tailscale/net/connstats/stats_test.go

201 lines
5.7 KiB
Go

// Copyright (c) 2022 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package connstats
import (
"context"
"encoding/binary"
"fmt"
"math/rand"
"net/netip"
"runtime"
"sync"
"testing"
"time"
qt "github.com/frankban/quicktest"
"tailscale.com/types/ipproto"
"tailscale.com/types/netlogtype"
)
func testPacketV4(proto ipproto.Proto, srcAddr, dstAddr [4]byte, srcPort, dstPort, size uint16) (out []byte) {
var ipHdr [20]byte
ipHdr[0] = 4<<4 | 5
binary.BigEndian.PutUint16(ipHdr[2:], size)
ipHdr[9] = byte(proto)
*(*[4]byte)(ipHdr[12:]) = srcAddr
*(*[4]byte)(ipHdr[16:]) = dstAddr
out = append(out, ipHdr[:]...)
switch proto {
case ipproto.TCP:
var tcpHdr [20]byte
binary.BigEndian.PutUint16(tcpHdr[0:], srcPort)
binary.BigEndian.PutUint16(tcpHdr[2:], dstPort)
out = append(out, tcpHdr[:]...)
case ipproto.UDP:
var udpHdr [8]byte
binary.BigEndian.PutUint16(udpHdr[0:], srcPort)
binary.BigEndian.PutUint16(udpHdr[2:], dstPort)
out = append(out, udpHdr[:]...)
default:
panic(fmt.Sprintf("unknown proto: %d", proto))
}
return append(out, make([]byte, int(size)-len(out))...)
}
func TestConcurrent(t *testing.T) {
c := qt.New(t)
const maxPeriod = 10 * time.Millisecond
const maxConns = 10
virtualAggregate := make(map[netlogtype.Connection]netlogtype.Counts)
stats := NewStatistics(maxPeriod, maxConns, func(start, end time.Time, virtual, physical map[netlogtype.Connection]netlogtype.Counts) {
c.Assert(start.IsZero(), qt.IsFalse)
c.Assert(end.IsZero(), qt.IsFalse)
c.Assert(end.Before(start), qt.IsFalse)
c.Assert(len(virtual) > 0 && len(virtual) <= maxConns, qt.IsTrue)
c.Assert(len(physical) == 0, qt.IsTrue)
for conn, cnts := range virtual {
virtualAggregate[conn] = virtualAggregate[conn].Add(cnts)
}
})
defer stats.Shutdown(context.Background())
var wants []map[netlogtype.Connection]netlogtype.Counts
gots := make([]map[netlogtype.Connection]netlogtype.Counts, runtime.NumCPU())
var group sync.WaitGroup
for i := range gots {
group.Add(1)
go func(i int) {
defer group.Done()
gots[i] = make(map[netlogtype.Connection]netlogtype.Counts)
rn := rand.New(rand.NewSource(time.Now().UnixNano()))
var p []byte
var t netlogtype.Connection
for j := 0; j < 1000; j++ {
delay := rn.Intn(10000)
if p == nil || rn.Intn(64) == 0 {
proto := ipproto.TCP
if rn.Intn(2) == 0 {
proto = ipproto.UDP
}
srcAddr := netip.AddrFrom4([4]byte{192, 168, 0, byte(rand.Intn(16))})
dstAddr := netip.AddrFrom4([4]byte{192, 168, 0, byte(rand.Intn(16))})
srcPort := uint16(rand.Intn(16))
dstPort := uint16(rand.Intn(16))
size := uint16(64 + rand.Intn(1024))
p = testPacketV4(proto, srcAddr.As4(), dstAddr.As4(), srcPort, dstPort, size)
t = netlogtype.Connection{Proto: proto, Src: netip.AddrPortFrom(srcAddr, srcPort), Dst: netip.AddrPortFrom(dstAddr, dstPort)}
}
t2 := t
receive := rn.Intn(2) == 0
if receive {
t2.Src, t2.Dst = t2.Dst, t2.Src
}
cnts := gots[i][t2]
if receive {
stats.UpdateRxVirtual(p)
cnts.RxPackets++
cnts.RxBytes += uint64(len(p))
} else {
cnts.TxPackets++
cnts.TxBytes += uint64(len(p))
stats.UpdateTxVirtual(p)
}
gots[i][t2] = cnts
time.Sleep(time.Duration(rn.Intn(1 + delay)))
}
}(i)
}
group.Wait()
c.Assert(stats.Shutdown(context.Background()), qt.IsNil)
wants = append(wants, virtualAggregate)
got := make(map[netlogtype.Connection]netlogtype.Counts)
want := make(map[netlogtype.Connection]netlogtype.Counts)
mergeMaps(got, gots...)
mergeMaps(want, wants...)
c.Assert(got, qt.DeepEquals, want)
}
func mergeMaps(dst map[netlogtype.Connection]netlogtype.Counts, srcs ...map[netlogtype.Connection]netlogtype.Counts) {
for _, src := range srcs {
for conn, cnts := range src {
dst[conn] = dst[conn].Add(cnts)
}
}
}
func Benchmark(b *testing.B) {
// TODO: Test IPv6 packets?
b.Run("SingleRoutine/SameConn", func(b *testing.B) {
p := testPacketV4(ipproto.UDP, [4]byte{192, 168, 0, 1}, [4]byte{192, 168, 0, 2}, 123, 456, 789)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
s := NewStatistics(0, 0, nil)
for j := 0; j < 1e3; j++ {
s.UpdateTxVirtual(p)
}
}
})
b.Run("SingleRoutine/UniqueConns", func(b *testing.B) {
p := testPacketV4(ipproto.UDP, [4]byte{}, [4]byte{}, 0, 0, 789)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
s := NewStatistics(0, 0, nil)
for j := 0; j < 1e3; j++ {
binary.BigEndian.PutUint32(p[20:], uint32(j)) // unique port combination
s.UpdateTxVirtual(p)
}
}
})
b.Run("MultiRoutine/SameConn", func(b *testing.B) {
p := testPacketV4(ipproto.UDP, [4]byte{192, 168, 0, 1}, [4]byte{192, 168, 0, 2}, 123, 456, 789)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
s := NewStatistics(0, 0, nil)
var group sync.WaitGroup
for j := 0; j < runtime.NumCPU(); j++ {
group.Add(1)
go func() {
defer group.Done()
for k := 0; k < 1e3; k++ {
s.UpdateTxVirtual(p)
}
}()
}
group.Wait()
}
})
b.Run("MultiRoutine/UniqueConns", func(b *testing.B) {
ps := make([][]byte, runtime.NumCPU())
for i := range ps {
ps[i] = testPacketV4(ipproto.UDP, [4]byte{192, 168, 0, 1}, [4]byte{192, 168, 0, 2}, 0, 0, 789)
}
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
s := NewStatistics(0, 0, nil)
var group sync.WaitGroup
for j := 0; j < runtime.NumCPU(); j++ {
group.Add(1)
go func(j int) {
defer group.Done()
p := ps[j]
j *= 1e3
for k := 0; k < 1e3; k++ {
binary.BigEndian.PutUint32(p[20:], uint32(j+k)) // unique port combination
s.UpdateTxVirtual(p)
}
}(j)
}
group.Wait()
}
})
}