312 lines
8.8 KiB
Go
312 lines
8.8 KiB
Go
// Copyright (c) Tailscale Inc & AUTHORS
|
|
// SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
// Copyright 2013 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package singleflight provides a duplicate function call suppression
|
|
// mechanism.
|
|
//
|
|
// This is a Tailscale fork of Go's singleflight package which has had several
|
|
// homes in the past:
|
|
//
|
|
// - https://github.com/golang/go/commit/61d3b2db6292581fc07a3767ec23ec94ad6100d1
|
|
// - https://github.com/golang/groupcache/tree/master/singleflight
|
|
// - https://pkg.go.dev/golang.org/x/sync/singleflight
|
|
//
|
|
// This fork adds generics.
|
|
package singleflight // import "tailscale.com/util/singleflight"
|
|
|
|
import (
|
|
"bytes"
|
|
"context"
|
|
"errors"
|
|
"fmt"
|
|
"runtime"
|
|
"runtime/debug"
|
|
"sync"
|
|
"sync/atomic"
|
|
)
|
|
|
|
// errGoexit indicates the runtime.Goexit was called in
|
|
// the user given function.
|
|
var errGoexit = errors.New("runtime.Goexit was called")
|
|
|
|
// A panicError is an arbitrary value recovered from a panic
|
|
// with the stack trace during the execution of given function.
|
|
type panicError struct {
|
|
value interface{}
|
|
stack []byte
|
|
}
|
|
|
|
// Error implements error interface.
|
|
func (p *panicError) Error() string {
|
|
return fmt.Sprintf("%v\n\n%s", p.value, p.stack)
|
|
}
|
|
|
|
func newPanicError(v interface{}) error {
|
|
stack := debug.Stack()
|
|
|
|
// The first line of the stack trace is of the form "goroutine N [status]:"
|
|
// but by the time the panic reaches Do the goroutine may no longer exist
|
|
// and its status will have changed. Trim out the misleading line.
|
|
if line := bytes.IndexByte(stack[:], '\n'); line >= 0 {
|
|
stack = stack[line+1:]
|
|
}
|
|
return &panicError{value: v, stack: stack}
|
|
}
|
|
|
|
// call is an in-flight or completed singleflight.Do call
|
|
type call[V any] struct {
|
|
wg sync.WaitGroup
|
|
|
|
// These fields are written once before the WaitGroup is done
|
|
// and are only read after the WaitGroup is done.
|
|
val V
|
|
err error
|
|
|
|
// These fields are read and written with the singleflight
|
|
// mutex held before the WaitGroup is done, and are read but
|
|
// not written after the WaitGroup is done.
|
|
dups int
|
|
chans []chan<- Result[V]
|
|
|
|
// These fields are only written when the call is being created, and
|
|
// only in the DoChanContext method.
|
|
cancel context.CancelFunc
|
|
ctxWaiters atomic.Int64
|
|
}
|
|
|
|
// Group represents a class of work and forms a namespace in
|
|
// which units of work can be executed with duplicate suppression.
|
|
type Group[K comparable, V any] struct {
|
|
mu sync.Mutex // protects m
|
|
m map[K]*call[V] // lazily initialized
|
|
}
|
|
|
|
// Result holds the results of Do, so they can be passed
|
|
// on a channel.
|
|
type Result[V any] struct {
|
|
Val V
|
|
Err error
|
|
Shared bool
|
|
}
|
|
|
|
// Do executes and returns the results of the given function, making
|
|
// sure that only one execution is in-flight for a given key at a
|
|
// time. If a duplicate comes in, the duplicate caller waits for the
|
|
// original to complete and receives the same results.
|
|
// The return value shared indicates whether v was given to multiple callers.
|
|
func (g *Group[K, V]) Do(key K, fn func() (V, error)) (v V, err error, shared bool) {
|
|
g.mu.Lock()
|
|
if g.m == nil {
|
|
g.m = make(map[K]*call[V])
|
|
}
|
|
if c, ok := g.m[key]; ok {
|
|
c.dups++
|
|
g.mu.Unlock()
|
|
c.wg.Wait()
|
|
|
|
if e, ok := c.err.(*panicError); ok {
|
|
panic(e)
|
|
} else if c.err == errGoexit {
|
|
runtime.Goexit()
|
|
}
|
|
return c.val, c.err, true
|
|
}
|
|
c := new(call[V])
|
|
c.wg.Add(1)
|
|
g.m[key] = c
|
|
g.mu.Unlock()
|
|
|
|
g.doCall(c, key, fn)
|
|
return c.val, c.err, c.dups > 0
|
|
}
|
|
|
|
// DoChan is like Do but returns a channel that will receive the
|
|
// results when they are ready.
|
|
//
|
|
// The returned channel will not be closed.
|
|
func (g *Group[K, V]) DoChan(key K, fn func() (V, error)) <-chan Result[V] {
|
|
ch := make(chan Result[V], 1)
|
|
g.mu.Lock()
|
|
if g.m == nil {
|
|
g.m = make(map[K]*call[V])
|
|
}
|
|
if c, ok := g.m[key]; ok {
|
|
c.dups++
|
|
c.chans = append(c.chans, ch)
|
|
g.mu.Unlock()
|
|
return ch
|
|
}
|
|
c := &call[V]{chans: []chan<- Result[V]{ch}}
|
|
c.wg.Add(1)
|
|
g.m[key] = c
|
|
g.mu.Unlock()
|
|
|
|
go g.doCall(c, key, fn)
|
|
|
|
return ch
|
|
}
|
|
|
|
// DoChanContext is like [Group.DoChan], but supports context cancelation. The
|
|
// context passed to the fn function is a context that is canceled only when
|
|
// there are no callers waiting on a result (i.e. all callers have canceled
|
|
// their contexts).
|
|
//
|
|
// The context that is passed to the fn function is not derived from any of the
|
|
// input contexts, so context values will not be propagated. If context values
|
|
// are needed, they must be propagated explicitly.
|
|
//
|
|
// The returned channel will not be closed. The Result.Err field is set to the
|
|
// context error if the context is canceled.
|
|
func (g *Group[K, V]) DoChanContext(ctx context.Context, key K, fn func(context.Context) (V, error)) <-chan Result[V] {
|
|
ch := make(chan Result[V], 1)
|
|
g.mu.Lock()
|
|
if g.m == nil {
|
|
g.m = make(map[K]*call[V])
|
|
}
|
|
c, ok := g.m[key]
|
|
if ok {
|
|
// Call already in progress; add to the waiters list and then
|
|
// release the mutex.
|
|
c.dups++
|
|
c.ctxWaiters.Add(1)
|
|
c.chans = append(c.chans, ch)
|
|
g.mu.Unlock()
|
|
} else {
|
|
// The call hasn't been started yet; we need to start it.
|
|
//
|
|
// Create a context that is not canceled when the parent context is,
|
|
// but otherwise propagates all values.
|
|
callCtx, callCancel := context.WithCancel(context.Background())
|
|
c = &call[V]{
|
|
chans: []chan<- Result[V]{ch},
|
|
cancel: callCancel,
|
|
}
|
|
c.wg.Add(1)
|
|
c.ctxWaiters.Add(1) // one caller waiting
|
|
g.m[key] = c
|
|
g.mu.Unlock()
|
|
|
|
// Wrap our function to provide the context.
|
|
go g.doCall(c, key, func() (V, error) {
|
|
return fn(callCtx)
|
|
})
|
|
}
|
|
|
|
// Instead of returning the channel directly, we need to track
|
|
// when the call finishes so we can handle context cancelation.
|
|
// Do so by creating an final channel that gets the
|
|
// result and hooking that up to the wait function.
|
|
final := make(chan Result[V], 1)
|
|
go g.waitCtx(ctx, c, ch, final)
|
|
return final
|
|
}
|
|
|
|
// waitCtx will wait on the provided call to finish, or the context to be done.
|
|
// If the context is done, and this is the last waiter, then the context
|
|
// provided to the underlying function will be canceled.
|
|
func (g *Group[K, V]) waitCtx(ctx context.Context, c *call[V], result <-chan Result[V], output chan<- Result[V]) {
|
|
var res Result[V]
|
|
select {
|
|
case <-ctx.Done():
|
|
case res = <-result:
|
|
}
|
|
|
|
// Decrement the caller count, and if we're the last one, cancel the
|
|
// context we created. Do this in all cases, error and otherwise, so we
|
|
// don't leak goroutines.
|
|
//
|
|
// Also wait on the call to finish, so we know that the call has
|
|
// finished executing after the last caller has returned.
|
|
if c.ctxWaiters.Add(-1) == 0 {
|
|
c.cancel()
|
|
c.wg.Wait()
|
|
}
|
|
|
|
// Ensure that context cancelation takes precedence over a value being
|
|
// available by checking ctx.Err() before sending the result to the
|
|
// caller. The select above will nondeterministically pick a case if a
|
|
// result is available and the ctx.Done channel is closed, so we check
|
|
// again here.
|
|
if err := ctx.Err(); err != nil {
|
|
res = Result[V]{Err: err}
|
|
}
|
|
output <- res
|
|
}
|
|
|
|
// doCall handles the single call for a key.
|
|
func (g *Group[K, V]) doCall(c *call[V], key K, fn func() (V, error)) {
|
|
normalReturn := false
|
|
recovered := false
|
|
|
|
// use double-defer to distinguish panic from runtime.Goexit,
|
|
// more details see https://golang.org/cl/134395
|
|
defer func() {
|
|
// the given function invoked runtime.Goexit
|
|
if !normalReturn && !recovered {
|
|
c.err = errGoexit
|
|
}
|
|
|
|
g.mu.Lock()
|
|
defer g.mu.Unlock()
|
|
c.wg.Done()
|
|
if g.m[key] == c {
|
|
delete(g.m, key)
|
|
}
|
|
|
|
if e, ok := c.err.(*panicError); ok {
|
|
// In order to prevent the waiting channels from being blocked forever,
|
|
// needs to ensure that this panic cannot be recovered.
|
|
if len(c.chans) > 0 {
|
|
go panic(e)
|
|
select {} // Keep this goroutine around so that it will appear in the crash dump.
|
|
} else {
|
|
panic(e)
|
|
}
|
|
} else if c.err == errGoexit {
|
|
// Already in the process of goexit, no need to call again
|
|
} else {
|
|
// Normal return
|
|
for _, ch := range c.chans {
|
|
ch <- Result[V]{c.val, c.err, c.dups > 0}
|
|
}
|
|
}
|
|
}()
|
|
|
|
func() {
|
|
defer func() {
|
|
if !normalReturn {
|
|
// Ideally, we would wait to take a stack trace until we've determined
|
|
// whether this is a panic or a runtime.Goexit.
|
|
//
|
|
// Unfortunately, the only way we can distinguish the two is to see
|
|
// whether the recover stopped the goroutine from terminating, and by
|
|
// the time we know that, the part of the stack trace relevant to the
|
|
// panic has been discarded.
|
|
if r := recover(); r != nil {
|
|
c.err = newPanicError(r)
|
|
}
|
|
}
|
|
}()
|
|
|
|
c.val, c.err = fn()
|
|
normalReturn = true
|
|
}()
|
|
|
|
if !normalReturn {
|
|
recovered = true
|
|
}
|
|
}
|
|
|
|
// Forget tells the singleflight to forget about a key. Future calls
|
|
// to Do for this key will call the function rather than waiting for
|
|
// an earlier call to complete.
|
|
func (g *Group[K, V]) Forget(key K) {
|
|
g.mu.Lock()
|
|
delete(g.m, key)
|
|
g.mu.Unlock()
|
|
}
|