tailscale/wgengine/magicsock/batching_conn_linux.go

420 lines
12 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
package magicsock
import (
"encoding/binary"
"errors"
"fmt"
"net"
"net/netip"
"strings"
"sync"
"sync/atomic"
"syscall"
"time"
"unsafe"
"golang.org/x/net/ipv4"
"golang.org/x/net/ipv6"
"golang.org/x/sys/unix"
"tailscale.com/hostinfo"
"tailscale.com/net/neterror"
"tailscale.com/types/nettype"
)
// xnetBatchReaderWriter defines the batching i/o methods of
// golang.org/x/net/ipv4.PacketConn (and ipv6.PacketConn).
// TODO(jwhited): This should eventually be replaced with the standard library
// implementation of https://github.com/golang/go/issues/45886
type xnetBatchReaderWriter interface {
xnetBatchReader
xnetBatchWriter
}
type xnetBatchReader interface {
ReadBatch([]ipv6.Message, int) (int, error)
}
type xnetBatchWriter interface {
WriteBatch([]ipv6.Message, int) (int, error)
}
// linuxBatchingConn is a UDP socket that provides batched i/o. It implements
// batchingConn.
type linuxBatchingConn struct {
pc nettype.PacketConn
xpc xnetBatchReaderWriter
rxOffload bool // supports UDP GRO or similar
txOffload atomic.Bool // supports UDP GSO or similar
setGSOSizeInControl func(control *[]byte, gsoSize uint16) // typically setGSOSizeInControl(); swappable for testing
getGSOSizeFromControl func(control []byte) (int, error) // typically getGSOSizeFromControl(); swappable for testing
sendBatchPool sync.Pool
}
func (c *linuxBatchingConn) ReadFromUDPAddrPort(p []byte) (n int, addr netip.AddrPort, err error) {
if c.rxOffload {
// UDP_GRO is opt-in on Linux via setsockopt(). Once enabled you may
// receive a "monster datagram" from any read call. The ReadFrom() API
// does not support passing the GSO size and is unsafe to use in such a
// case. Other platforms may vary in behavior, but we go with the most
// conservative approach to prevent this from becoming a footgun in the
// future.
return 0, netip.AddrPort{}, errors.New("rx UDP offload is enabled on this socket, single packet reads are unavailable")
}
return c.pc.ReadFromUDPAddrPort(p)
}
func (c *linuxBatchingConn) SetDeadline(t time.Time) error {
return c.pc.SetDeadline(t)
}
func (c *linuxBatchingConn) SetReadDeadline(t time.Time) error {
return c.pc.SetReadDeadline(t)
}
func (c *linuxBatchingConn) SetWriteDeadline(t time.Time) error {
return c.pc.SetWriteDeadline(t)
}
const (
// This was initially established for Linux, but may split out to
// GOOS-specific values later. It originates as UDP_MAX_SEGMENTS in the
// kernel's TX path, and UDP_GRO_CNT_MAX for RX.
udpSegmentMaxDatagrams = 64
)
const (
// Exceeding these values results in EMSGSIZE.
maxIPv4PayloadLen = 1<<16 - 1 - 20 - 8
maxIPv6PayloadLen = 1<<16 - 1 - 8
)
// coalesceMessages iterates msgs, coalescing them where possible while
// maintaining datagram order. All msgs have their Addr field set to addr.
func (c *linuxBatchingConn) coalesceMessages(addr *net.UDPAddr, buffs [][]byte, msgs []ipv6.Message) int {
var (
base = -1 // index of msg we are currently coalescing into
gsoSize int // segmentation size of msgs[base]
dgramCnt int // number of dgrams coalesced into msgs[base]
endBatch bool // tracking flag to start a new batch on next iteration of buffs
)
maxPayloadLen := maxIPv4PayloadLen
if addr.IP.To4() == nil {
maxPayloadLen = maxIPv6PayloadLen
}
for i, buff := range buffs {
if i > 0 {
msgLen := len(buff)
baseLenBefore := len(msgs[base].Buffers[0])
freeBaseCap := cap(msgs[base].Buffers[0]) - baseLenBefore
if msgLen+baseLenBefore <= maxPayloadLen &&
msgLen <= gsoSize &&
msgLen <= freeBaseCap &&
dgramCnt < udpSegmentMaxDatagrams &&
!endBatch {
msgs[base].Buffers[0] = append(msgs[base].Buffers[0], make([]byte, msgLen)...)
copy(msgs[base].Buffers[0][baseLenBefore:], buff)
if i == len(buffs)-1 {
c.setGSOSizeInControl(&msgs[base].OOB, uint16(gsoSize))
}
dgramCnt++
if msgLen < gsoSize {
// A smaller than gsoSize packet on the tail is legal, but
// it must end the batch.
endBatch = true
}
continue
}
}
if dgramCnt > 1 {
c.setGSOSizeInControl(&msgs[base].OOB, uint16(gsoSize))
}
// Reset prior to incrementing base since we are preparing to start a
// new potential batch.
endBatch = false
base++
gsoSize = len(buff)
msgs[base].OOB = msgs[base].OOB[:0]
msgs[base].Buffers[0] = buff
msgs[base].Addr = addr
dgramCnt = 1
}
return base + 1
}
type sendBatch struct {
msgs []ipv6.Message
ua *net.UDPAddr
}
func (c *linuxBatchingConn) getSendBatch() *sendBatch {
batch := c.sendBatchPool.Get().(*sendBatch)
return batch
}
func (c *linuxBatchingConn) putSendBatch(batch *sendBatch) {
for i := range batch.msgs {
batch.msgs[i] = ipv6.Message{Buffers: batch.msgs[i].Buffers, OOB: batch.msgs[i].OOB}
}
c.sendBatchPool.Put(batch)
}
func (c *linuxBatchingConn) WriteBatchTo(buffs [][]byte, addr netip.AddrPort) error {
batch := c.getSendBatch()
defer c.putSendBatch(batch)
if addr.Addr().Is6() {
as16 := addr.Addr().As16()
copy(batch.ua.IP, as16[:])
batch.ua.IP = batch.ua.IP[:16]
} else {
as4 := addr.Addr().As4()
copy(batch.ua.IP, as4[:])
batch.ua.IP = batch.ua.IP[:4]
}
batch.ua.Port = int(addr.Port())
var (
n int
retried bool
)
retry:
if c.txOffload.Load() {
n = c.coalesceMessages(batch.ua, buffs, batch.msgs)
} else {
for i := range buffs {
batch.msgs[i].Buffers[0] = buffs[i]
batch.msgs[i].Addr = batch.ua
batch.msgs[i].OOB = batch.msgs[i].OOB[:0]
}
n = len(buffs)
}
err := c.writeBatch(batch.msgs[:n])
if err != nil && c.txOffload.Load() && neterror.ShouldDisableUDPGSO(err) {
c.txOffload.Store(false)
retried = true
goto retry
}
if retried {
return neterror.ErrUDPGSODisabled{OnLaddr: c.pc.LocalAddr().String(), RetryErr: err}
}
return err
}
func (c *linuxBatchingConn) SyscallConn() (syscall.RawConn, error) {
sc, ok := c.pc.(syscall.Conn)
if !ok {
return nil, errUnsupportedConnType
}
return sc.SyscallConn()
}
func (c *linuxBatchingConn) writeBatch(msgs []ipv6.Message) error {
var head int
for {
n, err := c.xpc.WriteBatch(msgs[head:], 0)
if err != nil || n == len(msgs[head:]) {
// Returning the number of packets written would require
// unraveling individual msg len and gso size during a coalesced
// write. The top of the call stack disregards partial success,
// so keep this simple for now.
return err
}
head += n
}
}
// splitCoalescedMessages splits coalesced messages from the tail of dst
// beginning at index 'firstMsgAt' into the head of the same slice. It reports
// the number of elements to evaluate in msgs for nonzero len (msgs[i].N). An
// error is returned if a socket control message cannot be parsed or a split
// operation would overflow msgs.
func (c *linuxBatchingConn) splitCoalescedMessages(msgs []ipv6.Message, firstMsgAt int) (n int, err error) {
for i := firstMsgAt; i < len(msgs); i++ {
msg := &msgs[i]
if msg.N == 0 {
return n, err
}
var (
gsoSize int
start int
end = msg.N
numToSplit = 1
)
gsoSize, err = c.getGSOSizeFromControl(msg.OOB[:msg.NN])
if err != nil {
return n, err
}
if gsoSize > 0 {
numToSplit = (msg.N + gsoSize - 1) / gsoSize
end = gsoSize
}
for j := 0; j < numToSplit; j++ {
if n > i {
return n, errors.New("splitting coalesced packet resulted in overflow")
}
copied := copy(msgs[n].Buffers[0], msg.Buffers[0][start:end])
msgs[n].N = copied
msgs[n].Addr = msg.Addr
start = end
end += gsoSize
if end > msg.N {
end = msg.N
}
n++
}
if i != n-1 {
// It is legal for bytes to move within msg.Buffers[0] as a result
// of splitting, so we only zero the source msg len when it is not
// the destination of the last split operation above.
msg.N = 0
}
}
return n, nil
}
func (c *linuxBatchingConn) ReadBatch(msgs []ipv6.Message, flags int) (n int, err error) {
if !c.rxOffload || len(msgs) < 2 {
return c.xpc.ReadBatch(msgs, flags)
}
// Read into the tail of msgs, split into the head.
readAt := len(msgs) - 2
numRead, err := c.xpc.ReadBatch(msgs[readAt:], 0)
if err != nil || numRead == 0 {
return 0, err
}
return c.splitCoalescedMessages(msgs, readAt)
}
func (c *linuxBatchingConn) LocalAddr() net.Addr {
return c.pc.LocalAddr().(*net.UDPAddr)
}
func (c *linuxBatchingConn) WriteToUDPAddrPort(b []byte, addr netip.AddrPort) (int, error) {
return c.pc.WriteToUDPAddrPort(b, addr)
}
func (c *linuxBatchingConn) Close() error {
return c.pc.Close()
}
// tryEnableUDPOffload attempts to enable the UDP_GRO socket option on pconn,
// and returns two booleans indicating TX and RX UDP offload support.
func tryEnableUDPOffload(pconn nettype.PacketConn) (hasTX bool, hasRX bool) {
if c, ok := pconn.(*net.UDPConn); ok {
rc, err := c.SyscallConn()
if err != nil {
return
}
err = rc.Control(func(fd uintptr) {
_, errSyscall := syscall.GetsockoptInt(int(fd), unix.IPPROTO_UDP, unix.UDP_SEGMENT)
hasTX = errSyscall == nil
errSyscall = syscall.SetsockoptInt(int(fd), unix.IPPROTO_UDP, unix.UDP_GRO, 1)
hasRX = errSyscall == nil
})
if err != nil {
return false, false
}
}
return hasTX, hasRX
}
// getGSOSizeFromControl returns the GSO size found in control. If no GSO size
// is found or the len(control) < unix.SizeofCmsghdr, this function returns 0.
// A non-nil error will be returned if len(control) > unix.SizeofCmsghdr but
// its contents cannot be parsed as a socket control message.
func getGSOSizeFromControl(control []byte) (int, error) {
var (
hdr unix.Cmsghdr
data []byte
rem = control
err error
)
for len(rem) > unix.SizeofCmsghdr {
hdr, data, rem, err = unix.ParseOneSocketControlMessage(control)
if err != nil {
return 0, fmt.Errorf("error parsing socket control message: %w", err)
}
if hdr.Level == unix.SOL_UDP && hdr.Type == unix.UDP_GRO && len(data) >= 2 {
return int(binary.NativeEndian.Uint16(data[:2])), nil
}
}
return 0, nil
}
// setGSOSizeInControl sets a socket control message in control containing
// gsoSize. If len(control) < controlMessageSize control's len will be set to 0.
func setGSOSizeInControl(control *[]byte, gsoSize uint16) {
*control = (*control)[:0]
if cap(*control) < int(unsafe.Sizeof(unix.Cmsghdr{})) {
return
}
if cap(*control) < controlMessageSize {
return
}
*control = (*control)[:cap(*control)]
hdr := (*unix.Cmsghdr)(unsafe.Pointer(&(*control)[0]))
hdr.Level = unix.SOL_UDP
hdr.Type = unix.UDP_SEGMENT
hdr.SetLen(unix.CmsgLen(2))
binary.NativeEndian.PutUint16((*control)[unix.SizeofCmsghdr:], gsoSize)
*control = (*control)[:unix.CmsgSpace(2)]
}
// tryUpgradeToBatchingConn probes the capabilities of the OS and pconn, and
// upgrades pconn to a *linuxBatchingConn if appropriate.
func tryUpgradeToBatchingConn(pconn nettype.PacketConn, network string, batchSize int) nettype.PacketConn {
if network != "udp4" && network != "udp6" {
return pconn
}
if strings.HasPrefix(hostinfo.GetOSVersion(), "2.") {
// recvmmsg/sendmmsg were added in 2.6.33, but we support down to
// 2.6.32 for old NAS devices. See https://github.com/tailscale/tailscale/issues/6807.
// As a cheap heuristic: if the Linux kernel starts with "2", just
// consider it too old for mmsg. Nobody who cares about performance runs
// such ancient kernels. UDP offload was added much later, so no
// upgrades are available.
return pconn
}
uc, ok := pconn.(*net.UDPConn)
if !ok {
return pconn
}
b := &linuxBatchingConn{
pc: pconn,
getGSOSizeFromControl: getGSOSizeFromControl,
setGSOSizeInControl: setGSOSizeInControl,
sendBatchPool: sync.Pool{
New: func() any {
ua := &net.UDPAddr{
IP: make([]byte, 16),
}
msgs := make([]ipv6.Message, batchSize)
for i := range msgs {
msgs[i].Buffers = make([][]byte, 1)
msgs[i].Addr = ua
msgs[i].OOB = make([]byte, controlMessageSize)
}
return &sendBatch{
ua: ua,
msgs: msgs,
}
},
},
}
switch network {
case "udp4":
b.xpc = ipv4.NewPacketConn(uc)
case "udp6":
b.xpc = ipv6.NewPacketConn(uc)
default:
panic("bogus network")
}
var txOffload bool
txOffload, b.rxOffload = tryEnableUDPOffload(uc)
b.txOffload.Store(txOffload)
return b
}