tailscale/tstime/rate/value_test.go

237 lines
6.7 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
package rate
import (
"flag"
"math"
"testing"
"time"
qt "github.com/frankban/quicktest"
"github.com/google/go-cmp/cmp/cmpopts"
"tailscale.com/tstime/mono"
)
const (
min = mono.Time(time.Minute)
sec = mono.Time(time.Second)
msec = mono.Time(time.Millisecond)
usec = mono.Time(time.Microsecond)
nsec = mono.Time(time.Nanosecond)
val = 1.0e6
)
var longNumericalStabilityTest = flag.Bool("long-numerical-stability-test", false, "")
func TestValue(t *testing.T) {
// When performing many small calculations, the accuracy of the
// result can drift due to accumulated errors in the calculation.
// Verify that the result is correct even with many small updates.
// See https://en.wikipedia.org/wiki/Numerical_stability.
t.Run("NumericalStability", func(t *testing.T) {
step := usec
if *longNumericalStabilityTest {
step = nsec
}
numStep := int(sec / step)
c := qt.New(t)
var v Value
var now mono.Time
for i := 0; i < numStep; i++ {
v.addNow(now, float64(step))
now += step
}
c.Assert(v.rateNow(now), qt.CmpEquals(cmpopts.EquateApprox(1e-6, 0)), 1e9/2)
})
halfLives := []struct {
name string
period time.Duration
}{
{"½s", time.Second / 2},
{"1s", time.Second},
{"2s", 2 * time.Second},
}
for _, halfLife := range halfLives {
t.Run(halfLife.name+"/SpikeDecay", func(t *testing.T) {
testValueSpikeDecay(t, halfLife.period, false)
})
t.Run(halfLife.name+"/SpikeDecayAddZero", func(t *testing.T) {
testValueSpikeDecay(t, halfLife.period, true)
})
t.Run(halfLife.name+"/HighThenLow", func(t *testing.T) {
testValueHighThenLow(t, halfLife.period)
})
t.Run(halfLife.name+"/LowFrequency", func(t *testing.T) {
testLowFrequency(t, halfLife.period)
})
}
}
// testValueSpikeDecay starts with a target rate and ensure that it
// exponentially decays according to the half-life formula.
func testValueSpikeDecay(t *testing.T, halfLife time.Duration, addZero bool) {
c := qt.New(t)
v := Value{HalfLife: halfLife}
v.addNow(0, val*v.normalizedIntegral())
var now mono.Time
var prevRate float64
step := 100 * msec
wantHalfRate := float64(val)
for now < 10*sec {
// Adding zero for every time-step will repeatedly trigger the
// computation to decay the value, which may cause the result
// to become more numerically unstable.
if addZero {
v.addNow(now, 0)
}
currRate := v.rateNow(now)
t.Logf("%0.1fs:\t%0.3f", time.Duration(now).Seconds(), currRate)
// At every multiple of a half-life period,
// the current rate should be half the value of what
// it was at the last half-life period.
if time.Duration(now)%halfLife == 0 {
c.Assert(currRate, qt.CmpEquals(cmpopts.EquateApprox(1e-12, 0)), wantHalfRate)
wantHalfRate = currRate / 2
}
// Without any newly added events,
// the rate should be decaying over time.
if now > 0 && prevRate < currRate {
t.Errorf("%v: rate is not decaying: %0.1f < %0.1f", time.Duration(now), prevRate, currRate)
}
if currRate < 0 {
t.Errorf("%v: rate too low: %0.1f < %0.1f", time.Duration(now), currRate, 0.0)
}
prevRate = currRate
now += step
}
}
// testValueHighThenLow targets a steady-state rate that is high,
// then switches to a target steady-state rate that is low.
func testValueHighThenLow(t *testing.T, halfLife time.Duration) {
c := qt.New(t)
v := Value{HalfLife: halfLife}
var now mono.Time
var prevRate float64
var wantRate float64
const step = 10 * msec
const stepsPerSecond = int(sec / step)
// Target a higher steady-state rate.
wantRate = 2 * val
wantHalfRate := float64(0.0)
eventsPerStep := wantRate / float64(stepsPerSecond)
for now < 10*sec {
currRate := v.rateNow(now)
v.addNow(now, eventsPerStep)
t.Logf("%0.1fs:\t%0.3f", time.Duration(now).Seconds(), currRate)
// At every multiple of a half-life period,
// the current rate should be half-way more towards
// the target rate relative to before.
if time.Duration(now)%halfLife == 0 {
c.Assert(currRate, qt.CmpEquals(cmpopts.EquateApprox(0.1, 0)), wantHalfRate)
wantHalfRate += (wantRate - currRate) / 2
}
// Rate should approach wantRate from below,
// but never exceed it.
if now > 0 && prevRate > currRate {
t.Errorf("%v: rate is not growing: %0.1f > %0.1f", time.Duration(now), prevRate, currRate)
}
if currRate > 1.01*wantRate {
t.Errorf("%v: rate too high: %0.1f > %0.1f", time.Duration(now), currRate, wantRate)
}
prevRate = currRate
now += step
}
c.Assert(prevRate, qt.CmpEquals(cmpopts.EquateApprox(0.05, 0)), wantRate)
// Target a lower steady-state rate.
wantRate = val / 3
wantHalfRate = prevRate
eventsPerStep = wantRate / float64(stepsPerSecond)
for now < 20*sec {
currRate := v.rateNow(now)
v.addNow(now, eventsPerStep)
t.Logf("%0.1fs:\t%0.3f", time.Duration(now).Seconds(), currRate)
// At every multiple of a half-life period,
// the current rate should be half-way more towards
// the target rate relative to before.
if time.Duration(now)%halfLife == 0 {
c.Assert(currRate, qt.CmpEquals(cmpopts.EquateApprox(0.1, 0)), wantHalfRate)
wantHalfRate += (wantRate - currRate) / 2
}
// Rate should approach wantRate from above,
// but never exceed it.
if now > 10*sec && prevRate < currRate {
t.Errorf("%v: rate is not decaying: %0.1f < %0.1f", time.Duration(now), prevRate, currRate)
}
if currRate < 0.99*wantRate {
t.Errorf("%v: rate too low: %0.1f < %0.1f", time.Duration(now), currRate, wantRate)
}
prevRate = currRate
now += step
}
c.Assert(prevRate, qt.CmpEquals(cmpopts.EquateApprox(0.15, 0)), wantRate)
}
// testLowFrequency fires an event at a frequency much slower than
// the specified half-life period. While the average rate over time
// should be accurate, the standard deviation gets worse.
func testLowFrequency(t *testing.T, halfLife time.Duration) {
v := Value{HalfLife: halfLife}
var now mono.Time
var rates []float64
for now < 20*min {
if now%(10*sec) == 0 {
v.addNow(now, 1) // 1 event every 10 seconds
}
now += 50 * msec
rates = append(rates, v.rateNow(now))
now += 50 * msec
}
mean, stddev := stats(rates)
c := qt.New(t)
c.Assert(mean, qt.CmpEquals(cmpopts.EquateApprox(0.001, 0)), 0.1)
t.Logf("mean:%v stddev:%v", mean, stddev)
}
func stats(fs []float64) (mean, stddev float64) {
for _, rate := range fs {
mean += rate
}
mean /= float64(len(fs))
for _, rate := range fs {
stddev += (rate - mean) * (rate - mean)
}
stddev = math.Sqrt(stddev / float64(len(fs)))
return mean, stddev
}
// BenchmarkValue benchmarks the cost of Value.Add,
// which is called often and makes extensive use of floating-point math.
func BenchmarkValue(b *testing.B) {
b.ReportAllocs()
v := Value{HalfLife: time.Second}
for i := 0; i < b.N; i++ {
v.Add(1)
}
}