tailscale/net/tstun/wrap.go

845 lines
26 KiB
Go

// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package tstun provides a TUN struct implementing the tun.Device interface
// with additional features as required by wgengine.
package tstun
import (
"errors"
"fmt"
"io"
"os"
"strings"
"sync"
"sync/atomic"
"time"
"go4.org/mem"
"golang.zx2c4.com/wireguard/device"
"golang.zx2c4.com/wireguard/tun"
"gvisor.dev/gvisor/pkg/tcpip/stack"
"tailscale.com/disco"
"tailscale.com/net/netaddr"
"tailscale.com/net/packet"
"tailscale.com/net/tsaddr"
"tailscale.com/tstime/mono"
"tailscale.com/types/ipproto"
"tailscale.com/types/key"
"tailscale.com/types/logger"
"tailscale.com/util/clientmetric"
"tailscale.com/wgengine/filter"
)
const maxBufferSize = device.MaxMessageSize
// PacketStartOffset is the minimal amount of leading space that must exist
// before &packet[offset] in a packet passed to Read, Write, or InjectInboundDirect.
// This is necessary to avoid reallocation in wireguard-go internals.
const PacketStartOffset = device.MessageTransportHeaderSize
// MaxPacketSize is the maximum size (in bytes)
// of a packet that can be injected into a tstun.Wrapper.
const MaxPacketSize = device.MaxContentSize
const tapDebug = false // for super verbose TAP debugging
var (
// ErrClosed is returned when attempting an operation on a closed Wrapper.
ErrClosed = errors.New("device closed")
// ErrFiltered is returned when the acted-on packet is rejected by a filter.
ErrFiltered = errors.New("packet dropped by filter")
)
var (
errPacketTooBig = errors.New("packet too big")
errOffsetTooBig = errors.New("offset larger than buffer length")
errOffsetTooSmall = errors.New("offset smaller than PacketStartOffset")
)
// parsedPacketPool holds a pool of Parsed structs for use in filtering.
// This is needed because escape analysis cannot see that parsed packets
// do not escape through {Pre,Post}Filter{In,Out}.
var parsedPacketPool = sync.Pool{New: func() any { return new(packet.Parsed) }}
// FilterFunc is a packet-filtering function with access to the Wrapper device.
// It must not hold onto the packet struct, as its backing storage will be reused.
type FilterFunc func(*packet.Parsed, *Wrapper) filter.Response
// Wrapper augments a tun.Device with packet filtering and injection.
type Wrapper struct {
logf logger.Logf
limitedLogf logger.Logf // aggressively rate-limited logf used for potentially high volume errors
// tdev is the underlying Wrapper device.
tdev tun.Device
isTAP bool // whether tdev is a TAP device
closeOnce sync.Once
// lastActivityAtomic is read/written atomically.
// On 32 bit systems, if the fields above change,
// you might need to add a pad32.Four field here.
lastActivityAtomic mono.Time // time of last send or receive
destIPActivity atomic.Value // of map[netaddr.IP]func()
destMACAtomic atomic.Value // of [6]byte
discoKey atomic.Value // of key.DiscoPublic
// buffer stores the oldest unconsumed packet from tdev.
// It is made a static buffer in order to avoid allocations.
buffer [maxBufferSize]byte
// bufferConsumedMu protects bufferConsumed from concurrent sends and closes.
// It does not prevent send-after-close, only data races.
bufferConsumedMu sync.Mutex
// bufferConsumed synchronizes access to buffer (shared by Read and poll).
//
// Close closes bufferConsumed. There may be outstanding sends to bufferConsumed
// when that happens; we catch any resulting panics.
// This lets us avoid expensive multi-case selects.
bufferConsumed chan struct{}
// closed signals poll (by closing) when the device is closed.
closed chan struct{}
// outboundMu protects outbound from concurrent sends and closes.
// It does not prevent send-after-close, only data races.
outboundMu sync.Mutex
// outbound is the queue by which packets leave the TUN device.
//
// The directions are relative to the network, not the device:
// inbound packets arrive via UDP and are written into the TUN device;
// outbound packets are read from the TUN device and sent out via UDP.
// This queue is needed because although inbound writes are synchronous,
// the other direction must wait on a WireGuard goroutine to poll it.
//
// Empty reads are skipped by WireGuard, so it is always legal
// to discard an empty packet instead of sending it through t.outbound.
//
// Close closes outbound. There may be outstanding sends to outbound
// when that happens; we catch any resulting panics.
// This lets us avoid expensive multi-case selects.
outbound chan tunReadResult
// eventsUpDown yields up and down tun.Events that arrive on a Wrapper's events channel.
eventsUpDown chan tun.Event
// eventsOther yields non-up-and-down tun.Events that arrive on a Wrapper's events channel.
eventsOther chan tun.Event
// filter atomically stores the currently active packet filter
filter atomic.Value // of *filter.Filter
// filterFlags control the verbosity of logging packet drops/accepts.
filterFlags filter.RunFlags
// PreFilterIn is the inbound filter function that runs before the main filter
// and therefore sees the packets that may be later dropped by it.
PreFilterIn FilterFunc
// PostFilterIn is the inbound filter function that runs after the main filter.
PostFilterIn FilterFunc
// PreFilterFromTunToNetstack is a filter function that runs before the main filter
// for packets from the local system. This filter is populated by netstack to hook
// packets that should be handled by netstack. If set, this filter runs before
// PreFilterFromTunToEngine.
PreFilterFromTunToNetstack FilterFunc
// PreFilterFromTunToEngine is a filter function that runs before the main filter
// for packets from the local system. This filter is populated by wgengine to hook
// packets which it handles internally. If both this and PreFilterFromTunToNetstack
// filter functions are non-nil, this filter runs second.
PreFilterFromTunToEngine FilterFunc
// PostFilterOut is the outbound filter function that runs after the main filter.
PostFilterOut FilterFunc
// OnTSMPPongReceived, if non-nil, is called whenever a TSMP pong arrives.
OnTSMPPongReceived func(packet.TSMPPongReply)
// OnICMPEchoResponseReceived, if non-nil, is called whenever a ICMP echo response
// arrives. If the packet is to be handled internally this returns true,
// false otherwise.
OnICMPEchoResponseReceived func(*packet.Parsed) bool
// PeerAPIPort, if non-nil, returns the peerapi port that's
// running for the given IP address.
PeerAPIPort func(netaddr.IP) (port uint16, ok bool)
// disableFilter disables all filtering when set. This should only be used in tests.
disableFilter bool
// disableTSMPRejected disables TSMP rejected responses. For tests.
disableTSMPRejected bool
}
// tunReadResult is the result of a TUN read, or an injected result pretending to be a TUN read.
// The data is not interpreted in the usual way for a Read method.
// See the comment in the middle of Wrap.Read.
type tunReadResult struct {
// Only one of err, packet or data should be set, and are read in that order
// of precendence.
err error
packet *stack.PacketBuffer
data []byte
// injected is set if the read result was generated internally, and contained packets should not
// pass through filters.
injected bool
}
func WrapTAP(logf logger.Logf, tdev tun.Device) *Wrapper {
return wrap(logf, tdev, true)
}
func Wrap(logf logger.Logf, tdev tun.Device) *Wrapper {
return wrap(logf, tdev, false)
}
func wrap(logf logger.Logf, tdev tun.Device, isTAP bool) *Wrapper {
logf = logger.WithPrefix(logf, "tstun: ")
tun := &Wrapper{
logf: logf,
limitedLogf: logger.RateLimitedFn(logf, 1*time.Minute, 2, 10),
isTAP: isTAP,
tdev: tdev,
// bufferConsumed is conceptually a condition variable:
// a goroutine should not block when setting it, even with no listeners.
bufferConsumed: make(chan struct{}, 1),
closed: make(chan struct{}),
// outbound can be unbuffered; the buffer is an optimization.
outbound: make(chan tunReadResult, 1),
eventsUpDown: make(chan tun.Event),
eventsOther: make(chan tun.Event),
// TODO(dmytro): (highly rate-limited) hexdumps should happen on unknown packets.
filterFlags: filter.LogAccepts | filter.LogDrops,
}
go tun.poll()
go tun.pumpEvents()
// The buffer starts out consumed.
tun.bufferConsumed <- struct{}{}
tun.noteActivity()
return tun
}
// SetDestIPActivityFuncs sets a map of funcs to run per packet
// destination (the map keys).
//
// The map ownership passes to the Wrapper. It must be non-nil.
func (t *Wrapper) SetDestIPActivityFuncs(m map[netaddr.IP]func()) {
t.destIPActivity.Store(m)
}
// SetDiscoKey sets the current discovery key.
//
// It is only used for filtering out bogus traffic when network
// stack(s) get confused; see Issue 1526.
func (t *Wrapper) SetDiscoKey(k key.DiscoPublic) {
t.discoKey.Store(k)
}
// isSelfDisco reports whether packet p
// looks like a Disco packet from ourselves.
// See Issue 1526.
func (t *Wrapper) isSelfDisco(p *packet.Parsed) bool {
if p.IPProto != ipproto.UDP {
return false
}
pkt := p.Payload()
discobs, ok := disco.Source(pkt)
if !ok {
return false
}
discoSrc := key.DiscoPublicFromRaw32(mem.B(discobs))
selfDiscoPub, ok := t.discoKey.Load().(key.DiscoPublic)
return ok && selfDiscoPub == discoSrc
}
func (t *Wrapper) Close() error {
var err error
t.closeOnce.Do(func() {
close(t.closed)
t.bufferConsumedMu.Lock()
close(t.bufferConsumed)
t.bufferConsumedMu.Unlock()
t.outboundMu.Lock()
close(t.outbound)
t.outboundMu.Unlock()
err = t.tdev.Close()
})
return err
}
// isClosed reports whether t is closed.
func (t *Wrapper) isClosed() bool {
select {
case <-t.closed:
return true
default:
return false
}
}
// pumpEvents copies events from t.tdev to t.eventsUpDown and t.eventsOther.
// pumpEvents exits when t.tdev.events or t.closed is closed.
// pumpEvents closes t.eventsUpDown and t.eventsOther when it exits.
func (t *Wrapper) pumpEvents() {
defer close(t.eventsUpDown)
defer close(t.eventsOther)
src := t.tdev.Events()
for {
// Retrieve an event from the TUN device.
var event tun.Event
var ok bool
select {
case <-t.closed:
return
case event, ok = <-src:
if !ok {
return
}
}
// Pass along event to the correct recipient.
// Though event is a bitmask, in practice there is only ever one bit set at a time.
dst := t.eventsOther
if event&(tun.EventUp|tun.EventDown) != 0 {
dst = t.eventsUpDown
}
select {
case <-t.closed:
return
case dst <- event:
}
}
}
// EventsUpDown returns a TUN event channel that contains all Up and Down events.
func (t *Wrapper) EventsUpDown() chan tun.Event {
return t.eventsUpDown
}
// Events returns a TUN event channel that contains all non-Up, non-Down events.
// It is named Events because it is the set of events that we want to expose to wireguard-go,
// and Events is the name specified by the wireguard-go tun.Device interface.
func (t *Wrapper) Events() chan tun.Event {
return t.eventsOther
}
func (t *Wrapper) File() *os.File {
return t.tdev.File()
}
func (t *Wrapper) Flush() error {
return t.tdev.Flush()
}
func (t *Wrapper) MTU() (int, error) {
return t.tdev.MTU()
}
func (t *Wrapper) Name() (string, error) {
return t.tdev.Name()
}
// allowSendOnClosedChannel suppresses panics due to sending on a closed channel.
// This allows us to avoid synchronization between poll and Close.
// Such synchronization (particularly multi-case selects) is too expensive
// for code like poll or Read that is on the hot path of every packet.
// If this makes you sad or angry, you may want to join our
// weekly Go Performance Delinquents Anonymous meetings on Monday nights.
func allowSendOnClosedChannel() {
r := recover()
if r == nil {
return
}
e, _ := r.(error)
if e != nil && e.Error() == "send on closed channel" {
return
}
panic(r)
}
const ethernetFrameSize = 14 // 2 six byte MACs, 2 bytes ethertype
// poll polls t.tdev.Read, placing the oldest unconsumed packet into t.buffer.
// This is needed because t.tdev.Read in general may block (it does on Windows),
// so packets may be stuck in t.outbound if t.Read called t.tdev.Read directly.
func (t *Wrapper) poll() {
for range t.bufferConsumed {
DoRead:
var n int
var err error
// Read may use memory in t.buffer before PacketStartOffset for mandatory headers.
// This is the rationale behind the tun.Wrapper.{Read,Write} interfaces
// and the reason t.buffer has size MaxMessageSize and not MaxContentSize.
// In principle, read errors are not fatal (but wireguard-go disagrees).
// We loop here until we get a non-empty (or failed) read.
// We don't need this loop for correctness,
// but wireguard-go will skip an empty read,
// so we might as well avoid the send through t.outbound.
for n == 0 && err == nil {
if t.isClosed() {
return
}
if t.isTAP {
n, err = t.tdev.Read(t.buffer[:], PacketStartOffset-ethernetFrameSize)
if tapDebug {
s := fmt.Sprintf("% x", t.buffer[:])
for strings.HasSuffix(s, " 00") {
s = strings.TrimSuffix(s, " 00")
}
t.logf("TAP read %v, %v: %s", n, err, s)
}
} else {
n, err = t.tdev.Read(t.buffer[:], PacketStartOffset)
}
}
if t.isTAP {
if err == nil {
ethernetFrame := t.buffer[PacketStartOffset-ethernetFrameSize:][:n]
if t.handleTAPFrame(ethernetFrame) {
goto DoRead
}
}
// Fall through. We got an IP packet.
if n >= ethernetFrameSize {
n -= ethernetFrameSize
}
if tapDebug {
t.logf("tap regular frame: %x", t.buffer[PacketStartOffset:PacketStartOffset+n])
}
}
t.sendOutbound(tunReadResult{data: t.buffer[PacketStartOffset : PacketStartOffset+n], err: err})
}
}
// sendBufferConsumed does t.bufferConsumed <- struct{}{}.
// It protects against any panics or data races that that send could cause.
func (t *Wrapper) sendBufferConsumed() {
defer allowSendOnClosedChannel()
t.bufferConsumedMu.Lock()
defer t.bufferConsumedMu.Unlock()
t.bufferConsumed <- struct{}{}
}
// sendOutbound does t.outboundMu <- r.
// It protects against any panics or data races that that send could cause.
func (t *Wrapper) sendOutbound(r tunReadResult) {
defer allowSendOnClosedChannel()
t.outboundMu.Lock()
defer t.outboundMu.Unlock()
t.outbound <- r
}
var (
magicDNSIPPort = netaddr.IPPortFrom(tsaddr.TailscaleServiceIP(), 0) // 100.100.100.100:0
magicDNSIPPortv6 = netaddr.IPPortFrom(tsaddr.TailscaleServiceIPv6(), 0)
)
func (t *Wrapper) filterOut(p *packet.Parsed) filter.Response {
// Fake ICMP echo responses to MagicDNS (100.100.100.100).
if p.IsEchoRequest() {
switch p.Dst {
case magicDNSIPPort:
header := p.ICMP4Header()
header.ToResponse()
outp := packet.Generate(&header, p.Payload())
t.InjectInboundCopy(outp)
return filter.DropSilently // don't pass on to OS; already handled
case magicDNSIPPortv6:
header := p.ICMP6Header()
header.ToResponse()
outp := packet.Generate(&header, p.Payload())
t.InjectInboundCopy(outp)
return filter.DropSilently // don't pass on to OS; already handled
}
}
// Issue 1526 workaround: if we sent disco packets over
// Tailscale from ourselves, then drop them, as that shouldn't
// happen unless a networking stack is confused, as it seems
// macOS in Network Extension mode might be.
if p.IPProto == ipproto.UDP && // disco is over UDP; avoid isSelfDisco call for TCP/etc
t.isSelfDisco(p) {
t.limitedLogf("[unexpected] received self disco out packet over tstun; dropping")
metricPacketOutDropSelfDisco.Add(1)
return filter.DropSilently
}
if t.PreFilterFromTunToNetstack != nil {
if res := t.PreFilterFromTunToNetstack(p, t); res.IsDrop() {
// Handled by netstack.Impl.handleLocalPackets (quad-100 DNS primarily)
return res
}
}
if t.PreFilterFromTunToEngine != nil {
if res := t.PreFilterFromTunToEngine(p, t); res.IsDrop() {
// Handled by userspaceEngine.handleLocalPackets (primarily handles
// quad-100 if netstack is not installed).
return res
}
}
filt, _ := t.filter.Load().(*filter.Filter)
if filt == nil {
return filter.Drop
}
if filt.RunOut(p, t.filterFlags) != filter.Accept {
metricPacketOutDropFilter.Add(1)
return filter.Drop
}
if t.PostFilterOut != nil {
if res := t.PostFilterOut(p, t); res.IsDrop() {
return res
}
}
return filter.Accept
}
// noteActivity records that there was a read or write at the current time.
func (t *Wrapper) noteActivity() {
t.lastActivityAtomic.StoreAtomic(mono.Now())
}
// IdleDuration reports how long it's been since the last read or write to this device.
//
// Its value should only be presumed accurate to roughly 10ms granularity.
// If there's never been activity, the duration is since the wrapper was created.
func (t *Wrapper) IdleDuration() time.Duration {
return mono.Since(t.lastActivityAtomic.LoadAtomic())
}
func (t *Wrapper) Read(buf []byte, offset int) (int, error) {
res, ok := <-t.outbound
if !ok {
// Wrapper is closed.
return 0, io.EOF
}
if res.err != nil {
return 0, res.err
}
metricPacketOut.Add(1)
var n int
if res.packet != nil {
n = copy(buf[offset:], res.packet.NetworkHeader().Slice())
n += copy(buf[offset+n:], res.packet.TransportHeader().Slice())
n += copy(buf[offset+n:], res.packet.Data().AsRange().ToSlice())
res.packet.DecRef()
} else {
n = copy(buf[offset:], res.data)
// t.buffer has a fixed location in memory.
if &res.data[0] == &t.buffer[PacketStartOffset] {
// We are done with t.buffer. Let poll re-use it.
t.sendBufferConsumed()
}
}
p := parsedPacketPool.Get().(*packet.Parsed)
defer parsedPacketPool.Put(p)
p.Decode(buf[offset : offset+n])
if m, ok := t.destIPActivity.Load().(map[netaddr.IP]func()); ok {
if fn := m[p.Dst.Addr()]; fn != nil {
fn()
}
}
// Do not filter injected packets.
if !res.injected && !t.disableFilter {
response := t.filterOut(p)
if response != filter.Accept {
metricPacketOutDrop.Add(1)
// WireGuard considers read errors fatal; pretend nothing was read
return 0, nil
}
}
t.noteActivity()
return n, nil
}
func (t *Wrapper) filterIn(buf []byte) filter.Response {
p := parsedPacketPool.Get().(*packet.Parsed)
defer parsedPacketPool.Put(p)
p.Decode(buf)
if p.IPProto == ipproto.TSMP {
if pingReq, ok := p.AsTSMPPing(); ok {
t.noteActivity()
t.injectOutboundPong(p, pingReq)
return filter.DropSilently
} else if data, ok := p.AsTSMPPong(); ok {
if f := t.OnTSMPPongReceived; f != nil {
f(data)
}
}
}
if p.IsEchoResponse() {
if f := t.OnICMPEchoResponseReceived; f != nil && f(p) {
// Note: this looks dropped in metrics, even though it was
// handled internally.
return filter.DropSilently
}
}
// Issue 1526 workaround: if we see disco packets over
// Tailscale from ourselves, then drop them, as that shouldn't
// happen unless a networking stack is confused, as it seems
// macOS in Network Extension mode might be.
if p.IPProto == ipproto.UDP && // disco is over UDP; avoid isSelfDisco call for TCP/etc
t.isSelfDisco(p) {
t.limitedLogf("[unexpected] received self disco in packet over tstun; dropping")
metricPacketInDropSelfDisco.Add(1)
return filter.DropSilently
}
if t.PreFilterIn != nil {
if res := t.PreFilterIn(p, t); res.IsDrop() {
return res
}
}
filt, _ := t.filter.Load().(*filter.Filter)
if filt == nil {
return filter.Drop
}
outcome := filt.RunIn(p, t.filterFlags)
// Let peerapi through the filter; its ACLs are handled at L7,
// not at the packet level.
if outcome != filter.Accept &&
p.IPProto == ipproto.TCP &&
p.TCPFlags&packet.TCPSyn != 0 &&
t.PeerAPIPort != nil {
if port, ok := t.PeerAPIPort(p.Dst.Addr()); ok && port == p.Dst.Port() {
outcome = filter.Accept
}
}
if outcome != filter.Accept {
metricPacketInDropFilter.Add(1)
// Tell them, via TSMP, we're dropping them due to the ACL.
// Their host networking stack can translate this into ICMP
// or whatnot as required. But notably, their GUI or tailscale CLI
// can show them a rejection history with reasons.
if p.IPVersion == 4 && p.IPProto == ipproto.TCP && p.TCPFlags&packet.TCPSyn != 0 && !t.disableTSMPRejected {
rj := packet.TailscaleRejectedHeader{
IPSrc: p.Dst.Addr(),
IPDst: p.Src.Addr(),
Src: p.Src,
Dst: p.Dst,
Proto: p.IPProto,
Reason: packet.RejectedDueToACLs,
}
if filt.ShieldsUp() {
rj.Reason = packet.RejectedDueToShieldsUp
}
pkt := packet.Generate(rj, nil)
t.InjectOutbound(pkt)
// TODO(bradfitz): also send a TCP RST, after the TSMP message.
}
return filter.Drop
}
if t.PostFilterIn != nil {
if res := t.PostFilterIn(p, t); res.IsDrop() {
return res
}
}
return filter.Accept
}
// Write accepts an incoming packet. The packet begins at buf[offset:],
// like wireguard-go/tun.Device.Write.
func (t *Wrapper) Write(buf []byte, offset int) (int, error) {
metricPacketIn.Add(1)
if !t.disableFilter {
if t.filterIn(buf[offset:]) != filter.Accept {
metricPacketInDrop.Add(1)
// If we're not accepting the packet, lie to wireguard-go and pretend
// that everything is okay with a nil error, so wireguard-go
// doesn't log about this Write "failure".
//
// We return len(buf), but the ill-defined wireguard-go/tun.Device.Write
// method doesn't specify how the offset affects the return value.
// In fact, the Linux implementation does one of two different things depending
// on how the /dev/net/tun was created. But fortunately the wireguard-go
// code ignores the int return and only looks at the error:
//
// device/receive.go: _, err = device.tun.device.Write(....)
//
// TODO(bradfitz): fix upstream interface docs, implementation.
return len(buf), nil
}
}
t.noteActivity()
return t.tdevWrite(buf, offset)
}
func (t *Wrapper) tdevWrite(buf []byte, offset int) (int, error) {
if t.isTAP {
return t.tapWrite(buf, offset)
}
return t.tdev.Write(buf, offset)
}
func (t *Wrapper) GetFilter() *filter.Filter {
filt, _ := t.filter.Load().(*filter.Filter)
return filt
}
func (t *Wrapper) SetFilter(filt *filter.Filter) {
t.filter.Store(filt)
}
// InjectInboundPacketBuffer makes the Wrapper device behave as if a packet
// with the given contents was received from the network.
// It takes ownership of one reference count on the packet. The injected
// packet will not pass through inbound filters.
//
// This path is typically used to deliver synthesized packets to the
// host networking stack.
func (t *Wrapper) InjectInboundPacketBuffer(pkt *stack.PacketBuffer) error {
buf := make([]byte, PacketStartOffset+pkt.Size())
n := copy(buf[PacketStartOffset:], pkt.NetworkHeader().Slice())
n += copy(buf[PacketStartOffset+n:], pkt.TransportHeader().Slice())
n += copy(buf[PacketStartOffset+n:], pkt.Data().AsRange().ToSlice())
if n != pkt.Size() {
panic("unexpected packet size after copy")
}
pkt.DecRef()
return t.InjectInboundDirect(buf, PacketStartOffset)
}
// InjectInboundDirect makes the Wrapper device behave as if a packet
// with the given contents was received from the network.
// It blocks and does not take ownership of the packet.
// The injected packet will not pass through inbound filters.
//
// The packet contents are to start at &buf[offset].
// offset must be greater or equal to PacketStartOffset.
// The space before &buf[offset] will be used by WireGuard.
func (t *Wrapper) InjectInboundDirect(buf []byte, offset int) error {
if len(buf) > MaxPacketSize {
return errPacketTooBig
}
if len(buf) < offset {
return errOffsetTooBig
}
if offset < PacketStartOffset {
return errOffsetTooSmall
}
// Write to the underlying device to skip filters.
_, err := t.tdevWrite(buf, offset)
return err
}
// InjectInboundCopy takes a packet without leading space,
// reallocates it to conform to the InjectInboundDirect interface
// and calls InjectInboundDirect on it. Injecting a nil packet is a no-op.
func (t *Wrapper) InjectInboundCopy(packet []byte) error {
// We duplicate this check from InjectInboundDirect here
// to avoid wasting an allocation on an oversized packet.
if len(packet) > MaxPacketSize {
return errPacketTooBig
}
if len(packet) == 0 {
return nil
}
buf := make([]byte, PacketStartOffset+len(packet))
copy(buf[PacketStartOffset:], packet)
return t.InjectInboundDirect(buf, PacketStartOffset)
}
func (t *Wrapper) injectOutboundPong(pp *packet.Parsed, req packet.TSMPPingRequest) {
pong := packet.TSMPPongReply{
Data: req.Data,
}
if t.PeerAPIPort != nil {
pong.PeerAPIPort, _ = t.PeerAPIPort(pp.Dst.Addr())
}
switch pp.IPVersion {
case 4:
h4 := pp.IP4Header()
h4.ToResponse()
pong.IPHeader = h4
case 6:
h6 := pp.IP6Header()
h6.ToResponse()
pong.IPHeader = h6
default:
return
}
t.InjectOutbound(packet.Generate(pong, nil))
}
// InjectOutbound makes the Wrapper device behave as if a packet
// with the given contents was sent to the network.
// It does not block, but takes ownership of the packet.
// The injected packet will not pass through outbound filters.
// Injecting an empty packet is a no-op.
func (t *Wrapper) InjectOutbound(packet []byte) error {
if len(packet) > MaxPacketSize {
return errPacketTooBig
}
if len(packet) == 0 {
return nil
}
t.sendOutbound(tunReadResult{data: packet, injected: true})
return nil
}
// InjectOutboundPacketBuffer logically behaves as InjectOutbound. It takes ownership of one
// reference count on the packet, and the packet may be mutated. The packet refcount will be
// decremented after the injected buffer has been read.
func (t *Wrapper) InjectOutboundPacketBuffer(packet *stack.PacketBuffer) error {
size := packet.Size()
if size > MaxPacketSize {
packet.DecRef()
return errPacketTooBig
}
if size == 0 {
packet.DecRef()
return nil
}
t.sendOutbound(tunReadResult{packet: packet, injected: true})
return nil
}
// Unwrap returns the underlying tun.Device.
func (t *Wrapper) Unwrap() tun.Device {
return t.tdev
}
var (
metricPacketIn = clientmetric.NewCounter("tstun_in_from_wg")
metricPacketInDrop = clientmetric.NewCounter("tstun_in_from_wg_drop")
metricPacketInDropFilter = clientmetric.NewCounter("tstun_in_from_wg_drop_filter")
metricPacketInDropSelfDisco = clientmetric.NewCounter("tstun_in_from_wg_drop_self_disco")
metricPacketOut = clientmetric.NewCounter("tstun_out_to_wg")
metricPacketOutDrop = clientmetric.NewCounter("tstun_out_to_wg_drop")
metricPacketOutDropFilter = clientmetric.NewCounter("tstun_out_to_wg_drop_filter")
metricPacketOutDropSelfDisco = clientmetric.NewCounter("tstun_out_to_wg_drop_self_disco")
)