tailscale/tstest/natlab/natlab.go

875 lines
20 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
// Package natlab lets us simulate different types of networks all
// in-memory without running VMs or requiring root, etc. Despite the
// name, it does more than just NATs. But NATs are the most
// interesting.
package natlab
import (
"bytes"
"context"
"crypto/sha256"
"encoding/base64"
"errors"
"fmt"
"math/rand/v2"
"net"
"net/netip"
"os"
"sort"
"strconv"
"sync"
"time"
"tailscale.com/net/netaddr"
)
var traceOn, _ = strconv.ParseBool(os.Getenv("NATLAB_TRACE"))
// Packet represents a UDP packet flowing through the virtual network.
type Packet struct {
Src, Dst netip.AddrPort
Payload []byte
// Prefix set by various internal methods of natlab, to locate
// where in the network a trace occurred.
locator string
}
// Equivalent returns true if Src, Dst and Payload are the same in p
// and p2.
func (p *Packet) Equivalent(p2 *Packet) bool {
return p.Src == p2.Src && p.Dst == p2.Dst && bytes.Equal(p.Payload, p2.Payload)
}
// Clone returns a copy of p that shares nothing with p.
func (p *Packet) Clone() *Packet {
return &Packet{
Src: p.Src,
Dst: p.Dst,
Payload: bytes.Clone(p.Payload),
locator: p.locator,
}
}
// short returns a short identifier for a packet payload,
// suitable for printing trace information.
func (p *Packet) short() string {
s := sha256.Sum256(p.Payload)
payload := base64.RawStdEncoding.EncodeToString(s[:])[:2]
s = sha256.Sum256([]byte(p.Src.String() + "_" + p.Dst.String()))
tuple := base64.RawStdEncoding.EncodeToString(s[:])[:2]
return fmt.Sprintf("%s/%s", payload, tuple)
}
func (p *Packet) Trace(msg string, args ...any) {
if !traceOn {
return
}
allArgs := []any{p.short(), p.locator, p.Src, p.Dst}
allArgs = append(allArgs, args...)
fmt.Fprintf(os.Stderr, "[%s]%s src=%s dst=%s "+msg+"\n", allArgs...)
}
func (p *Packet) setLocator(msg string, args ...any) {
p.locator = fmt.Sprintf(" "+msg, args...)
}
func mustPrefix(s string) netip.Prefix {
ipp, err := netip.ParsePrefix(s)
if err != nil {
panic(err)
}
return ipp
}
// NewInternet returns a network that simulates the internet.
func NewInternet() *Network {
return &Network{
Name: "internet",
// easily recognizable internetty addresses
Prefix4: mustPrefix("1.0.0.0/24"),
Prefix6: mustPrefix("1111::/64"),
}
}
type Network struct {
Name string
Prefix4 netip.Prefix
Prefix6 netip.Prefix
mu sync.Mutex
machine map[netip.Addr]*Interface
defaultGW *Interface // optional
lastV4 netip.Addr
lastV6 netip.Addr
}
func (n *Network) SetDefaultGateway(gwIf *Interface) {
n.mu.Lock()
defer n.mu.Unlock()
if gwIf.net != n {
panic(fmt.Sprintf("can't set if=%s as net=%s's default gw, if not connected to net", gwIf.name, gwIf.net.Name))
}
n.defaultGW = gwIf
}
func (n *Network) addMachineLocked(ip netip.Addr, iface *Interface) {
if iface == nil {
return // for tests
}
if n.machine == nil {
n.machine = map[netip.Addr]*Interface{}
}
n.machine[ip] = iface
}
func (n *Network) allocIPv4(iface *Interface) netip.Addr {
n.mu.Lock()
defer n.mu.Unlock()
if !n.Prefix4.IsValid() {
return netip.Addr{}
}
if !n.lastV4.IsValid() {
n.lastV4 = n.Prefix4.Addr()
}
a := n.lastV4.As16()
addOne(&a, 15)
n.lastV4 = netip.AddrFrom16(a).Unmap()
if !n.Prefix4.Contains(n.lastV4) {
panic("pool exhausted")
}
n.addMachineLocked(n.lastV4, iface)
return n.lastV4
}
func (n *Network) allocIPv6(iface *Interface) netip.Addr {
n.mu.Lock()
defer n.mu.Unlock()
if !n.Prefix6.IsValid() {
return netip.Addr{}
}
if !n.lastV6.IsValid() {
n.lastV6 = n.Prefix6.Addr()
}
a := n.lastV6.As16()
addOne(&a, 15)
n.lastV6 = netip.AddrFrom16(a).Unmap()
if !n.Prefix6.Contains(n.lastV6) {
panic("pool exhausted")
}
n.addMachineLocked(n.lastV6, iface)
return n.lastV6
}
func addOne(a *[16]byte, index int) {
if v := a[index]; v < 255 {
a[index]++
} else {
a[index] = 0
addOne(a, index-1)
}
}
func (n *Network) write(p *Packet) (num int, err error) {
p.setLocator("net=%s", n.Name)
n.mu.Lock()
defer n.mu.Unlock()
iface, ok := n.machine[p.Dst.Addr()]
if !ok {
// If the destination is within the network's authoritative
// range, no route to host.
if p.Dst.Addr().Is4() && n.Prefix4.Contains(p.Dst.Addr()) {
p.Trace("no route to %v", p.Dst.Addr())
return len(p.Payload), nil
}
if p.Dst.Addr().Is6() && n.Prefix6.Contains(p.Dst.Addr()) {
p.Trace("no route to %v", p.Dst.Addr())
return len(p.Payload), nil
}
if n.defaultGW == nil {
p.Trace("no route to %v", p.Dst.Addr())
return len(p.Payload), nil
}
iface = n.defaultGW
}
// Pretend it went across the network. Make a copy so nobody
// can later mess with caller's memory.
p.Trace("-> mach=%s if=%s", iface.machine.Name, iface.name)
go iface.machine.deliverIncomingPacket(p, iface)
return len(p.Payload), nil
}
type Interface struct {
machine *Machine
net *Network
name string // optional
ips []netip.Addr // static; not mutated once created
}
func (f *Interface) Machine() *Machine {
return f.machine
}
func (f *Interface) Network() *Network {
return f.net
}
// V4 returns the machine's first IPv4 address, or the zero value if none.
func (f *Interface) V4() netip.Addr { return f.pickIP(netip.Addr.Is4) }
// V6 returns the machine's first IPv6 address, or the zero value if none.
func (f *Interface) V6() netip.Addr { return f.pickIP(netip.Addr.Is6) }
func (f *Interface) pickIP(pred func(netip.Addr) bool) netip.Addr {
for _, ip := range f.ips {
if pred(ip) {
return ip
}
}
return netip.Addr{}
}
func (f *Interface) String() string {
// TODO: make this all better
if f.name != "" {
return f.name
}
return fmt.Sprintf("unnamed-interface-on-network-%p", f.net)
}
// Contains reports whether f contains ip as an IP.
func (f *Interface) Contains(ip netip.Addr) bool {
for _, v := range f.ips {
if ip == v {
return true
}
}
return false
}
type routeEntry struct {
prefix netip.Prefix
iface *Interface
}
// A PacketVerdict is a decision of what to do with a packet.
type PacketVerdict int
const (
// Continue means the packet should be processed by the "local
// sockets" logic of the Machine.
Continue PacketVerdict = iota
// Drop means the packet should not be handled further.
Drop
)
func (v PacketVerdict) String() string {
switch v {
case Continue:
return "Continue"
case Drop:
return "Drop"
default:
return fmt.Sprintf("<unknown verdict %d>", v)
}
}
// A PacketHandler can look at packets arriving at, departing, and
// transiting a Machine, and filter or mutate them.
//
// Each method is invoked with a Packet that natlab would like to keep
// processing. Handlers can return that same Packet to allow
// processing to continue; nil to drop the Packet; or a different
// Packet that should be processed instead of the original.
//
// Packets passed to handlers share no state with anything else, and
// are therefore safe to mutate. It's safe to return the original
// packet mutated in-place, or a brand new packet initialized from
// scratch.
//
// Packets mutated by a PacketHandler are processed anew by the
// associated Machine, as if the packet had always been the mutated
// one. For example, if HandleForward is invoked with a Packet, and
// the handler changes the destination IP address to one of the
// Machine's own IPs, the Machine restarts delivery, but this time
// going to a local PacketConn (which in turn will invoke HandleIn,
// since the packet is now destined for local delivery).
type PacketHandler interface {
// HandleIn processes a packet arriving on iif, whose destination
// is an IP address owned by the attached Machine. If p is
// returned unmodified, the Machine will go on to deliver the
// Packet to the appropriate listening PacketConn, if one exists.
HandleIn(p *Packet, iif *Interface) *Packet
// HandleOut processes a packet about to depart on oif from a
// local PacketConn. If p is returned unmodified, the Machine will
// transmit the Packet on oif.
HandleOut(p *Packet, oif *Interface) *Packet
// HandleForward is called when the Machine wants to forward a
// packet from iif to oif. If p is returned unmodified, the
// Machine will transmit the packet on oif.
HandleForward(p *Packet, iif, oif *Interface) *Packet
}
// A Machine is a representation of an operating system's network
// stack. It has a network routing table and can have multiple
// attached networks. The zero value is valid, but lacks any
// networking capability until Attach is called.
type Machine struct {
// Name is a pretty name for debugging and packet tracing. It need
// not be globally unique.
Name string
// PacketHandler, if not nil, is a PacketHandler implementation
// that inspects all packets arriving, departing, or transiting
// the Machine. See the definition of the PacketHandler interface
// for semantics.
//
// If PacketHandler is nil, the machine allows all inbound
// traffic, all outbound traffic, and drops forwarded packets.
PacketHandler PacketHandler
mu sync.Mutex
interfaces []*Interface
routes []routeEntry // sorted by longest prefix to shortest
conns4 map[netip.AddrPort]*conn // conns that want IPv4 packets
conns6 map[netip.AddrPort]*conn // conns that want IPv6 packets
}
func (m *Machine) isLocalIP(ip netip.Addr) bool {
m.mu.Lock()
defer m.mu.Unlock()
for _, intf := range m.interfaces {
for _, iip := range intf.ips {
if ip == iip {
return true
}
}
}
return false
}
func (m *Machine) deliverIncomingPacket(p *Packet, iface *Interface) {
p.setLocator("mach=%s if=%s", m.Name, iface.name)
if m.isLocalIP(p.Dst.Addr()) {
m.deliverLocalPacket(p, iface)
} else {
m.forwardPacket(p, iface)
}
}
func (m *Machine) deliverLocalPacket(p *Packet, iface *Interface) {
// TODO: can't hold lock while handling packet. This is safe as
// long as you set HandlePacket before traffic starts flowing.
if m.PacketHandler != nil {
p2 := m.PacketHandler.HandleIn(p.Clone(), iface)
if p2 == nil {
// Packet dropped, nothing left to do.
return
}
if !p.Equivalent(p2) {
// Restart delivery, this packet might be a forward packet
// now.
m.deliverIncomingPacket(p2, iface)
return
}
}
m.mu.Lock()
defer m.mu.Unlock()
conns := m.conns4
if p.Dst.Addr().Is6() {
conns = m.conns6
}
possibleDsts := []netip.AddrPort{
p.Dst,
netip.AddrPortFrom(v6unspec, p.Dst.Port()),
netip.AddrPortFrom(v4unspec, p.Dst.Port()),
}
for _, dest := range possibleDsts {
c, ok := conns[dest]
if !ok {
continue
}
select {
case c.in <- p:
p.Trace("queued to conn")
default:
p.Trace("dropped, queue overflow")
// Queue overflow. Just drop it.
}
return
}
p.Trace("dropped, no listening conn")
}
func (m *Machine) forwardPacket(p *Packet, iif *Interface) {
oif, err := m.interfaceForIP(p.Dst.Addr())
if err != nil {
p.Trace("%v", err)
return
}
if m.PacketHandler == nil {
// Forwarding not allowed by default
p.Trace("drop, forwarding not allowed")
return
}
p2 := m.PacketHandler.HandleForward(p.Clone(), iif, oif)
if p2 == nil {
p.Trace("drop")
// Packet dropped, done.
return
}
if !p.Equivalent(p2) {
// Packet changed, restart delivery.
p2.Trace("PacketHandler mutated packet")
m.deliverIncomingPacket(p2, iif)
return
}
p.Trace("-> net=%s oif=%s", oif.net.Name, oif)
oif.net.write(p)
}
// Attach adds an interface to a machine.
//
// The first interface added to a Machine becomes that machine's
// default route.
func (m *Machine) Attach(interfaceName string, n *Network) *Interface {
f := &Interface{
machine: m,
net: n,
name: interfaceName,
}
if ip := n.allocIPv4(f); ip.IsValid() {
f.ips = append(f.ips, ip)
}
if ip := n.allocIPv6(f); ip.IsValid() {
f.ips = append(f.ips, ip)
}
m.mu.Lock()
defer m.mu.Unlock()
m.interfaces = append(m.interfaces, f)
if len(m.interfaces) == 1 {
m.routes = append(m.routes,
routeEntry{
prefix: mustPrefix("0.0.0.0/0"),
iface: f,
},
routeEntry{
prefix: mustPrefix("::/0"),
iface: f,
})
} else {
if n.Prefix4.IsValid() {
m.routes = append(m.routes, routeEntry{
prefix: n.Prefix4,
iface: f,
})
}
if n.Prefix6.IsValid() {
m.routes = append(m.routes, routeEntry{
prefix: n.Prefix6,
iface: f,
})
}
}
sort.Slice(m.routes, func(i, j int) bool {
return m.routes[i].prefix.Bits() > m.routes[j].prefix.Bits()
})
return f
}
var (
v4unspec = netaddr.IPv4(0, 0, 0, 0)
v6unspec = netip.IPv6Unspecified()
)
func (m *Machine) writePacket(p *Packet) (n int, err error) {
p.setLocator("mach=%s", m.Name)
iface, err := m.interfaceForIP(p.Dst.Addr())
if err != nil {
p.Trace("%v", err)
return 0, err
}
origSrcIP := p.Src.Addr()
switch {
case p.Src.Addr() == v4unspec:
p.Trace("assigning srcIP=%s", iface.V4())
p.Src = netip.AddrPortFrom(iface.V4(), p.Src.Port())
case p.Src.Addr() == v6unspec:
// v6unspec in Go means "any src, but match address families"
if p.Dst.Addr().Is6() {
p.Trace("assigning srcIP=%s", iface.V6())
p.Src = netip.AddrPortFrom(iface.V6(), p.Src.Port())
} else if p.Dst.Addr().Is4() {
p.Trace("assigning srcIP=%s", iface.V4())
p.Src = netip.AddrPortFrom(iface.V4(), p.Src.Port())
}
default:
if !iface.Contains(p.Src.Addr()) {
err := fmt.Errorf("can't send to %v with src %v on interface %v", p.Dst.Addr(), p.Src.Addr(), iface)
p.Trace("%v", err)
return 0, err
}
}
if !p.Src.Addr().IsValid() {
err := fmt.Errorf("no matching address for address family for %v", origSrcIP)
p.Trace("%v", err)
return 0, err
}
if m.PacketHandler != nil {
p2 := m.PacketHandler.HandleOut(p.Clone(), iface)
if p2 == nil {
// Packet dropped, done.
return len(p.Payload), nil
}
if !p.Equivalent(p2) {
// Restart transmission, src may have changed weirdly
m.writePacket(p2)
return
}
}
p.Trace("-> net=%s if=%s", iface.net.Name, iface)
return iface.net.write(p)
}
func (m *Machine) interfaceForIP(ip netip.Addr) (*Interface, error) {
m.mu.Lock()
defer m.mu.Unlock()
for _, re := range m.routes {
if re.prefix.Contains(ip) {
return re.iface, nil
}
}
return nil, fmt.Errorf("no route found to %v", ip)
}
func (m *Machine) pickEphemPort() (port uint16, err error) {
m.mu.Lock()
defer m.mu.Unlock()
for tries := 0; tries < 500; tries++ {
port := uint16(rand.IntN(32<<10) + 32<<10)
if !m.portInUseLocked(port) {
return port, nil
}
}
return 0, errors.New("failed to find an ephemeral port")
}
func (m *Machine) portInUseLocked(port uint16) bool {
for ipp := range m.conns4 {
if ipp.Port() == port {
return true
}
}
for ipp := range m.conns6 {
if ipp.Port() == port {
return true
}
}
return false
}
func (m *Machine) registerConn4(c *conn) error {
m.mu.Lock()
defer m.mu.Unlock()
if c.ipp.Addr().Is6() && c.ipp.Addr() != v6unspec {
return fmt.Errorf("registerConn4 got IPv6 %s", c.ipp)
}
return registerConn(&m.conns4, c)
}
func (m *Machine) unregisterConn4(c *conn) {
m.mu.Lock()
defer m.mu.Unlock()
delete(m.conns4, c.ipp)
}
func (m *Machine) registerConn6(c *conn) error {
m.mu.Lock()
defer m.mu.Unlock()
if c.ipp.Addr().Is4() {
return fmt.Errorf("registerConn6 got IPv4 %s", c.ipp)
}
return registerConn(&m.conns6, c)
}
func (m *Machine) unregisterConn6(c *conn) {
m.mu.Lock()
defer m.mu.Unlock()
delete(m.conns6, c.ipp)
}
func registerConn(conns *map[netip.AddrPort]*conn, c *conn) error {
if _, ok := (*conns)[c.ipp]; ok {
return fmt.Errorf("duplicate conn listening on %v", c.ipp)
}
if *conns == nil {
*conns = map[netip.AddrPort]*conn{}
}
(*conns)[c.ipp] = c
return nil
}
func (m *Machine) AddNetwork(n *Network) {}
func (m *Machine) ListenPacket(ctx context.Context, network, address string) (net.PacketConn, error) {
// if udp4, udp6, etc... look at address IP vs unspec
var (
fam uint8
ip netip.Addr
)
switch network {
default:
return nil, fmt.Errorf("unsupported network type %q", network)
case "udp":
fam = 0
ip = v6unspec
case "udp4":
fam = 4
ip = v4unspec
case "udp6":
fam = 6
ip = v6unspec
}
host, portStr, err := net.SplitHostPort(address)
if err != nil {
return nil, err
}
if host != "" {
ip, err = netip.ParseAddr(host)
if err != nil {
return nil, err
}
if fam == 0 && (ip != v4unspec && ip != v6unspec) {
// We got an explicit IP address, need to switch the
// family to the right one.
if ip.Is4() {
fam = 4
} else {
fam = 6
}
}
}
porti, err := strconv.ParseUint(portStr, 10, 16)
if err != nil {
return nil, err
}
port := uint16(porti)
if port == 0 {
port, err = m.pickEphemPort()
if err != nil {
return nil, nil
}
}
ipp := netip.AddrPortFrom(ip, port)
c := &conn{
m: m,
fam: fam,
ipp: ipp,
in: make(chan *Packet, 100), // arbitrary
}
switch c.fam {
case 0:
if err := m.registerConn4(c); err != nil {
return nil, err
}
if err := m.registerConn6(c); err != nil {
m.unregisterConn4(c)
return nil, err
}
case 4:
if err := m.registerConn4(c); err != nil {
return nil, err
}
case 6:
if err := m.registerConn6(c); err != nil {
return nil, err
}
}
return c, nil
}
// conn is our net.PacketConn implementation
type conn struct {
m *Machine
fam uint8 // 0, 4, or 6
ipp netip.AddrPort
mu sync.Mutex
closed bool
readDeadline time.Time
activeReads map[*activeRead]bool
in chan *Packet
}
type activeRead struct {
cancel context.CancelFunc
}
// canRead reports whether we can do a read.
func (c *conn) canRead() error {
c.mu.Lock()
defer c.mu.Unlock()
if c.closed {
return net.ErrClosed
}
if !c.readDeadline.IsZero() && c.readDeadline.Before(time.Now()) {
return errors.New("read deadline exceeded")
}
return nil
}
func (c *conn) registerActiveRead(ar *activeRead, active bool) {
c.mu.Lock()
defer c.mu.Unlock()
if c.activeReads == nil {
c.activeReads = make(map[*activeRead]bool)
}
if active {
c.activeReads[ar] = true
} else {
delete(c.activeReads, ar)
}
}
func (c *conn) Close() error {
c.mu.Lock()
defer c.mu.Unlock()
if c.closed {
return nil
}
c.closed = true
switch c.fam {
case 0:
c.m.unregisterConn4(c)
c.m.unregisterConn6(c)
case 4:
c.m.unregisterConn4(c)
case 6:
c.m.unregisterConn6(c)
}
c.breakActiveReadsLocked()
return nil
}
func (c *conn) breakActiveReadsLocked() {
for ar := range c.activeReads {
ar.cancel()
}
c.activeReads = nil
}
func (c *conn) LocalAddr() net.Addr {
return &net.UDPAddr{
IP: c.ipp.Addr().AsSlice(),
Port: int(c.ipp.Port()),
Zone: c.ipp.Addr().Zone(),
}
}
func (c *conn) Read(buf []byte) (int, error) {
panic("unimplemented stub")
}
func (c *conn) RemoteAddr() net.Addr {
panic("unimplemented stub")
}
func (c *conn) Write(buf []byte) (int, error) {
panic("unimplemented stub")
}
func (c *conn) ReadFrom(p []byte) (n int, addr net.Addr, err error) {
n, ap, err := c.ReadFromUDPAddrPort(p)
if err != nil {
return 0, nil, err
}
return n, net.UDPAddrFromAddrPort(ap), nil
}
func (c *conn) ReadFromUDPAddrPort(p []byte) (n int, addr netip.AddrPort, err error) {
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
ar := &activeRead{cancel: cancel}
if err := c.canRead(); err != nil {
return 0, netip.AddrPort{}, err
}
c.registerActiveRead(ar, true)
defer c.registerActiveRead(ar, false)
select {
case pkt := <-c.in:
n = copy(p, pkt.Payload)
pkt.Trace("PacketConn.ReadFrom")
return n, pkt.Src, nil
case <-ctx.Done():
return 0, netip.AddrPort{}, context.DeadlineExceeded
}
}
func (c *conn) WriteTo(p []byte, addr net.Addr) (n int, err error) {
ipp, err := netip.ParseAddrPort(addr.String())
if err != nil {
return 0, fmt.Errorf("bogus addr %T %q", addr, addr.String())
}
return c.WriteToUDPAddrPort(p, ipp)
}
func (c *conn) WriteToUDPAddrPort(p []byte, ipp netip.AddrPort) (n int, err error) {
pkt := &Packet{
Src: c.ipp,
Dst: ipp,
Payload: bytes.Clone(p),
}
pkt.setLocator("mach=%s", c.m.Name)
pkt.Trace("PacketConn.WriteTo")
return c.m.writePacket(pkt)
}
func (c *conn) SetDeadline(t time.Time) error {
panic("SetWriteDeadline unsupported; TODO when needed")
}
func (c *conn) SetWriteDeadline(t time.Time) error {
panic("SetWriteDeadline unsupported; TODO when needed")
}
func (c *conn) SetReadDeadline(t time.Time) error {
c.mu.Lock()
defer c.mu.Unlock()
now := time.Now()
if t.After(now) {
panic("SetReadDeadline in the future not yet supported; TODO?")
}
if !t.IsZero() && t.Before(now) {
c.breakActiveReadsLocked()
}
c.readDeadline = t
return nil
}