peer{
{
PublicKey: m2.privateKey.Public(),
DiscoKey: m2.conn.DiscoPublicKey(),
AllowedIPs: []netaddr.IPPrefix{netaddr.MustParseIPPrefix("1.0.0.2/32")},
},
},
}
m2cfg := &wgcfg.Config{
Name: "peer2",
PrivateKey: m2.privateKey,
Addresses: []netaddr.IPPrefix{netaddr.MustParseIPPrefix("1.0.0.2/32")},
Peers: []wgcfg.Peer{
{
PublicKey: m1.privateKey.Public(),
DiscoKey: m1.conn.DiscoPublicKey(),
AllowedIPs: []netaddr.IPPrefix{netaddr.MustParseIPPrefix("1.0.0.1/32")},
},
},
}
if err := m1.Reconfig(m1cfg); err != nil {
t.Fatal(err)
}
if err := m2.Reconfig(m2cfg); err != nil {
t.Fatal(err)
}
// In the normal case, pings succeed immediately.
// However, in the case of a handshake race, we need to retry.
// With very bad luck, we can need to retry multiple times.
allowedRetries := 3
if cibuild.On() {
// Allow extra retries on small/flaky/loaded CI machines.
allowedRetries *= 2
}
// Retries take 5s each. Add 1s for some processing time.
pingTimeout := 5*time.Second*time.Duration(allowedRetries) + time.Second
// sendWithTimeout sends msg using send, checking that it is received unchanged from in.
// It resends once per second until the send succeeds, or pingTimeout time has elapsed.
sendWithTimeout := func(msg []byte, in chan []byte, send func()) error {
start := time.Now()
for time.Since(start) < pingTimeout {
send()
select {
case recv := <-in:
if !bytes.Equal(msg, recv) {
return errors.New("ping did not transit correctly")
}
return nil
case <-time.After(time.Second):
// try again
}
}
return errors.New("ping timed out")
}
ping1 := func(t *testing.T) {
msg2to1 := tuntest.Ping(net.ParseIP("1.0.0.1"), net.ParseIP("1.0.0.2"))
send := func() {
m2.tun.Outbound <- msg2to1
t.Log("ping1 sent")
}
in := m1.tun.Inbound
if err := sendWithTimeout(msg2to1, in, send); err != nil {
t.Error(err)
}
}
ping2 := func(t *testing.T) {
msg1to2 := tuntest.Ping(net.ParseIP("1.0.0.2"), net.ParseIP("1.0.0.1"))
send := func() {
m1.tun.Outbound <- msg1to2
t.Log("ping2 sent")
}
in := m2.tun.Inbound
if err := sendWithTimeout(msg1to2, in, send); err != nil {
t.Error(err)
}
}
outerT := t
t.Run("ping 1.0.0.1", func(t *testing.T) {
setT(t)
defer setT(outerT)
ping1(t)
})
t.Run("ping 1.0.0.2", func(t *testing.T) {
setT(t)
defer setT(outerT)
ping2(t)
})
t.Run("ping 1.0.0.2 via SendPacket", func(t *testing.T) {
setT(t)
defer setT(outerT)
msg1to2 := tuntest.Ping(net.ParseIP("1.0.0.2"), net.ParseIP("1.0.0.1"))
send := func() {
if err := m1.tsTun.InjectOutbound(msg1to2); err != nil {
t.Fatal(err)
}
t.Log("SendPacket sent")
}
in := m2.tun.Inbound
if err := sendWithTimeout(msg1to2, in, send); err != nil {
t.Error(err)
}
})
t.Run("no-op dev1 reconfig", func(t *testing.T) {
setT(t)
defer setT(outerT)
if err := m1.Reconfig(m1cfg); err != nil {
t.Fatal(err)
}
ping1(t)
ping2(t)
})
}
func TestDiscoMessage(t *testing.T) {
c := newConn()
c.logf = t.Logf
c.privateKey = key.NewNode()
peer1Pub := c.DiscoPublicKey()
peer1Priv := c.discoPrivate
n := &tailcfg.Node{
Key: key.NewNode().Public(),
DiscoKey: peer1Pub,
}
c.peerMap.upsertEndpoint(&endpoint{
publicKey: n.Key,
discoKey: n.DiscoKey,
}, key.DiscoPublic{})
const payload = "why hello"
var nonce [24]byte
crand.Read(nonce[:])
pkt := peer1Pub.AppendTo([]byte("TS💬"))
box := peer1Priv.Shared(c.discoPrivate.Public()).Seal([]byte(payload))
pkt = append(pkt, box...)
got := c.handleDiscoMessage(pkt, netaddr.IPPort{}, key.NodePublic{})
if !got {
t.Error("failed to open it")
}
}
// tests that having a endpoint.String prevents wireguard-go's
// log.Printf("%v") of its conn.Endpoint values from using reflect to
// walk into read mutex while they're being used and then causing data
// races.
func TestDiscoStringLogRace(t *testing.T) {
de := new(endpoint)
var wg sync.WaitGroup
wg.Add(2)
go func() {
defer wg.Done()
fmt.Fprintf(ioutil.Discard, "%v", de)
}()
go func() {
defer wg.Done()
de.mu.Lock()
}()
wg.Wait()
}
func Test32bitAlignment(t *testing.T) {
// Need an associated conn with non-nil noteRecvActivity to
// trigger interesting work on the atomics in endpoint.
called := 0
de := endpoint{
c: &Conn{
noteRecvActivity: func(key.NodePublic) { called++ },
},
}
if off := unsafe.Offsetof(de.lastRecv); off%8 != 0 {
t.Fatalf("endpoint.lastRecv is not 8-byte aligned")
}
de.noteRecvActivity() // verify this doesn't panic on 32-bit
if called != 1 {
t.Fatal("expected call to noteRecvActivity")
}
de.noteRecvActivity()
if called != 1 {
t.Error("expected no second call to noteRecvActivity")
}
}
// newTestConn returns a new Conn.
func newTestConn(t testing.TB) *Conn {
t.Helper()
port := pickPort(t)
conn, err := NewConn(Options{
Logf: t.Logf,
Port: port,
TestOnlyPacketListener: localhostListener{},
EndpointsFunc: func(eps []tailcfg.Endpoint) {
t.Logf("endpoints: %q", eps)
},
})
if err != nil {
t.Fatal(err)
}
return conn
}
// addTestEndpoint sets conn's network map to a single peer expected
// to receive packets from sendConn (or DERP), and returns that peer's
// nodekey and discokey.
func addTestEndpoint(tb testing.TB, conn *Conn, sendConn net.PacketConn) (key.NodePublic, key.DiscoPublic) {
// Give conn just enough state that it'll recognize sendConn as a
// valid peer and not fall through to the legacy magicsock
// codepath.
discoKey := key.DiscoPublicFromRaw32(mem.B([]byte{31: 1}))
nodeKey := key.NodePublicFromRaw32(mem.B([]byte{0: 'N', 1: 'K', 31: 0}))
conn.SetNetworkMap(&netmap.NetworkMap{
Peers: []*tailcfg.Node{
{
Key: nodeKey,
DiscoKey: discoKey,
Endpoints: []string{sendConn.LocalAddr().String()},
},
},
})
conn.SetPrivateKey(key.NodePrivateFromRaw32(mem.B([]byte{0: 1, 31: 0})))
_, err := conn.ParseEndpoint(nodeKey.UntypedHexString())
if err != nil {
tb.Fatal(err)
}
conn.addValidDiscoPathForTest(nodeKey, netaddr.MustParseIPPort(sendConn.LocalAddr().String()))
return nodeKey, discoKey
}
func setUpReceiveFrom(tb testing.TB) (roundTrip func()) {
if b, ok := tb.(*testing.B); ok {
b.ReportAllocs()
}
conn := newTestConn(tb)
tb.Cleanup(func() { conn.Close() })
conn.logf = logger.Discard
sendConn, err := net.ListenPacket("udp4", "127.0.0.1:0")
if err != nil {
tb.Fatal(err)
}
tb.Cleanup(func() { sendConn.Close() })
addTestEndpoint(tb, conn, sendConn)
var dstAddr net.Addr = conn.pconn4.LocalAddr()
sendBuf := make([]byte, 1<<10)
for i := range sendBuf {
sendBuf[i] = 'x'
}
buf := make([]byte, 2<<10)
return func() {
if _, err := sendConn.WriteTo(sendBuf, dstAddr); err != nil {
tb.Fatalf("WriteTo: %v", err)
}
n, ep, err := conn.receiveIPv4(buf)
if err != nil {
tb.Fatal(err)
}
_ = n
_ = ep
}
}
// goMajorVersion reports the major Go version and whether it is a Tailscale fork.
// If parsing fails, goMajorVersion returns 0, false.
func goMajorVersion(s string) (version int, isTS bool) {
if !strings.HasPrefix(s, "go1.") {
return 0, false
}
mm := s[len("go1."):]
var major, rest string
for _, sep := range []string{".", "rc", "beta", "-"} {
i := strings.Index(mm, sep)
if i > 0 {
major, rest = mm[:i], mm[i:]
break
}
}
if major == "" {
major = mm
}
n, err := strconv.Atoi(major)
if err != nil {
return 0, false
}
return n, strings.Contains(rest, "ts")
}
func TestGoMajorVersion(t *testing.T) {
tests := []struct {
version string
wantN int
wantTS bool
}{
{"go1.15.8", 15, false},
{"go1.16rc1", 16, false},
{"go1.16rc1", 16, false},
{"go1.15.5-ts3bd89195a3", 15, true},
{"go1.15", 15, false},
{"go1.18-ts0d07ed810a", 18, true},
}
for _, tt := range tests {
n, ts := goMajorVersion(tt.version)
if tt.wantN != n || tt.wantTS != ts {
t.Errorf("goMajorVersion(%s) = %v, %v, want %v, %v", tt.version, n, ts, tt.wantN, tt.wantTS)
}
}
// Ensure that the current Go version is parseable.
n, _ := goMajorVersion(runtime.Version())
if n == 0 {
t.Fatalf("unable to parse %v", runtime.Version())
}
}
func TestReceiveFromAllocs(t *testing.T) {
if racebuild.On {
t.Skip("alloc tests are unreliable with -race")
}
// Go 1.16 and before: allow 3 allocs.
// Go 1.17: allow 2 allocs.
// Go Tailscale fork, Go 1.18+: allow 1 alloc.
major, ts := goMajorVersion(runtime.Version())
maxAllocs := 3
switch {
case major == 17:
maxAllocs = 2
case major >= 18, ts:
maxAllocs = 1
}
t.Logf("allowing %d allocs for Go version %q", maxAllocs, runtime.Version())
roundTrip := setUpReceiveFrom(t)
err := tstest.MinAllocsPerRun(t, uint64(maxAllocs), roundTrip)
if err != nil {
t.Fatal(err)
}
}
func BenchmarkReceiveFrom(b *testing.B) {
roundTrip := setUpReceiveFrom(b)
for i := 0; i < b.N; i++ {
roundTrip()
}
}
func BenchmarkReceiveFrom_Native(b *testing.B) {
b.ReportAllocs()
recvConn, err := net.ListenPacket("udp4", "127.0.0.1:0")
if err != nil {
b.Fatal(err)
}
defer recvConn.Close()
recvConnUDP := recvConn.(*net.UDPConn)
sendConn, err := net.ListenPacket("udp4", "127.0.0.1:0")
if err != nil {
b.Fatal(err)
}
defer sendConn.Close()
var dstAddr net.Addr = recvConn.LocalAddr()
sendBuf := make([]byte, 1<<10)
for i := range sendBuf {
sendBuf[i] = 'x'
}
buf := make([]byte, 2<<10)
for i := 0; i < b.N; i++ {
if _, err := sendConn.WriteTo(sendBuf, dstAddr); err != nil {
b.Fatalf("WriteTo: %v", err)
}
if _, _, err := recvConnUDP.ReadFromUDP(buf); err != nil {
b.Fatalf("ReadFromUDP: %v", err)
}
}
}
// Test that a netmap update where node changes its node key but
// doesn't change its disco key doesn't result in a broken state.
//
// https://github.com/tailscale/tailscale/issues/1391
func TestSetNetworkMapChangingNodeKey(t *testing.T) {
conn := newTestConn(t)
t.Cleanup(func() { conn.Close() })
var buf tstest.MemLogger
conn.logf = buf.Logf
conn.SetPrivateKey(key.NodePrivateFromRaw32(mem.B([]byte{0: 1, 31: 0})))
discoKey := key.DiscoPublicFromRaw32(mem.B([]byte{31: 1}))
nodeKey1 := key.NodePublicFromRaw32(mem.B([]byte{0: 'N', 1: 'K', 2: '1', 31: 0}))
nodeKey2 := key.NodePublicFromRaw32(mem.B([]byte{0: 'N', 1: 'K', 2: '2', 31: 0}))
conn.SetNetworkMap(&netmap.NetworkMap{
Peers: []*tailcfg.Node{
{
Key: nodeKey1,
DiscoKey: discoKey,
Endpoints: []string{"192.168.1.2:345"},
},
},
})
_, err := conn.ParseEndpoint(nodeKey1.UntypedHexString())
if err != nil {
t.Fatal(err)
}
for i := 0; i < 3; i++ {
conn.SetNetworkMap(&netmap.NetworkMap{
Peers: []*tailcfg.Node{
{
Key: nodeKey2,
DiscoKey: discoKey,
Endpoints: []string{"192.168.1.2:345"},
},
},
})
}
de, ok := conn.peerMap.endpointForNodeKey(nodeKey2)
if ok && de.publicKey != nodeKey2 {
t.Fatalf("discoEndpoint public key = %q; want %q", de.publicKey, nodeKey2)
}
if de.discoKey != discoKey {
t.Errorf("discoKey = %v; want %v", de.discoKey, discoKey)
}
if _, ok := conn.peerMap.endpointForNodeKey(nodeKey1); ok {
t.Errorf("didn't expect to find node for key1")
}
log := buf.String()
wantSub := map[string]int{
"magicsock: got updated network map; 1 peers": 2,
}
for sub, want := range wantSub {
got := strings.Count(log, sub)
if got != want {
t.Errorf("in log, count of substring %q = %v; want %v", sub, got, want)
}
}
if t.Failed() {
t.Logf("log output: %s", log)
}
}
func TestRebindStress(t *testing.T) {
conn := newTestConn(t)
var buf tstest.MemLogger
conn.logf = buf.Logf
closed := false
t.Cleanup(func() {
if !closed {
conn.Close()
}
})
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
errc := make(chan error, 1)
go func() {
buf := make([]byte, 1500)
for {
_, _, err := conn.receiveIPv4(buf)
if ctx.Err() != nil {
errc <- nil
return
}
if err != nil {
errc <- err
return
}
}
}()
var wg sync.WaitGroup
wg.Add(2)
go func() {
defer wg.Done()
for i := 0; i < 2000; i++ {
conn.Rebind()
}
}()
go func() {
defer wg.Done()
for i := 0; i < 2000; i++ {
conn.Rebind()
}
}()
wg.Wait()
cancel()
if err := conn.Close(); err != nil {
t.Fatal(err)
}
closed = true
err := <-errc
if err != nil {
t.Fatalf("Got ReceiveIPv4 error: %v (is closed = %v). Log:\n%s", err, errors.Is(err, net.ErrClosed), buf.String())
}
}
func TestEndpointSetsEqual(t *testing.T) {
s := func(ports ...uint16) (ret []tailcfg.Endpoint) {
for _, port := range ports {
ret = append(ret, tailcfg.Endpoint{
Addr: netaddr.IPPortFrom(netaddr.IP{}, port),
})
}
return
}
tests := []struct {
a, b []tailcfg.Endpoint
want bool
}{
{
want: true,
},
{
a: s(1, 2, 3),
b: s(1, 2, 3),
want: true,
},
{
a: s(1, 2),
b: s(2, 1),
want: true,
},
{
a: s(1, 2),
b: s(2, 1, 1),
want: true,
},
{
a: s(1, 2, 2),
b: s(2, 1),
want: true,
},
{
a: s(1, 2, 2),
b: s(2, 1, 1),
want: true,
},
{
a: s(1, 2, 2, 3),
b: s(2, 1, 1),
want: false,
},
{
a: s(1, 2, 2),
b: s(2, 1, 1, 3),
want: false,
},
}
for _, tt := range tests {
if got := endpointSetsEqual(tt.a, tt.b); got != tt.want {
t.Errorf("%q vs %q = %v; want %v", tt.a, tt.b, got, tt.want)
}
}
}
func TestBetterAddr(t *testing.T) {
const ms = time.Millisecond
al := func(ipps string, d time.Duration) addrLatency {
return addrLatency{netaddr.MustParseIPPort(ipps), d}
}
zero := addrLatency{}
tests := []struct {
a, b addrLatency
want bool
}{
{a: zero, b: zero, want: false},
{a: al("10.0.0.2:123", 5*ms), b: zero, want: true},
{a: zero, b: al("10.0.0.2:123", 5*ms), want: false},
{a: al("10.0.0.2:123", 5*ms), b: al("1.2.3.4:555", 6*ms), want: true},
{a: al("10.0.0.2:123", 5*ms), b: al("10.0.0.2:123", 10*ms), want: false}, // same IPPort
// Prefer IPv6 if roughly equivalent:
{
a: al("[2001::5]:123", 100*ms),
b: al("1.2.3.4:555", 91*ms),
want: true,
},
{
a: al("1.2.3.4:555", 91*ms),
b: al("[2001::5]:123", 100*ms),
want: false,
},
// But not if IPv4 is much faster:
{
a: al("[2001::5]:123", 100*ms),
b: al("1.2.3.4:555", 30*ms),
want: false,
},
{
a: al("1.2.3.4:555", 30*ms),
b: al("[2001::5]:123", 100*ms),
want: true,
},
}
for _, tt := range tests {
got := betterAddr(tt.a, tt.b)
if got != tt.want {
t.Errorf("betterAddr(%+v, %+v) = %v; want %v", tt.a, tt.b, got, tt.want)
continue
}
gotBack := betterAddr(tt.b, tt.a)
if got && gotBack {
t.Errorf("betterAddr(%+v, %+v) and betterAddr(%+v, %+v) both unexpectedly true", tt.a, tt.b, tt.b, tt.a)
}
}
}
func epStrings(eps []tailcfg.Endpoint) (ret []string) {
for _, ep := range eps {
ret = append(ret, ep.Addr.String())
}
return
}
func TestStressSetNetworkMap(t *testing.T) {
t.Parallel()
conn := newTestConn(t)
t.Cleanup(func() { conn.Close() })
var buf tstest.MemLogger
conn.logf = buf.Logf
conn.SetPrivateKey(key.NewNode())
const npeers = 5
present := make([]bool, npeers)
allPeers := make([]*tailcfg.Node, npeers)
for i := range allPeers {
present[i] = true
allPeers[i] = &tailcfg.Node{
DiscoKey: randDiscoKey(),
Key: randNodeKey(),
Endpoints: []string{fmt.Sprintf("192.168.1.2:%d", i)},
}
}
// Get a PRNG seed. If not provided, generate a new one to get extra coverage.
seed, err := strconv.ParseUint(os.Getenv("TS_STRESS_SET_NETWORK_MAP_SEED"), 10, 64)
if err != nil {
var buf [8]byte
crand.Read(buf[:])
seed = binary.LittleEndian.Uint64(buf[:])
}
t.Logf("TS_STRESS_SET_NETWORK_MAP_SEED=%d", seed)
prng := rand.New(rand.NewSource(int64(seed)))
const iters = 1000 // approx 0.5s on an m1 mac
for i := 0; i < iters; i++ {
for j := 0; j < npeers; j++ {
// Randomize which peers are present.
if prng.Int()&1 == 0 {
present[j] = !present[j]
}
// Randomize some peer disco keys and node keys.
if prng.Int()&1 == 0 {
allPeers[j].DiscoKey = randDiscoKey()
}
if prng.Int()&1 == 0 {
allPeers[j].Key = randNodeKey()
}
}
// Clone existing peers into a new netmap.
peers := make([]*tailcfg.Node, 0, len(allPeers))
for peerIdx, p := range allPeers {
if present[peerIdx] {
peers = append(peers, p.Clone())
}
}
// Set the netmap.
conn.SetNetworkMap(&netmap.NetworkMap{
Peers: peers,
})
// Check invariants.
if err := conn.peerMap.validate(); err != nil {
t.Error(err)
}
}
}
func randDiscoKey() (k key.DiscoPublic) { return key.NewDisco().Public() }
func randNodeKey() (k key.NodePublic) { return key.NewNode().Public() }
// validate checks m for internal consistency and reports the first error encountered.
// It is used in tests only, so it doesn't need to be efficient.
func (m *peerMap) validate() error {
seenEps := make(map[*endpoint]bool)
for pub, pi := range m.byNodeKey {
if got := pi.ep.publicKey; got != pub {
return fmt.Errorf("byNodeKey[%v].publicKey = %v", pub, got)
}
if got, want := pi.ep.wgEndpoint, pub.UntypedHexString(); got != want {
return fmt.Errorf("byNodeKey[%v].wgEndpoint = %q, want %q", pub, got, want)
}
if _, ok := seenEps[pi.ep]; ok {
return fmt.Errorf("duplicate endpoint present: %v", pi.ep.publicKey)
}
seenEps[pi.ep] = true
for ipp, v := range pi.ipPorts {
if !v {
return fmt.Errorf("m.byIPPort[%v] is false, expected map to be set-like", ipp)
}
if got := m.byIPPort[ipp]; got != pi {
return fmt.Errorf("m.byIPPort[%v] = %v, want %v", ipp, got, pi)
}
}
}
for ipp, pi := range m.byIPPort {
if !pi.ipPorts[ipp] {
return fmt.Errorf("ipPorts[%v] for %v is false", ipp, pi.ep.publicKey)
}
pi2 := m.byNodeKey[pi.ep.publicKey]
if pi != pi2 {
return fmt.Errorf("byNodeKey[%v]=%p doesn't match byIPPort[%v]=%p", pi, pi, pi.ep.publicKey, pi2)
}
}
publicToDisco := make(map[key.NodePublic]key.DiscoPublic)
for disco, nodes := range m.nodesOfDisco {
for pub, v := range nodes {
if !v {
return fmt.Errorf("m.nodeOfDisco[%v][%v] is false, expected map to be set-like", disco, pub)
}
if _, ok := m.byNodeKey[pub]; !ok {
return fmt.Errorf("nodesOfDisco refers to public key %v, which is not present in byNodeKey", pub)
}
if _, ok := publicToDisco[pub]; ok {
return fmt.Errorf("publicKey %v refers to multiple disco keys", pub)
}
publicToDisco[pub] = disco
}
}
return nil
}
func TestBlockForeverConnUnblocks(t *testing.T) {
c := newBlockForeverConn()
done := make(chan error, 1)
go func() {
defer close(done)
_, _, err := c.ReadFrom(make([]byte, 1))
done <- err
}()
time.Sleep(50 * time.Millisecond) // give ReadFrom time to get blocked
if err := c.Close(); err != nil {
t.Fatal(err)
}
timer := time.NewTimer(5 * time.Second)
defer timer.Stop()
select {
case err := <-done:
if err != net.ErrClosed {
t.Errorf("got %v; want net.ErrClosed", err)
}
case <-timer.C:
t.Fatal("timeout")
}
}