1000 lines
30 KiB
Go
1000 lines
30 KiB
Go
// Copyright (c) 2021 Tailscale Inc & AUTHORS All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package ipnlocal
|
|
|
|
import (
|
|
"context"
|
|
"sync"
|
|
"testing"
|
|
"time"
|
|
|
|
qt "github.com/frankban/quicktest"
|
|
|
|
"tailscale.com/control/controlclient"
|
|
"tailscale.com/ipn"
|
|
"tailscale.com/syncs"
|
|
"tailscale.com/tailcfg"
|
|
"tailscale.com/types/empty"
|
|
"tailscale.com/types/key"
|
|
"tailscale.com/types/logger"
|
|
"tailscale.com/types/netmap"
|
|
"tailscale.com/types/persist"
|
|
"tailscale.com/wgengine"
|
|
)
|
|
|
|
// notifyThrottler receives notifications from an ipn.Backend, blocking
|
|
// (with eventual timeout and t.Fatal) if there are too many and complaining
|
|
// (also with t.Fatal) if they are too few.
|
|
type notifyThrottler struct {
|
|
t *testing.T
|
|
|
|
// ch gets replaced frequently. Lock the mutex before getting or
|
|
// setting it, but not while waiting on it.
|
|
mu sync.Mutex
|
|
ch chan ipn.Notify
|
|
}
|
|
|
|
// expect tells the throttler to expect count upcoming notifications.
|
|
func (nt *notifyThrottler) expect(count int) {
|
|
nt.mu.Lock()
|
|
nt.ch = make(chan ipn.Notify, count)
|
|
nt.mu.Unlock()
|
|
}
|
|
|
|
// put adds one notification into the throttler's queue.
|
|
func (nt *notifyThrottler) put(n ipn.Notify) {
|
|
nt.mu.Lock()
|
|
ch := nt.ch
|
|
nt.mu.Unlock()
|
|
|
|
select {
|
|
case ch <- n:
|
|
return
|
|
default:
|
|
nt.t.Fatalf("put: channel full: %v", n)
|
|
}
|
|
}
|
|
|
|
// drain pulls the notifications out of the queue, asserting that there are
|
|
// exactly count notifications that have been put so far.
|
|
func (nt *notifyThrottler) drain(count int) []ipn.Notify {
|
|
nt.mu.Lock()
|
|
ch := nt.ch
|
|
nt.mu.Unlock()
|
|
|
|
nn := []ipn.Notify{}
|
|
for i := 0; i < count; i++ {
|
|
select {
|
|
case n := <-ch:
|
|
nn = append(nn, n)
|
|
case <-time.After(6 * time.Second):
|
|
nt.t.Fatalf("drain: channel empty after %d/%d", i, count)
|
|
}
|
|
}
|
|
|
|
// no more notifications expected
|
|
close(ch)
|
|
|
|
return nn
|
|
}
|
|
|
|
// mockControl is a mock implementation of controlclient.Client.
|
|
// Much of the backend state machine depends on callbacks and state
|
|
// in the controlclient.Client, so by controlling it, we can check that
|
|
// the state machine works as expected.
|
|
type mockControl struct {
|
|
tb testing.TB
|
|
opts controlclient.Options
|
|
logf logger.Logf
|
|
statusFunc func(controlclient.Status)
|
|
|
|
mu sync.Mutex
|
|
calls []string
|
|
authBlocked bool
|
|
persist persist.Persist
|
|
machineKey key.MachinePrivate
|
|
}
|
|
|
|
func newMockControl(tb testing.TB) *mockControl {
|
|
return &mockControl{
|
|
tb: tb,
|
|
authBlocked: true,
|
|
}
|
|
}
|
|
|
|
func (cc *mockControl) SetStatusFunc(fn func(controlclient.Status)) {
|
|
cc.statusFunc = fn
|
|
}
|
|
|
|
func (cc *mockControl) populateKeys() (newKeys bool) {
|
|
cc.mu.Lock()
|
|
defer cc.mu.Unlock()
|
|
|
|
if cc.machineKey.IsZero() {
|
|
cc.logf("Copying machineKey.")
|
|
cc.machineKey, _ = cc.opts.GetMachinePrivateKey()
|
|
newKeys = true
|
|
}
|
|
|
|
if cc.persist.PrivateNodeKey.IsZero() {
|
|
cc.logf("Generating a new nodekey.")
|
|
cc.persist.OldPrivateNodeKey = cc.persist.PrivateNodeKey
|
|
cc.persist.PrivateNodeKey = key.NewNode()
|
|
newKeys = true
|
|
}
|
|
|
|
return newKeys
|
|
}
|
|
|
|
// send publishes a controlclient.Status notification upstream.
|
|
// (In our tests here, upstream is the ipnlocal.Local instance.)
|
|
func (cc *mockControl) send(err error, url string, loginFinished bool, nm *netmap.NetworkMap) {
|
|
if cc.statusFunc != nil {
|
|
s := controlclient.Status{
|
|
URL: url,
|
|
NetMap: nm,
|
|
Persist: &cc.persist,
|
|
Err: err,
|
|
}
|
|
if loginFinished {
|
|
s.LoginFinished = &empty.Message{}
|
|
} else if url == "" && err == nil && nm == nil {
|
|
s.LogoutFinished = &empty.Message{}
|
|
}
|
|
cc.statusFunc(s)
|
|
}
|
|
}
|
|
|
|
// called records that a particular function name was called.
|
|
func (cc *mockControl) called(s string) {
|
|
cc.mu.Lock()
|
|
defer cc.mu.Unlock()
|
|
|
|
cc.calls = append(cc.calls, s)
|
|
}
|
|
|
|
// assertCalls fails the test if the list of functions that have been called since the
|
|
// last time assertCall was run does not match want.
|
|
func (cc *mockControl) assertCalls(want ...string) {
|
|
cc.tb.Helper()
|
|
cc.mu.Lock()
|
|
defer cc.mu.Unlock()
|
|
qt.Assert(cc.tb, cc.calls, qt.DeepEquals, want)
|
|
cc.calls = nil
|
|
}
|
|
|
|
// setAuthBlocked changes the return value of AuthCantContinue.
|
|
// Auth is blocked if you haven't called Login, the control server hasn't
|
|
// provided an auth URL, or it has provided an auth URL and you haven't
|
|
// visited it yet.
|
|
func (cc *mockControl) setAuthBlocked(blocked bool) {
|
|
cc.mu.Lock()
|
|
defer cc.mu.Unlock()
|
|
|
|
cc.authBlocked = blocked
|
|
}
|
|
|
|
// Shutdown disconnects the client.
|
|
//
|
|
// Note that in a normal controlclient, Shutdown would be the last thing you
|
|
// do before discarding the object. In this mock, we don't actually discard
|
|
// the object, but if you see a call to Shutdown, you should always see a
|
|
// call to New right after it, if the object continues to be used.
|
|
// (Note that "New" is the ccGen function here; it means ipn.Backend wanted
|
|
// to create an entirely new controlclient.)
|
|
func (cc *mockControl) Shutdown() {
|
|
cc.logf("Shutdown")
|
|
cc.called("Shutdown")
|
|
}
|
|
|
|
// Login starts a login process.
|
|
// Note that in this mock, we don't automatically generate notifications
|
|
// about the progress of the login operation. You have to call setAuthBlocked()
|
|
// and send() as required by the test.
|
|
func (cc *mockControl) Login(t *tailcfg.Oauth2Token, flags controlclient.LoginFlags) {
|
|
cc.logf("Login token=%v flags=%v", t, flags)
|
|
cc.called("Login")
|
|
newKeys := cc.populateKeys()
|
|
|
|
interact := (flags & controlclient.LoginInteractive) != 0
|
|
cc.logf("Login: interact=%v newKeys=%v", interact, newKeys)
|
|
cc.setAuthBlocked(interact || newKeys)
|
|
}
|
|
|
|
func (cc *mockControl) StartLogout() {
|
|
cc.logf("StartLogout")
|
|
cc.called("StartLogout")
|
|
}
|
|
|
|
func (cc *mockControl) Logout(ctx context.Context) error {
|
|
cc.logf("Logout")
|
|
cc.called("Logout")
|
|
return nil
|
|
}
|
|
|
|
func (cc *mockControl) SetPaused(paused bool) {
|
|
cc.logf("SetPaused=%v", paused)
|
|
if paused {
|
|
cc.called("pause")
|
|
} else {
|
|
cc.called("unpause")
|
|
}
|
|
}
|
|
|
|
func (cc *mockControl) AuthCantContinue() bool {
|
|
cc.mu.Lock()
|
|
defer cc.mu.Unlock()
|
|
|
|
return cc.authBlocked
|
|
}
|
|
|
|
func (cc *mockControl) SetHostinfo(hi *tailcfg.Hostinfo) {
|
|
cc.logf("SetHostinfo: %v", *hi)
|
|
cc.called("SetHostinfo")
|
|
}
|
|
|
|
func (cc *mockControl) SetNetInfo(ni *tailcfg.NetInfo) {
|
|
cc.called("SetNetinfo")
|
|
cc.logf("SetNetInfo: %v", *ni)
|
|
cc.called("SetNetInfo")
|
|
}
|
|
|
|
func (cc *mockControl) UpdateEndpoints(localPort uint16, endpoints []tailcfg.Endpoint) {
|
|
// validate endpoint information here?
|
|
cc.logf("UpdateEndpoints: lp=%v ep=%v", localPort, endpoints)
|
|
cc.called("UpdateEndpoints")
|
|
}
|
|
|
|
func (*mockControl) SetDNS(context.Context, *tailcfg.SetDNSRequest) error {
|
|
panic("unexpected SetDNS call")
|
|
}
|
|
|
|
// A very precise test of the sequence of function calls generated by
|
|
// ipnlocal.Local into its controlclient instance, and the events it
|
|
// produces upstream into the UI.
|
|
//
|
|
// [apenwarr] Normally I'm not a fan of "mock" style tests, but the precise
|
|
// sequence of this state machine is so important for writing our multiple
|
|
// frontends, that it's worth validating it all in one place.
|
|
//
|
|
// Any changes that affect this test will most likely require carefully
|
|
// re-testing all our GUIs (and the CLI) to make sure we didn't break
|
|
// anything.
|
|
//
|
|
// Note also that this test doesn't have any timers, goroutines, or duplicate
|
|
// detection. It expects messages to be produced in exactly the right order,
|
|
// with no duplicates, without doing network activity (other than through
|
|
// controlclient, which we fake, so there's no network activity there either).
|
|
//
|
|
// TODO: A few messages that depend on magicsock (which actually might have
|
|
// network delays) are just ignored for now, which makes the test
|
|
// predictable, but maybe a bit less thorough. This is more of an overall
|
|
// state machine test than a test of the wgengine+magicsock integration.
|
|
func TestStateMachine(t *testing.T) {
|
|
c := qt.New(t)
|
|
|
|
logf := t.Logf
|
|
store := new(testStateStorage)
|
|
e, err := wgengine.NewFakeUserspaceEngine(logf, 0)
|
|
if err != nil {
|
|
t.Fatalf("NewFakeUserspaceEngine: %v", err)
|
|
}
|
|
t.Cleanup(e.Close)
|
|
|
|
cc := newMockControl(t)
|
|
b, err := NewLocalBackend(logf, "logid", store, nil, e)
|
|
if err != nil {
|
|
t.Fatalf("NewLocalBackend: %v", err)
|
|
}
|
|
b.SetControlClientGetterForTesting(func(opts controlclient.Options) (controlclient.Client, error) {
|
|
cc.mu.Lock()
|
|
cc.opts = opts
|
|
cc.logf = opts.Logf
|
|
cc.authBlocked = true
|
|
cc.persist = cc.opts.Persist
|
|
cc.mu.Unlock()
|
|
|
|
cc.logf("ccGen: new mockControl.")
|
|
cc.called("New")
|
|
return cc, nil
|
|
})
|
|
|
|
notifies := ¬ifyThrottler{t: t}
|
|
notifies.expect(0)
|
|
|
|
b.SetNotifyCallback(func(n ipn.Notify) {
|
|
if n.State != nil ||
|
|
n.Prefs != nil ||
|
|
n.BrowseToURL != nil ||
|
|
n.LoginFinished != nil {
|
|
logf("\n%v\n\n", n)
|
|
notifies.put(n)
|
|
} else {
|
|
logf("\n(ignored) %v\n\n", n)
|
|
}
|
|
})
|
|
|
|
// Check that it hasn't called us right away.
|
|
// The state machine should be idle until we call Start().
|
|
cc.assertCalls()
|
|
|
|
// Start the state machine.
|
|
// Since !WantRunning by default, it'll create a controlclient,
|
|
// but not ask it to do anything yet.
|
|
t.Logf("\n\nStart")
|
|
notifies.expect(2)
|
|
c.Assert(b.Start(ipn.Options{StateKey: ipn.GlobalDaemonStateKey}), qt.IsNil)
|
|
{
|
|
// BUG: strictly, it should pause, not unpause, here, since !WantRunning.
|
|
cc.assertCalls("New", "unpause")
|
|
|
|
nn := notifies.drain(2)
|
|
cc.assertCalls()
|
|
c.Assert(nn[0].Prefs, qt.IsNotNil)
|
|
c.Assert(nn[1].State, qt.IsNotNil)
|
|
prefs := *nn[0].Prefs
|
|
// Note: a totally fresh system has Prefs.LoggedOut=false by
|
|
// default. We are logged out, but not because the user asked
|
|
// for it, so it doesn't count as Prefs.LoggedOut==true.
|
|
c.Assert(nn[0].Prefs.LoggedOut, qt.IsFalse)
|
|
c.Assert(prefs.WantRunning, qt.IsFalse)
|
|
c.Assert(ipn.NeedsLogin, qt.Equals, *nn[1].State)
|
|
c.Assert(ipn.NeedsLogin, qt.Equals, b.State())
|
|
}
|
|
|
|
// Restart the state machine.
|
|
// It's designed to handle frontends coming and going sporadically.
|
|
// Make the sure the restart not only works, but generates the same
|
|
// events as the first time, so UIs always know what to expect.
|
|
t.Logf("\n\nStart2")
|
|
notifies.expect(2)
|
|
c.Assert(b.Start(ipn.Options{StateKey: ipn.GlobalDaemonStateKey}), qt.IsNil)
|
|
{
|
|
// BUG: strictly, it should pause, not unpause, here, since !WantRunning.
|
|
cc.assertCalls("Shutdown", "unpause", "New", "unpause")
|
|
|
|
nn := notifies.drain(2)
|
|
cc.assertCalls()
|
|
c.Assert(nn[0].Prefs, qt.IsNotNil)
|
|
c.Assert(nn[1].State, qt.IsNotNil)
|
|
c.Assert(nn[0].Prefs.LoggedOut, qt.IsFalse)
|
|
c.Assert(nn[0].Prefs.WantRunning, qt.IsFalse)
|
|
c.Assert(ipn.NeedsLogin, qt.Equals, *nn[1].State)
|
|
c.Assert(ipn.NeedsLogin, qt.Equals, b.State())
|
|
}
|
|
|
|
// Start non-interactive login with no token.
|
|
// This will ask controlclient to start its own Login() process,
|
|
// then wait for us to respond.
|
|
t.Logf("\n\nLogin (noninteractive)")
|
|
notifies.expect(0)
|
|
b.Login(nil)
|
|
{
|
|
cc.assertCalls("Login")
|
|
notifies.drain(0)
|
|
// Note: WantRunning isn't true yet. It'll switch to true
|
|
// after a successful login finishes.
|
|
// (This behaviour is needed so that b.Login() won't
|
|
// start connecting to an old account right away, if one
|
|
// exists when you launch another login.)
|
|
}
|
|
|
|
// Attempted non-interactive login with no key; indicate that
|
|
// the user needs to visit a login URL.
|
|
t.Logf("\n\nLogin (url response)")
|
|
notifies.expect(1)
|
|
url1 := "http://localhost:1/1"
|
|
cc.send(nil, url1, false, nil)
|
|
{
|
|
cc.assertCalls("unpause")
|
|
|
|
// ...but backend eats that notification, because the user
|
|
// didn't explicitly request interactive login yet, and
|
|
// we're already in NeedsLogin state.
|
|
nn := notifies.drain(1)
|
|
|
|
c.Assert(nn[0].Prefs, qt.IsNotNil)
|
|
c.Assert(nn[0].Prefs.LoggedOut, qt.IsFalse)
|
|
c.Assert(nn[0].Prefs.WantRunning, qt.IsFalse)
|
|
}
|
|
|
|
// Now we'll try an interactive login.
|
|
// Since we provided an interactive URL earlier, this shouldn't
|
|
// ask control to do anything. Instead backend will emit an event
|
|
// indicating that the UI should browse to the given URL.
|
|
t.Logf("\n\nLogin (interactive)")
|
|
notifies.expect(1)
|
|
b.StartLoginInteractive()
|
|
{
|
|
nn := notifies.drain(1)
|
|
cc.assertCalls("unpause")
|
|
c.Assert(nn[0].BrowseToURL, qt.IsNotNil)
|
|
c.Assert(url1, qt.Equals, *nn[0].BrowseToURL)
|
|
}
|
|
|
|
// Sometimes users press the Login button again, in the middle of
|
|
// a login sequence. For example, they might have closed their
|
|
// browser window without logging in, or they waited too long and
|
|
// the login URL expired. If they start another interactive login,
|
|
// we must always get a *new* login URL first.
|
|
t.Logf("\n\nLogin2 (interactive)")
|
|
notifies.expect(0)
|
|
b.StartLoginInteractive()
|
|
{
|
|
notifies.drain(0)
|
|
// backend asks control for another login sequence
|
|
cc.assertCalls("Login")
|
|
}
|
|
|
|
// Provide a new interactive login URL.
|
|
t.Logf("\n\nLogin2 (url response)")
|
|
notifies.expect(1)
|
|
url2 := "http://localhost:1/2"
|
|
cc.send(nil, url2, false, nil)
|
|
{
|
|
cc.assertCalls("unpause", "unpause")
|
|
|
|
// This time, backend should emit it to the UI right away,
|
|
// because the UI is anxiously awaiting a new URL to visit.
|
|
nn := notifies.drain(1)
|
|
c.Assert(nn[0].BrowseToURL, qt.IsNotNil)
|
|
c.Assert(url2, qt.Equals, *nn[0].BrowseToURL)
|
|
}
|
|
|
|
// Pretend that the interactive login actually happened.
|
|
// Controlclient always sends the netmap and LoginFinished at the
|
|
// same time.
|
|
// The backend should propagate this upward for the UI.
|
|
t.Logf("\n\nLoginFinished")
|
|
notifies.expect(3)
|
|
cc.setAuthBlocked(false)
|
|
cc.persist.LoginName = "user1"
|
|
cc.send(nil, "", true, &netmap.NetworkMap{})
|
|
{
|
|
nn := notifies.drain(3)
|
|
// Arguably it makes sense to unpause now, since the machine
|
|
// authorization status is part of the netmap.
|
|
//
|
|
// BUG: backend unblocks wgengine at this point, even though
|
|
// our machine key is not authorized. It probably should
|
|
// wait until it gets into Starting.
|
|
// TODO: (Currently this test doesn't detect that bug, but
|
|
// it's visible in the logs)
|
|
cc.assertCalls("unpause", "unpause", "unpause")
|
|
c.Assert(nn[0].LoginFinished, qt.IsNotNil)
|
|
c.Assert(nn[1].Prefs, qt.IsNotNil)
|
|
c.Assert(nn[2].State, qt.IsNotNil)
|
|
c.Assert(nn[1].Prefs.Persist.LoginName, qt.Equals, "user1")
|
|
c.Assert(ipn.NeedsMachineAuth, qt.Equals, *nn[2].State)
|
|
}
|
|
|
|
// Pretend that the administrator has authorized our machine.
|
|
t.Logf("\n\nMachineAuthorized")
|
|
notifies.expect(1)
|
|
// BUG: the real controlclient sends LoginFinished with every
|
|
// notification while it's in StateAuthenticated, but not StateSynced.
|
|
// It should send it exactly once, or every time we're authenticated,
|
|
// but the current code is brittle.
|
|
// (ie. I suspect it would be better to change false->true in send()
|
|
// below, and do the same in the real controlclient.)
|
|
cc.send(nil, "", false, &netmap.NetworkMap{
|
|
MachineStatus: tailcfg.MachineAuthorized,
|
|
})
|
|
{
|
|
nn := notifies.drain(1)
|
|
cc.assertCalls("unpause", "unpause", "unpause")
|
|
c.Assert(nn[0].State, qt.IsNotNil)
|
|
c.Assert(ipn.Starting, qt.Equals, *nn[0].State)
|
|
}
|
|
|
|
// TODO: add a fake DERP server to our fake netmap, so we can
|
|
// transition to the Running state here.
|
|
|
|
// TODO: test what happens when the admin forcibly deletes our key.
|
|
// (ie. unsolicited logout)
|
|
|
|
// TODO: test what happens when our key expires, client side.
|
|
// (and when it gets close to expiring)
|
|
|
|
// The user changes their preference to !WantRunning.
|
|
t.Logf("\n\nWantRunning -> false")
|
|
notifies.expect(2)
|
|
b.EditPrefs(&ipn.MaskedPrefs{
|
|
WantRunningSet: true,
|
|
Prefs: ipn.Prefs{WantRunning: false},
|
|
})
|
|
{
|
|
nn := notifies.drain(2)
|
|
cc.assertCalls("pause")
|
|
// BUG: I would expect Prefs to change first, and state after.
|
|
c.Assert(nn[0].State, qt.IsNotNil)
|
|
c.Assert(nn[1].Prefs, qt.IsNotNil)
|
|
c.Assert(ipn.Stopped, qt.Equals, *nn[0].State)
|
|
}
|
|
|
|
// The user changes their preference to WantRunning after all.
|
|
t.Logf("\n\nWantRunning -> true")
|
|
store.awaitWrite()
|
|
notifies.expect(2)
|
|
b.EditPrefs(&ipn.MaskedPrefs{
|
|
WantRunningSet: true,
|
|
Prefs: ipn.Prefs{WantRunning: true},
|
|
})
|
|
{
|
|
nn := notifies.drain(2)
|
|
// BUG: Login isn't needed here. We never logged out.
|
|
cc.assertCalls("Login", "unpause", "unpause")
|
|
// BUG: I would expect Prefs to change first, and state after.
|
|
c.Assert(nn[0].State, qt.IsNotNil)
|
|
c.Assert(nn[1].Prefs, qt.IsNotNil)
|
|
c.Assert(ipn.Starting, qt.Equals, *nn[0].State)
|
|
c.Assert(store.sawWrite(), qt.IsTrue)
|
|
}
|
|
|
|
// Test the fast-path frontend reconnection.
|
|
// This one is very finicky, so we have to force State==Running
|
|
// or it won't use the fast path.
|
|
// TODO: actually get to State==Running, rather than cheating.
|
|
// That'll require spinning up a fake DERP server and putting it in
|
|
// the netmap.
|
|
t.Logf("\n\nFastpath Start()")
|
|
notifies.expect(1)
|
|
b.state = ipn.Running
|
|
c.Assert(b.Start(ipn.Options{StateKey: ipn.GlobalDaemonStateKey}), qt.IsNil)
|
|
{
|
|
nn := notifies.drain(1)
|
|
cc.assertCalls()
|
|
c.Assert(nn[0].State, qt.IsNotNil)
|
|
c.Assert(nn[0].LoginFinished, qt.IsNotNil)
|
|
c.Assert(nn[0].NetMap, qt.IsNotNil)
|
|
c.Assert(nn[0].Prefs, qt.IsNotNil)
|
|
}
|
|
|
|
// undo the state hack above.
|
|
b.state = ipn.Starting
|
|
|
|
// User wants to logout.
|
|
store.awaitWrite()
|
|
t.Logf("\n\nLogout (async)")
|
|
notifies.expect(2)
|
|
b.Logout()
|
|
{
|
|
nn := notifies.drain(2)
|
|
cc.assertCalls("pause", "StartLogout", "pause")
|
|
c.Assert(nn[0].State, qt.IsNotNil)
|
|
c.Assert(nn[1].Prefs, qt.IsNotNil)
|
|
c.Assert(ipn.Stopped, qt.Equals, *nn[0].State)
|
|
c.Assert(nn[1].Prefs.LoggedOut, qt.IsTrue)
|
|
c.Assert(nn[1].Prefs.WantRunning, qt.IsFalse)
|
|
c.Assert(ipn.Stopped, qt.Equals, b.State())
|
|
c.Assert(store.sawWrite(), qt.IsTrue)
|
|
}
|
|
|
|
// Let's make the logout succeed.
|
|
t.Logf("\n\nLogout (async) - succeed")
|
|
notifies.expect(1)
|
|
cc.setAuthBlocked(true)
|
|
cc.send(nil, "", false, nil)
|
|
{
|
|
nn := notifies.drain(1)
|
|
cc.assertCalls("unpause", "unpause")
|
|
c.Assert(nn[0].State, qt.IsNotNil)
|
|
c.Assert(ipn.NeedsLogin, qt.Equals, *nn[0].State)
|
|
c.Assert(b.Prefs().LoggedOut, qt.IsTrue)
|
|
c.Assert(b.Prefs().WantRunning, qt.IsFalse)
|
|
c.Assert(ipn.NeedsLogin, qt.Equals, b.State())
|
|
}
|
|
|
|
// A second logout should do nothing, since the prefs haven't changed.
|
|
t.Logf("\n\nLogout2 (async)")
|
|
notifies.expect(0)
|
|
b.Logout()
|
|
{
|
|
notifies.drain(0)
|
|
// BUG: the backend has already called StartLogout, and we're
|
|
// still logged out. So it shouldn't call it again.
|
|
cc.assertCalls("StartLogout", "unpause")
|
|
cc.assertCalls()
|
|
c.Assert(b.Prefs().LoggedOut, qt.IsTrue)
|
|
c.Assert(b.Prefs().WantRunning, qt.IsFalse)
|
|
c.Assert(ipn.NeedsLogin, qt.Equals, b.State())
|
|
}
|
|
|
|
// Let's acknowledge the second logout too.
|
|
t.Logf("\n\nLogout2 (async) - succeed")
|
|
notifies.expect(0)
|
|
cc.setAuthBlocked(true)
|
|
cc.send(nil, "", false, nil)
|
|
{
|
|
notifies.drain(0)
|
|
cc.assertCalls("unpause", "unpause")
|
|
c.Assert(b.Prefs().LoggedOut, qt.IsTrue)
|
|
c.Assert(b.Prefs().WantRunning, qt.IsFalse)
|
|
c.Assert(ipn.NeedsLogin, qt.Equals, b.State())
|
|
}
|
|
|
|
// Try the synchronous logout feature.
|
|
t.Logf("\n\nLogout3 (sync)")
|
|
notifies.expect(0)
|
|
b.LogoutSync(context.Background())
|
|
// NOTE: This returns as soon as cc.Logout() returns, which is okay
|
|
// I guess, since that's supposed to be synchronous.
|
|
{
|
|
notifies.drain(0)
|
|
cc.assertCalls("Logout", "unpause")
|
|
c.Assert(b.Prefs().LoggedOut, qt.IsTrue)
|
|
c.Assert(b.Prefs().WantRunning, qt.IsFalse)
|
|
c.Assert(ipn.NeedsLogin, qt.Equals, b.State())
|
|
}
|
|
|
|
// Generate the third logout event.
|
|
t.Logf("\n\nLogout3 (sync) - succeed")
|
|
notifies.expect(0)
|
|
cc.setAuthBlocked(true)
|
|
cc.send(nil, "", false, nil)
|
|
{
|
|
notifies.drain(0)
|
|
cc.assertCalls("unpause", "unpause")
|
|
c.Assert(b.Prefs().LoggedOut, qt.IsTrue)
|
|
c.Assert(b.Prefs().WantRunning, qt.IsFalse)
|
|
c.Assert(ipn.NeedsLogin, qt.Equals, b.State())
|
|
}
|
|
|
|
// Oh, you thought we were done? Ha! Now we have to test what
|
|
// happens if the user exits and restarts while logged out.
|
|
// Note that it's explicitly okay to call b.Start() over and over
|
|
// again, every time the frontend reconnects.
|
|
|
|
// TODO: test user switching between statekeys.
|
|
|
|
// The frontend restarts!
|
|
t.Logf("\n\nStart3")
|
|
notifies.expect(2)
|
|
c.Assert(b.Start(ipn.Options{StateKey: ipn.GlobalDaemonStateKey}), qt.IsNil)
|
|
{
|
|
// BUG: We already called Shutdown(), no need to do it again.
|
|
// BUG: don't unpause because we're not logged in.
|
|
cc.assertCalls("Shutdown", "unpause", "New", "unpause")
|
|
|
|
nn := notifies.drain(2)
|
|
cc.assertCalls()
|
|
c.Assert(nn[0].Prefs, qt.IsNotNil)
|
|
c.Assert(nn[1].State, qt.IsNotNil)
|
|
c.Assert(nn[0].Prefs.LoggedOut, qt.IsTrue)
|
|
c.Assert(nn[0].Prefs.WantRunning, qt.IsFalse)
|
|
c.Assert(ipn.NeedsLogin, qt.Equals, *nn[1].State)
|
|
c.Assert(ipn.NeedsLogin, qt.Equals, b.State())
|
|
}
|
|
|
|
// Let's break the rules a little. Our control server accepts
|
|
// your invalid login attempt, with no need for an interactive login.
|
|
// (This simulates an admin reviving a key that you previously
|
|
// disabled.)
|
|
t.Logf("\n\nLoginFinished3")
|
|
notifies.expect(3)
|
|
cc.setAuthBlocked(false)
|
|
cc.persist.LoginName = "user2"
|
|
cc.send(nil, "", true, &netmap.NetworkMap{
|
|
MachineStatus: tailcfg.MachineAuthorized,
|
|
})
|
|
{
|
|
nn := notifies.drain(3)
|
|
cc.assertCalls("unpause", "unpause", "unpause")
|
|
c.Assert(nn[0].LoginFinished, qt.IsNotNil)
|
|
c.Assert(nn[1].Prefs, qt.IsNotNil)
|
|
c.Assert(nn[2].State, qt.IsNotNil)
|
|
// Prefs after finishing the login, so LoginName updated.
|
|
c.Assert(nn[1].Prefs.Persist.LoginName, qt.Equals, "user2")
|
|
c.Assert(nn[1].Prefs.LoggedOut, qt.IsFalse)
|
|
c.Assert(nn[1].Prefs.WantRunning, qt.IsTrue)
|
|
c.Assert(ipn.Starting, qt.Equals, *nn[2].State)
|
|
}
|
|
|
|
// Now we've logged in successfully. Let's disconnect.
|
|
t.Logf("\n\nWantRunning -> false")
|
|
notifies.expect(2)
|
|
b.EditPrefs(&ipn.MaskedPrefs{
|
|
WantRunningSet: true,
|
|
Prefs: ipn.Prefs{WantRunning: false},
|
|
})
|
|
{
|
|
nn := notifies.drain(2)
|
|
cc.assertCalls("pause")
|
|
// BUG: I would expect Prefs to change first, and state after.
|
|
c.Assert(nn[0].State, qt.IsNotNil)
|
|
c.Assert(nn[1].Prefs, qt.IsNotNil)
|
|
c.Assert(ipn.Stopped, qt.Equals, *nn[0].State)
|
|
c.Assert(nn[1].Prefs.LoggedOut, qt.IsFalse)
|
|
}
|
|
|
|
// One more restart, this time with a valid key, but WantRunning=false.
|
|
t.Logf("\n\nStart4")
|
|
notifies.expect(2)
|
|
c.Assert(b.Start(ipn.Options{StateKey: ipn.GlobalDaemonStateKey}), qt.IsNil)
|
|
{
|
|
// NOTE: cc.Shutdown() is correct here, since we didn't call
|
|
// b.Shutdown() explicitly ourselves.
|
|
// Note: unpause happens because ipn needs to get at least one netmap
|
|
// on startup, otherwise UIs can't show the node list, login
|
|
// name, etc when in state ipn.Stopped.
|
|
// Arguably they shouldn't try. But they currently do.
|
|
nn := notifies.drain(2)
|
|
cc.assertCalls("Shutdown", "unpause", "New", "Login", "unpause")
|
|
c.Assert(nn[0].Prefs, qt.IsNotNil)
|
|
c.Assert(nn[1].State, qt.IsNotNil)
|
|
c.Assert(nn[0].Prefs.WantRunning, qt.IsFalse)
|
|
c.Assert(nn[0].Prefs.LoggedOut, qt.IsFalse)
|
|
c.Assert(ipn.Stopped, qt.Equals, *nn[1].State)
|
|
}
|
|
|
|
// When logged in but !WantRunning, ipn leaves us unpaused to retrieve
|
|
// the first netmap. Simulate that netmap being received, after which
|
|
// it should pause us, to avoid wasting CPU retrieving unnecessarily
|
|
// additional netmap updates.
|
|
//
|
|
// TODO: really the various GUIs and prefs should be refactored to
|
|
// not require the netmap structure at all when starting while
|
|
// !WantRunning. That would remove the need for this (or contacting
|
|
// the control server at all when stopped).
|
|
t.Logf("\n\nStart4 -> netmap")
|
|
notifies.expect(0)
|
|
cc.send(nil, "", true, &netmap.NetworkMap{
|
|
MachineStatus: tailcfg.MachineAuthorized,
|
|
})
|
|
{
|
|
notifies.drain(0)
|
|
cc.assertCalls("pause", "pause")
|
|
}
|
|
|
|
// Request connection.
|
|
// The state machine didn't call Login() earlier, so now it needs to.
|
|
t.Logf("\n\nWantRunning4 -> true")
|
|
notifies.expect(2)
|
|
b.EditPrefs(&ipn.MaskedPrefs{
|
|
WantRunningSet: true,
|
|
Prefs: ipn.Prefs{WantRunning: true},
|
|
})
|
|
{
|
|
nn := notifies.drain(2)
|
|
cc.assertCalls("Login", "unpause", "unpause")
|
|
// BUG: I would expect Prefs to change first, and state after.
|
|
c.Assert(nn[0].State, qt.IsNotNil)
|
|
c.Assert(nn[1].Prefs, qt.IsNotNil)
|
|
c.Assert(ipn.Starting, qt.Equals, *nn[0].State)
|
|
}
|
|
|
|
// Disconnect.
|
|
t.Logf("\n\nStop")
|
|
notifies.expect(2)
|
|
b.EditPrefs(&ipn.MaskedPrefs{
|
|
WantRunningSet: true,
|
|
Prefs: ipn.Prefs{WantRunning: false},
|
|
})
|
|
{
|
|
nn := notifies.drain(2)
|
|
cc.assertCalls("pause")
|
|
// BUG: I would expect Prefs to change first, and state after.
|
|
c.Assert(nn[0].State, qt.IsNotNil)
|
|
c.Assert(nn[1].Prefs, qt.IsNotNil)
|
|
c.Assert(ipn.Stopped, qt.Equals, *nn[0].State)
|
|
}
|
|
|
|
// We want to try logging in as a different user, while Stopped.
|
|
// First, start the login process (without logging out first).
|
|
t.Logf("\n\nLoginDifferent")
|
|
notifies.expect(1)
|
|
b.StartLoginInteractive()
|
|
url3 := "http://localhost:1/3"
|
|
cc.send(nil, url3, false, nil)
|
|
{
|
|
nn := notifies.drain(1)
|
|
// It might seem like WantRunning should switch to true here,
|
|
// but that would be risky since we already have a valid
|
|
// user account. It might try to reconnect to the old account
|
|
// before the new one is ready. So no change yet.
|
|
//
|
|
// Because the login hasn't yet completed, the old login
|
|
// is still valid, so it's correct that we stay paused.
|
|
cc.assertCalls("Login", "pause", "pause")
|
|
c.Assert(nn[0].BrowseToURL, qt.IsNotNil)
|
|
c.Assert(*nn[0].BrowseToURL, qt.Equals, url3)
|
|
}
|
|
|
|
// Now, let's complete the interactive login, using a different
|
|
// user account than before. WantRunning changes to true after an
|
|
// interactive login, so we end up unpaused.
|
|
t.Logf("\n\nLoginDifferent URL visited")
|
|
notifies.expect(3)
|
|
cc.persist.LoginName = "user3"
|
|
cc.send(nil, "", true, &netmap.NetworkMap{
|
|
MachineStatus: tailcfg.MachineAuthorized,
|
|
})
|
|
{
|
|
nn := notifies.drain(3)
|
|
// BUG: pause() being called here is a bad sign.
|
|
// It means that either the state machine ran at least once
|
|
// with the old netmap, or it ran with the new login+netmap
|
|
// and !WantRunning. But since it's a fresh and successful
|
|
// new login, WantRunning is true, so there was never a
|
|
// reason to pause().
|
|
cc.assertCalls("pause", "unpause", "unpause")
|
|
c.Assert(nn[0].LoginFinished, qt.IsNotNil)
|
|
c.Assert(nn[1].Prefs, qt.IsNotNil)
|
|
c.Assert(nn[2].State, qt.IsNotNil)
|
|
// Prefs after finishing the login, so LoginName updated.
|
|
c.Assert(nn[1].Prefs.Persist.LoginName, qt.Equals, "user3")
|
|
c.Assert(nn[1].Prefs.LoggedOut, qt.IsFalse)
|
|
c.Assert(nn[1].Prefs.WantRunning, qt.IsTrue)
|
|
c.Assert(ipn.Starting, qt.Equals, *nn[2].State)
|
|
}
|
|
|
|
// The last test case is the most common one: restarting when both
|
|
// logged in and WantRunning.
|
|
t.Logf("\n\nStart5")
|
|
notifies.expect(1)
|
|
c.Assert(b.Start(ipn.Options{StateKey: ipn.GlobalDaemonStateKey}), qt.IsNil)
|
|
{
|
|
// NOTE: cc.Shutdown() is correct here, since we didn't call
|
|
// b.Shutdown() ourselves.
|
|
cc.assertCalls("Shutdown", "unpause", "New", "Login", "unpause")
|
|
|
|
nn := notifies.drain(1)
|
|
cc.assertCalls()
|
|
c.Assert(nn[0].Prefs, qt.IsNotNil)
|
|
c.Assert(nn[0].Prefs.LoggedOut, qt.IsFalse)
|
|
c.Assert(nn[0].Prefs.WantRunning, qt.IsTrue)
|
|
c.Assert(ipn.NoState, qt.Equals, b.State())
|
|
}
|
|
|
|
// Control server accepts our valid key from before.
|
|
t.Logf("\n\nLoginFinished5")
|
|
notifies.expect(1)
|
|
cc.setAuthBlocked(false)
|
|
cc.send(nil, "", true, &netmap.NetworkMap{
|
|
MachineStatus: tailcfg.MachineAuthorized,
|
|
})
|
|
{
|
|
nn := notifies.drain(1)
|
|
cc.assertCalls("unpause", "unpause", "unpause")
|
|
// NOTE: No LoginFinished message since no interactive
|
|
// login was needed.
|
|
c.Assert(nn[0].State, qt.IsNotNil)
|
|
c.Assert(ipn.Starting, qt.Equals, *nn[0].State)
|
|
// NOTE: No prefs change this time. WantRunning stays true.
|
|
// We were in Starting in the first place, so that doesn't
|
|
// change either.
|
|
c.Assert(ipn.Starting, qt.Equals, b.State())
|
|
}
|
|
t.Logf("\n\nExpireKey")
|
|
notifies.expect(1)
|
|
cc.send(nil, "", false, &netmap.NetworkMap{
|
|
Expiry: time.Now().Add(-time.Minute),
|
|
MachineStatus: tailcfg.MachineAuthorized,
|
|
})
|
|
{
|
|
nn := notifies.drain(1)
|
|
cc.assertCalls("unpause", "unpause")
|
|
c.Assert(nn[0].State, qt.IsNotNil)
|
|
c.Assert(ipn.NeedsLogin, qt.Equals, *nn[0].State)
|
|
c.Assert(ipn.NeedsLogin, qt.Equals, b.State())
|
|
c.Assert(b.isEngineBlocked(), qt.IsTrue)
|
|
}
|
|
|
|
t.Logf("\n\nExtendKey")
|
|
notifies.expect(1)
|
|
cc.send(nil, "", false, &netmap.NetworkMap{
|
|
Expiry: time.Now().Add(time.Minute),
|
|
MachineStatus: tailcfg.MachineAuthorized,
|
|
})
|
|
{
|
|
nn := notifies.drain(1)
|
|
cc.assertCalls("unpause", "unpause", "unpause")
|
|
c.Assert(nn[0].State, qt.IsNotNil)
|
|
c.Assert(ipn.Starting, qt.Equals, *nn[0].State)
|
|
c.Assert(ipn.Starting, qt.Equals, b.State())
|
|
c.Assert(b.isEngineBlocked(), qt.IsFalse)
|
|
}
|
|
notifies.expect(1)
|
|
// Fake a DERP connection.
|
|
b.setWgengineStatus(&wgengine.Status{DERPs: 1}, nil)
|
|
{
|
|
nn := notifies.drain(1)
|
|
cc.assertCalls("unpause")
|
|
c.Assert(nn[0].State, qt.IsNotNil)
|
|
c.Assert(ipn.Running, qt.Equals, *nn[0].State)
|
|
c.Assert(ipn.Running, qt.Equals, b.State())
|
|
}
|
|
}
|
|
|
|
type testStateStorage struct {
|
|
mem ipn.MemoryStore
|
|
written syncs.AtomicBool
|
|
}
|
|
|
|
func (s *testStateStorage) ReadState(id ipn.StateKey) ([]byte, error) {
|
|
return s.mem.ReadState(id)
|
|
}
|
|
|
|
func (s *testStateStorage) WriteState(id ipn.StateKey, bs []byte) error {
|
|
s.written.Set(true)
|
|
return s.mem.WriteState(id, bs)
|
|
}
|
|
|
|
// awaitWrite clears the "I've seen writes" bit, in prep for a future
|
|
// call to sawWrite to see if a write arrived.
|
|
func (s *testStateStorage) awaitWrite() { s.written.Set(false) }
|
|
|
|
// sawWrite reports whether there's been a WriteState call since the most
|
|
// recent awaitWrite call.
|
|
func (s *testStateStorage) sawWrite() bool {
|
|
v := s.written.Get()
|
|
s.awaitWrite()
|
|
return v
|
|
}
|
|
|
|
func TestWGEngineStatusRace(t *testing.T) {
|
|
t.Skip("test fails")
|
|
c := qt.New(t)
|
|
logf := t.Logf
|
|
eng, err := wgengine.NewFakeUserspaceEngine(logf, 0)
|
|
c.Assert(err, qt.IsNil)
|
|
t.Cleanup(eng.Close)
|
|
b, err := NewLocalBackend(logf, "logid", new(ipn.MemoryStore), nil, eng)
|
|
c.Assert(err, qt.IsNil)
|
|
|
|
cc := newMockControl(t)
|
|
b.SetControlClientGetterForTesting(func(opts controlclient.Options) (controlclient.Client, error) {
|
|
cc.mu.Lock()
|
|
defer cc.mu.Unlock()
|
|
cc.logf = opts.Logf
|
|
return cc, nil
|
|
})
|
|
|
|
var state ipn.State
|
|
b.SetNotifyCallback(func(n ipn.Notify) {
|
|
if n.State != nil {
|
|
state = *n.State
|
|
}
|
|
})
|
|
wantState := func(want ipn.State) {
|
|
c.Assert(want, qt.Equals, state)
|
|
}
|
|
|
|
// Start with the zero value.
|
|
wantState(ipn.NoState)
|
|
|
|
// Start the backend.
|
|
err = b.Start(ipn.Options{StateKey: ipn.GlobalDaemonStateKey})
|
|
c.Assert(err, qt.IsNil)
|
|
wantState(ipn.NeedsLogin)
|
|
|
|
// Assert that we are logged in and authorized.
|
|
cc.send(nil, "", true, &netmap.NetworkMap{
|
|
MachineStatus: tailcfg.MachineAuthorized,
|
|
})
|
|
wantState(ipn.Starting)
|
|
|
|
// Simulate multiple concurrent callbacks from wgengine.
|
|
// Any single callback with DERPS > 0 is enough to transition
|
|
// from Starting to Running, at which point we stay there.
|
|
// Thus if these callbacks occurred serially, in any order,
|
|
// we would end up in state ipn.Running.
|
|
// The same should thus be true if these callbacks occur concurrently.
|
|
var wg sync.WaitGroup
|
|
for i := 0; i < 100; i++ {
|
|
wg.Add(1)
|
|
go func(i int) {
|
|
defer wg.Done()
|
|
n := 0
|
|
if i == 0 {
|
|
n = 1
|
|
}
|
|
b.setWgengineStatus(&wgengine.Status{DERPs: n}, nil)
|
|
}(i)
|
|
}
|
|
wg.Wait()
|
|
wantState(ipn.Running)
|
|
}
|