tailscale/util/deephash/deephash.go

346 lines
8.5 KiB
Go

// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package deephash hashes a Go value recursively, in a predictable
// order, without looping.
//
// This package, like most of the tailscale.com Go module, should be
// considered Tailscale-internal; we make no API promises.
package deephash
import (
"bufio"
"crypto/sha256"
"encoding/binary"
"encoding/hex"
"fmt"
"hash"
"math"
"reflect"
"strconv"
"sync"
)
const scratchSize = 128
// hasher is reusable state for hashing a value.
// Get one via hasherPool.
type hasher struct {
h hash.Hash
bw *bufio.Writer
scratch [scratchSize]byte
visited map[uintptr]bool
}
// newHasher initializes a new hasher, for use by hasherPool.
func newHasher() *hasher {
h := &hasher{
h: sha256.New(),
visited: map[uintptr]bool{},
}
h.bw = bufio.NewWriterSize(h.h, h.h.BlockSize())
return h
}
// setBufioWriter switches the bufio writer to w after flushing
// any output to the old one. It then also returns the old one, so
// the caller can switch back to it.
func (h *hasher) setBufioWriter(w *bufio.Writer) (old *bufio.Writer) {
old = h.bw
old.Flush()
h.bw = w
return old
}
// Hash returns the raw SHA-256 (not hex) of v.
func (h *hasher) Hash(v interface{}) (hash [sha256.Size]byte) {
h.bw.Flush()
h.h.Reset()
h.print(reflect.ValueOf(v))
h.bw.Flush()
// Sum into scratch & copy out, as hash.Hash is an interface
// so the slice necessarily escapes, and there's no sha256
// concrete type exported and we don't want the 'hash' result
// parameter to escape to the heap:
h.h.Sum(h.scratch[:0])
copy(hash[:], h.scratch[:])
return
}
var hasherPool = &sync.Pool{
New: func() interface{} { return newHasher() },
}
// Hash returns the raw SHA-256 hash of v.
func Hash(v interface{}) [sha256.Size]byte {
h := hasherPool.Get().(*hasher)
defer hasherPool.Put(h)
for k := range h.visited {
delete(h.visited, k)
}
return h.Hash(v)
}
// UpdateHash sets last to the hex-encoded hash of v and reports whether its value changed.
func UpdateHash(last *string, v ...interface{}) (changed bool) {
sum := Hash(v)
if sha256EqualHex(sum, *last) {
// unchanged.
return false
}
*last = hex.EncodeToString(sum[:])
return true
}
// sha256EqualHex reports whether hx is the hex encoding of sum.
func sha256EqualHex(sum [sha256.Size]byte, hx string) bool {
if len(hx) != len(sum)*2 {
return false
}
const hextable = "0123456789abcdef"
j := 0
for _, v := range sum {
if hx[j] != hextable[v>>4] || hx[j+1] != hextable[v&0x0f] {
return false
}
j += 2
}
return true
}
var appenderToType = reflect.TypeOf((*appenderTo)(nil)).Elem()
type appenderTo interface {
AppendTo([]byte) []byte
}
func (h *hasher) uint(i uint64) {
binary.BigEndian.PutUint64(h.scratch[:8], i)
h.bw.Write(h.scratch[:8])
}
func (h *hasher) int(i int) {
binary.BigEndian.PutUint64(h.scratch[:8], uint64(i))
h.bw.Write(h.scratch[:8])
}
var uint8Type = reflect.TypeOf(byte(0))
// print hashes v into w.
// It reports whether it was able to do so without hitting a cycle.
func (h *hasher) print(v reflect.Value) (acyclic bool) {
if !v.IsValid() {
return true
}
w := h.bw
visited := h.visited
if v.CanInterface() {
// Use AppendTo methods, if available and cheap.
if v.CanAddr() && v.Type().Implements(appenderToType) {
a := v.Addr().Interface().(appenderTo)
scratch := a.AppendTo(h.scratch[:0])
w.Write(scratch)
return true
}
}
// Generic handling.
switch v.Kind() {
default:
panic(fmt.Sprintf("unhandled kind %v for type %v", v.Kind(), v.Type()))
case reflect.Ptr:
ptr := v.Pointer()
if visited[ptr] {
return false
}
visited[ptr] = true
return h.print(v.Elem())
case reflect.Struct:
acyclic = true
w.WriteString("struct")
h.int(v.NumField())
for i, n := 0, v.NumField(); i < n; i++ {
h.int(i)
if !h.print(v.Field(i)) {
acyclic = false
}
}
return acyclic
case reflect.Slice, reflect.Array:
vLen := v.Len()
if v.Kind() == reflect.Slice {
h.int(vLen)
}
if v.Type().Elem() == uint8Type && v.CanInterface() {
if vLen > 0 && vLen <= scratchSize {
// If it fits in scratch, avoid the Interface allocation.
// It seems tempting to do this for all sizes, doing
// scratchSize bytes at a time, but reflect.Slice seems
// to allocate, so it's not a win.
n := reflect.Copy(reflect.ValueOf(&h.scratch).Elem(), v)
w.Write(h.scratch[:n])
return true
}
fmt.Fprintf(w, "%s", v.Interface())
return true
}
acyclic = true
for i := 0; i < vLen; i++ {
h.int(i)
if !h.print(v.Index(i)) {
acyclic = false
}
}
return acyclic
case reflect.Interface:
return h.print(v.Elem())
case reflect.Map:
// TODO(bradfitz): ideally we'd avoid these map
// operations to detect cycles if we knew from the map
// element type that there no way to form a cycle,
// which is the common case. Notably, we don't care
// about hashing the same map+contents twice in
// different parts of the tree. In fact, we should
// ideally. (And this prevents it) We should only stop
// hashing when there's a cycle. What we should
// probably do is make sure we enumerate the data
// structure tree is a fixed order and then give each
// pointer an increasing number, and when we hit a
// dup, rather than emitting nothing, we should emit a
// "value #12" reference. Which implies that all things
// emit to the bufio.Writer should be type-tagged so
// we can distinguish loop references without risk of
// collisions.
ptr := v.Pointer()
if visited[ptr] {
return false
}
visited[ptr] = true
if h.hashMapAcyclic(v) {
return true
}
return h.hashMapFallback(v)
case reflect.String:
h.int(v.Len())
w.WriteString(v.String())
case reflect.Bool:
w.Write(strconv.AppendBool(h.scratch[:0], v.Bool()))
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
w.Write(strconv.AppendInt(h.scratch[:0], v.Int(), 10))
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
h.uint(v.Uint())
case reflect.Float32, reflect.Float64:
w.Write(strconv.AppendUint(h.scratch[:0], math.Float64bits(v.Float()), 10))
case reflect.Complex64, reflect.Complex128:
fmt.Fprintf(w, "%v", v.Complex())
}
return true
}
type mapHasher struct {
xbuf [sha256.Size]byte // XOR'ed accumulated buffer
ebuf [sha256.Size]byte // scratch buffer
s256 hash.Hash // sha256 hash.Hash
bw *bufio.Writer // to hasher into ebuf
val valueCache // re-usable values for map iteration
iter *reflect.MapIter // re-usable map iterator
}
func (mh *mapHasher) Reset() {
for i := range mh.xbuf {
mh.xbuf[i] = 0
}
}
func (mh *mapHasher) startEntry() {
for i := range mh.ebuf {
mh.ebuf[i] = 0
}
mh.bw.Flush()
mh.s256.Reset()
}
func (mh *mapHasher) endEntry() {
mh.bw.Flush()
for i, b := range mh.s256.Sum(mh.ebuf[:0]) {
mh.xbuf[i] ^= b
}
}
var mapHasherPool = &sync.Pool{
New: func() interface{} {
mh := new(mapHasher)
mh.s256 = sha256.New()
mh.bw = bufio.NewWriter(mh.s256)
mh.val = make(valueCache)
mh.iter = new(reflect.MapIter)
return mh
},
}
type valueCache map[reflect.Type]reflect.Value
func (c valueCache) get(t reflect.Type) reflect.Value {
v, ok := c[t]
if !ok {
v = reflect.New(t).Elem()
c[t] = v
}
return v
}
// hashMapAcyclic is the faster sort-free version of map hashing. If
// it detects a cycle it returns false and guarantees that nothing was
// written to w.
func (h *hasher) hashMapAcyclic(v reflect.Value) (acyclic bool) {
mh := mapHasherPool.Get().(*mapHasher)
defer mapHasherPool.Put(mh)
mh.Reset()
iter := mapIter(mh.iter, v)
defer mapIter(mh.iter, reflect.Value{}) // avoid pinning v from mh.iter when we return
// Temporarily switch to the map hasher's bufio.Writer.
oldw := h.setBufioWriter(mh.bw)
defer h.setBufioWriter(oldw)
k := mh.val.get(v.Type().Key())
e := mh.val.get(v.Type().Elem())
for iter.Next() {
key := iterKey(iter, k)
val := iterVal(iter, e)
mh.startEntry()
if !h.print(key) {
return false
}
if !h.print(val) {
return false
}
mh.endEntry()
}
oldw.Write(mh.xbuf[:])
return true
}
func (h *hasher) hashMapFallback(v reflect.Value) (acyclic bool) {
acyclic = true
sm := newSortedMap(v)
w := h.bw
fmt.Fprintf(w, "map[%d]{\n", len(sm.Key))
for i, k := range sm.Key {
if !h.print(k) {
acyclic = false
}
w.WriteString(": ")
if !h.print(sm.Value[i]) {
acyclic = false
}
w.WriteString("\n")
}
w.WriteString("}\n")
return acyclic
}