tailscale/control/controlclient/noise.go

304 lines
8.2 KiB
Go

// Copyright (c) 2022 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package controlclient
import (
"bytes"
"context"
"encoding/json"
"math"
"net/http"
"net/url"
"sync"
"time"
"golang.org/x/net/http2"
"tailscale.com/control/controlbase"
"tailscale.com/control/controlhttp"
"tailscale.com/net/tsdial"
"tailscale.com/tailcfg"
"tailscale.com/types/key"
"tailscale.com/util/mak"
"tailscale.com/util/multierr"
"tailscale.com/util/singleflight"
)
// noiseConn is a wrapper around controlbase.Conn.
// It allows attaching an ID to a connection to allow
// cleaning up references in the pool when the connection
// is closed.
type noiseConn struct {
*controlbase.Conn
id int
pool *noiseClient
h2cc *http2.ClientConn
}
func (c *noiseConn) Close() error {
if err := c.Conn.Close(); err != nil {
return err
}
c.pool.connClosed(c.id)
return nil
}
// noiseClient provides a http.Client to connect to tailcontrol over
// the ts2021 protocol.
type noiseClient struct {
// Client is an HTTP client to talk to the coordination server.
// It automatically makes a new Noise connection as needed.
// It does not support node key proofs. To do that, call
// noiseClient.getConn instead to make a connection.
*http.Client
// h2t is the HTTP/2 transport we use a bit to create new
// *http2.ClientConns. We don't use its connection pool and we don't use its
// dialing. We use it for exactly one reason: its idle timeout that can only
// be configured via the HTTP/1 config. And then we call NewClientConn (with
// an existing Noise connection) on the http2.Transport which sets up an
// http2.ClientConn using that idle timeout from an http1.Transport.
h2t *http2.Transport
// sfDial ensures that two concurrent requests for a noise connection only
// produce one shared one between the two callers.
sfDial singleflight.Group[struct{}, *noiseConn]
dialer *tsdial.Dialer
privKey key.MachinePrivate
serverPubKey key.MachinePublic
host string // the host part of serverURL
httpPort string // the default port to call
httpsPort string // the fallback Noise-over-https port
// dialPlan optionally returns a ControlDialPlan previously received
// from the control server; either the function or the return value can
// be nil.
dialPlan func() *tailcfg.ControlDialPlan
// mu only protects the following variables.
mu sync.Mutex
last *noiseConn // or nil
nextID int
connPool map[int]*noiseConn // active connections not yet closed; see noiseConn.Close
}
// newNoiseClient returns a new noiseClient for the provided server and machine key.
// serverURL is of the form https://<host>:<port> (no trailing slash).
//
// dialPlan may be nil
func newNoiseClient(priKey key.MachinePrivate, serverPubKey key.MachinePublic, serverURL string, dialer *tsdial.Dialer, dialPlan func() *tailcfg.ControlDialPlan) (*noiseClient, error) {
u, err := url.Parse(serverURL)
if err != nil {
return nil, err
}
var httpPort string
var httpsPort string
if u.Port() != "" {
// If there is an explicit port specified, trust the scheme and hope for the best
if u.Scheme == "http" {
httpPort = u.Port()
httpsPort = "443"
} else {
httpPort = "80"
httpsPort = u.Port()
}
} else {
// Otherwise, use the standard ports
httpPort = "80"
httpsPort = "443"
}
np := &noiseClient{
serverPubKey: serverPubKey,
privKey: priKey,
host: u.Hostname(),
httpPort: httpPort,
httpsPort: httpsPort,
dialer: dialer,
dialPlan: dialPlan,
}
// Create the HTTP/2 Transport using a net/http.Transport
// (which only does HTTP/1) because it's the only way to
// configure certain properties on the http2.Transport. But we
// never actually use the net/http.Transport for any HTTP/1
// requests.
h2Transport, err := http2.ConfigureTransports(&http.Transport{
IdleConnTimeout: time.Minute,
})
if err != nil {
return nil, err
}
np.h2t = h2Transport
np.Client = &http.Client{Transport: np}
return np, nil
}
func (nc *noiseClient) getConn(ctx context.Context) (*noiseConn, error) {
nc.mu.Lock()
if last := nc.last; last != nil && last.canTakeNewRequest() {
nc.mu.Unlock()
return last, nil
}
nc.mu.Unlock()
conn, err, _ := nc.sfDial.Do(struct{}{}, nc.dial)
if err != nil {
return nil, err
}
return conn, nil
}
func (nc *noiseClient) RoundTrip(req *http.Request) (*http.Response, error) {
ctx := req.Context()
conn, err := nc.getConn(ctx)
if err != nil {
return nil, err
}
return conn.h2cc.RoundTrip(req)
}
// connClosed removes the connection with the provided ID from the pool
// of active connections.
func (nc *noiseClient) connClosed(id int) {
nc.mu.Lock()
defer nc.mu.Unlock()
conn := nc.connPool[id]
if conn != nil {
delete(nc.connPool, id)
if nc.last == conn {
nc.last = nil
}
}
}
// Close closes all the underlying noise connections.
// It is a no-op and returns nil if the connection is already closed.
func (nc *noiseClient) Close() error {
nc.mu.Lock()
conns := nc.connPool
nc.connPool = nil
nc.mu.Unlock()
var errors []error
for _, c := range conns {
if err := c.Close(); err != nil {
errors = append(errors, err)
}
}
return multierr.New(errors...)
}
// dial opens a new connection to tailcontrol, fetching the server noise key
// if not cached.
func (nc *noiseClient) dial() (*noiseConn, error) {
nc.mu.Lock()
connID := nc.nextID
nc.nextID++
nc.mu.Unlock()
if tailcfg.CurrentCapabilityVersion > math.MaxUint16 {
// Panic, because a test should have started failing several
// thousand version numbers before getting to this point.
panic("capability version is too high to fit in the wire protocol")
}
var dialPlan *tailcfg.ControlDialPlan
if nc.dialPlan != nil {
dialPlan = nc.dialPlan()
}
// If we have a dial plan, then set our timeout as slightly longer than
// the maximum amount of time contained therein; we assume that
// explicit instructions on timeouts are more useful than a single
// hard-coded timeout.
//
// The default value of 5 is chosen so that, when there's no dial plan,
// we retain the previous behaviour of 10 seconds end-to-end timeout.
timeoutSec := 5.0
if dialPlan != nil {
for _, c := range dialPlan.Candidates {
if v := c.DialStartDelaySec + c.DialTimeoutSec; v > timeoutSec {
timeoutSec = v
}
}
}
// After we establish a connection, we need some time to actually
// upgrade it into a Noise connection. With a ballpark worst-case RTT
// of 1000ms, give ourselves an extra 5 seconds to complete the
// handshake.
timeoutSec += 5
// Be extremely defensive and ensure that the timeout is in the range
// [5, 60] seconds (e.g. if we accidentally get a negative number).
if timeoutSec > 60 {
timeoutSec = 60
} else if timeoutSec < 5 {
timeoutSec = 5
}
timeout := time.Duration(timeoutSec * float64(time.Second))
ctx, cancel := context.WithTimeout(context.Background(), timeout)
defer cancel()
clientConn, err := (&controlhttp.Dialer{
Hostname: nc.host,
HTTPPort: nc.httpPort,
HTTPSPort: nc.httpsPort,
MachineKey: nc.privKey,
ControlKey: nc.serverPubKey,
ProtocolVersion: uint16(tailcfg.CurrentCapabilityVersion),
Dialer: nc.dialer.SystemDial,
DialPlan: dialPlan,
}).Dial(ctx)
if err != nil {
return nil, err
}
ncc := &noiseConn{
Conn: clientConn.Conn,
id: connID,
pool: nc,
}
// TODO(bradfitz): wrap clientConn in a type that sniffs the leading bytes
// from the server to see if it has early post-Noise, pre-H2 data for us.
h2cc, err := nc.h2t.NewClientConn(ncc)
if err != nil {
return nil, err
}
ncc.h2cc = h2cc
nc.mu.Lock()
defer nc.mu.Unlock()
mak.Set(&nc.connPool, ncc.id, ncc)
nc.last = ncc
return ncc, nil
}
func (nc *noiseClient) post(ctx context.Context, path string, body any) (*http.Response, error) {
jbody, err := json.Marshal(body)
if err != nil {
return nil, err
}
req, err := http.NewRequestWithContext(ctx, "POST", "https://"+nc.host+path, bytes.NewReader(jbody))
if err != nil {
return nil, err
}
req.Header.Set("Content-Type", "application/json")
conn, err := nc.getConn(ctx)
if err != nil {
return nil, err
}
return conn.h2cc.RoundTrip(req)
}
func (c *noiseConn) canTakeNewRequest() bool {
return c.h2cc.CanTakeNewRequest()
}