735 lines
22 KiB
Go
735 lines
22 KiB
Go
// Copyright (c) Tailscale Inc & AUTHORS
|
|
// SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
// Package deephash hashes a Go value recursively, in a predictable order,
|
|
// without looping. The hash is only valid within the lifetime of a program.
|
|
// Users should not store the hash on disk or send it over the network.
|
|
// The hash is sufficiently strong and unique such that
|
|
// Hash(&x) == Hash(&y) is an appropriate replacement for x == y.
|
|
//
|
|
// The definition of equality is identical to reflect.DeepEqual except:
|
|
// - Floating-point values are compared based on the raw bits,
|
|
// which means that NaNs (with the same bit pattern) are treated as equal.
|
|
// - time.Time are compared based on whether they are the same instant in time
|
|
// and also in the same zone offset. Monotonic measurements and zone names
|
|
// are ignored as part of the hash.
|
|
// - netip.Addr are compared based on a shallow comparison of the struct.
|
|
//
|
|
// WARNING: This package, like most of the tailscale.com Go module,
|
|
// should be considered Tailscale-internal; we make no API promises.
|
|
//
|
|
// # Cycle detection
|
|
//
|
|
// This package correctly handles cycles in the value graph,
|
|
// but in a way that is potentially pathological in some situations.
|
|
//
|
|
// The algorithm for cycle detection operates by
|
|
// pushing a pointer onto a stack whenever deephash is visiting a pointer and
|
|
// popping the pointer from the stack after deephash is leaving the pointer.
|
|
// Before visiting a new pointer, deephash checks whether it has already been
|
|
// visited on the pointer stack. If so, it hashes the index of the pointer
|
|
// on the stack and avoids visiting the pointer.
|
|
//
|
|
// This algorithm is guaranteed to detect cycles, but may expand pointers
|
|
// more often than a potential alternate algorithm that remembers all pointers
|
|
// ever visited in a map. The current algorithm uses O(D) memory, where D
|
|
// is the maximum depth of the recursion, while the alternate algorithm
|
|
// would use O(P) memory where P is all pointers ever seen, which can be a lot,
|
|
// and most of which may have nothing to do with cycles.
|
|
// Also, the alternate algorithm has to deal with challenges of producing
|
|
// deterministic results when pointers are visited in non-deterministic ways
|
|
// such as when iterating through a Go map. The stack-based algorithm avoids
|
|
// this challenge since the stack is always deterministic regardless of
|
|
// non-deterministic iteration order of Go maps.
|
|
//
|
|
// To concretely see how this algorithm can be pathological,
|
|
// consider the following data structure:
|
|
//
|
|
// var big *Item = ... // some large data structure that is slow to hash
|
|
// var manyBig []*Item
|
|
// for i := 0; i < 1000; i++ {
|
|
// manyBig = append(manyBig, &big)
|
|
// }
|
|
// deephash.Hash(manyBig)
|
|
//
|
|
// Here, the manyBig data structure is not even cyclic.
|
|
// We have the same big *Item being stored multiple times in a []*Item.
|
|
// When deephash hashes []*Item, it hashes each individual *Item
|
|
// not realizing that it had just done the computation earlier.
|
|
// To avoid the pathological situation, Item should implement [SelfHasher] and
|
|
// memoize attempts to hash itself.
|
|
package deephash
|
|
|
|
// TODO: Add option to teach deephash to memoize the Hash result of particular types?
|
|
|
|
import (
|
|
"crypto/sha256"
|
|
"encoding/binary"
|
|
"encoding/hex"
|
|
"fmt"
|
|
"reflect"
|
|
"sync"
|
|
"time"
|
|
|
|
"tailscale.com/util/hashx"
|
|
"tailscale.com/util/set"
|
|
)
|
|
|
|
// There is much overlap between the theory of serialization and hashing.
|
|
// A hash (useful for determining equality) can be produced by printing a value
|
|
// and hashing the output. The format must:
|
|
// * be deterministic such that the same value hashes to the same output, and
|
|
// * be parsable such that the same value can be reproduced by the output.
|
|
//
|
|
// The logic below hashes a value by printing it to a hash.Hash.
|
|
// To be parsable, it assumes that we know the Go type of each value:
|
|
// * scalar types (e.g., bool or int32) are directly printed as their
|
|
// underlying memory representation.
|
|
// * list types (e.g., strings and slices) are prefixed by a
|
|
// fixed-width length field, followed by the contents of the list.
|
|
// * slices, arrays, and structs print each element/field consecutively.
|
|
// * interfaces print with a 1-byte prefix indicating whether it is nil.
|
|
// If non-nil, it is followed by a fixed-width field of the type index,
|
|
// followed by the format of the underlying value.
|
|
// * pointers print with a 1-byte prefix indicating whether the pointer is
|
|
// 1) nil, 2) previously seen, or 3) newly seen. Previously seen pointers are
|
|
// followed by a fixed-width field with the index of the previous pointer.
|
|
// Newly seen pointers are followed by the format of the underlying value.
|
|
// * maps print with a 1-byte prefix indicating whether the map pointer is
|
|
// 1) nil, 2) previously seen, or 3) newly seen. Previously seen pointers
|
|
// are followed by a fixed-width field of the index of the previous pointer.
|
|
// Newly seen maps are printed with a fixed-width length field, followed by
|
|
// a fixed-width field with the XOR of the hash of every map entry.
|
|
// With a sufficiently strong hash, this value is theoretically "parsable"
|
|
// by looking up the hash in a magical map that returns the set of entries
|
|
// for that given hash.
|
|
|
|
// SelfHasher is implemented by types that can compute their own hash
|
|
// by writing values through the provided [Hasher] parameter.
|
|
// Implementations must not leak the provided [Hasher].
|
|
//
|
|
// If the implementation of SelfHasher recursively calls [deephash.Hash],
|
|
// then infinite recursion is quite likely to occur.
|
|
// To avoid this, use a type definition to drop methods before calling [deephash.Hash]:
|
|
//
|
|
// func (v *MyType) Hash(h deephash.Hasher) {
|
|
// v.hashMu.Lock()
|
|
// defer v.hashMu.Unlock()
|
|
// if v.dirtyHash {
|
|
// type MyTypeWithoutMethods MyType // type define MyType to drop Hash method
|
|
// v.dirtyHash = false // clear out dirty bit to avoid hashing over it
|
|
// v.hashSum = deephash.Sum{} // clear out hashSum to avoid hashing over it
|
|
// v.hashSum = deephash.Hash((*MyTypeWithoutMethods)(v))
|
|
// }
|
|
// h.HashSum(v.hashSum)
|
|
// }
|
|
//
|
|
// In the above example, we acquire a lock since it is possible that deephash
|
|
// is called in a concurrent manner, which implies that MyType.Hash may also
|
|
// be called in a concurrent manner. Whether this lock is necessary is
|
|
// application-dependent and left as an exercise to the reader.
|
|
// Also, the example assumes that dirtyHash is set elsewhere by application
|
|
// logic whenever a mutation is made to MyType that would alter the hash.
|
|
type SelfHasher interface {
|
|
Hash(Hasher)
|
|
}
|
|
|
|
// Hasher is a value passed to [SelfHasher.Hash] that allow implementations
|
|
// to hash themselves in a structured manner.
|
|
type Hasher struct{ h *hashx.Block512 }
|
|
|
|
// HashBytes hashes a sequence of bytes b.
|
|
// The length of b is not explicitly hashed.
|
|
func (h Hasher) HashBytes(b []byte) { h.h.HashBytes(b) }
|
|
|
|
// HashString hashes the string data of s
|
|
// The length of s is not explicitly hashed.
|
|
func (h Hasher) HashString(s string) { h.h.HashString(s) }
|
|
|
|
// HashUint8 hashes a uint8.
|
|
func (h Hasher) HashUint8(n uint8) { h.h.HashUint8(n) }
|
|
|
|
// HashUint16 hashes a uint16.
|
|
func (h Hasher) HashUint16(n uint16) { h.h.HashUint16(n) }
|
|
|
|
// HashUint32 hashes a uint32.
|
|
func (h Hasher) HashUint32(n uint32) { h.h.HashUint32(n) }
|
|
|
|
// HashUint64 hashes a uint64.
|
|
func (h Hasher) HashUint64(n uint64) { h.h.HashUint64(n) }
|
|
|
|
// HashSum hashes a [Sum].
|
|
func (h Hasher) HashSum(s Sum) {
|
|
// NOTE: Avoid calling h.HashBytes since it escapes b,
|
|
// which would force s to be heap allocated.
|
|
h.h.HashUint64(binary.LittleEndian.Uint64(s.sum[0:8]))
|
|
h.h.HashUint64(binary.LittleEndian.Uint64(s.sum[8:16]))
|
|
h.h.HashUint64(binary.LittleEndian.Uint64(s.sum[16:24]))
|
|
h.h.HashUint64(binary.LittleEndian.Uint64(s.sum[24:32]))
|
|
}
|
|
|
|
// hasher is reusable state for hashing a value.
|
|
// Get one via hasherPool.
|
|
type hasher struct {
|
|
hashx.Block512
|
|
visitStack visitStack
|
|
}
|
|
|
|
var hasherPool = &sync.Pool{
|
|
New: func() any { return new(hasher) },
|
|
}
|
|
|
|
func (h *hasher) reset() {
|
|
if h.Block512.Hash == nil {
|
|
h.Block512.Hash = sha256.New()
|
|
}
|
|
h.Block512.Reset()
|
|
}
|
|
|
|
// hashType hashes a reflect.Type.
|
|
// The hash is only consistent within the lifetime of a program.
|
|
func (h *hasher) hashType(t reflect.Type) {
|
|
// This approach relies on reflect.Type always being backed by a unique
|
|
// *reflect.rtype pointer. A safer approach is to use a global sync.Map
|
|
// that maps reflect.Type to some arbitrary and unique index.
|
|
// While safer, it requires global state with memory that can never be GC'd.
|
|
rtypeAddr := reflect.ValueOf(t).Pointer() // address of *reflect.rtype
|
|
h.HashUint64(uint64(rtypeAddr))
|
|
}
|
|
|
|
func (h *hasher) sum() (s Sum) {
|
|
h.Sum(s.sum[:0])
|
|
return s
|
|
}
|
|
|
|
// Sum is an opaque checksum type that is comparable.
|
|
type Sum struct {
|
|
sum [sha256.Size]byte
|
|
}
|
|
|
|
func (s1 *Sum) xor(s2 Sum) {
|
|
for i := 0; i < sha256.Size; i++ {
|
|
s1.sum[i] ^= s2.sum[i]
|
|
}
|
|
}
|
|
|
|
func (s Sum) String() string {
|
|
// Note: if we change this, keep in sync with AppendTo
|
|
return hex.EncodeToString(s.sum[:])
|
|
}
|
|
|
|
// AppendTo appends the string encoding of this sum (as returned by the String
|
|
// method) to the provided byte slice and returns the extended buffer.
|
|
func (s Sum) AppendTo(b []byte) []byte {
|
|
// TODO: switch to upstream implementation if accepted:
|
|
// https://github.com/golang/go/issues/53693
|
|
var lb [len(s.sum) * 2]byte
|
|
hex.Encode(lb[:], s.sum[:])
|
|
return append(b, lb[:]...)
|
|
}
|
|
|
|
var (
|
|
seedOnce sync.Once
|
|
seed uint64
|
|
)
|
|
|
|
func initSeed() {
|
|
seed = uint64(time.Now().UnixNano())
|
|
}
|
|
|
|
// Hash returns the hash of v.
|
|
func Hash[T any](v *T) Sum {
|
|
h := hasherPool.Get().(*hasher)
|
|
defer hasherPool.Put(h)
|
|
h.reset()
|
|
seedOnce.Do(initSeed)
|
|
h.HashUint64(seed)
|
|
|
|
// Always treat the Hash input as if it were an interface by including
|
|
// a hash of the type. This ensures that hashing of two different types
|
|
// but with the same value structure produces different hashes.
|
|
t := reflect.TypeOf(v).Elem()
|
|
h.hashType(t)
|
|
if v == nil {
|
|
h.HashUint8(0) // indicates nil
|
|
} else {
|
|
h.HashUint8(1) // indicates visiting pointer element
|
|
p := pointerOf(reflect.ValueOf(v))
|
|
hash := lookupTypeHasher(t)
|
|
hash(h, p)
|
|
}
|
|
return h.sum()
|
|
}
|
|
|
|
// Option is an optional argument to HasherForType.
|
|
type Option interface {
|
|
isOption()
|
|
}
|
|
|
|
type fieldFilterOpt struct {
|
|
t reflect.Type
|
|
fields set.Set[string]
|
|
includeOnMatch bool // true to include fields, false to exclude them
|
|
}
|
|
|
|
func (fieldFilterOpt) isOption() {}
|
|
|
|
func (f fieldFilterOpt) filterStructField(sf reflect.StructField) (include bool) {
|
|
if f.fields.Contains(sf.Name) {
|
|
return f.includeOnMatch
|
|
}
|
|
return !f.includeOnMatch
|
|
}
|
|
|
|
// IncludeFields returns an option that modifies the hashing for T to only
|
|
// include the named struct fields.
|
|
//
|
|
// T must be a struct type, and must match the type of the value passed to
|
|
// HasherForType.
|
|
func IncludeFields[T any](fields ...string) Option {
|
|
return newFieldFilter[T](true, fields)
|
|
}
|
|
|
|
// ExcludeFields returns an option that modifies the hashing for T to include
|
|
// all struct fields of T except those provided in fields.
|
|
//
|
|
// T must be a struct type, and must match the type of the value passed to
|
|
// HasherForType.
|
|
func ExcludeFields[T any](fields ...string) Option {
|
|
return newFieldFilter[T](false, fields)
|
|
}
|
|
|
|
func newFieldFilter[T any](include bool, fields []string) Option {
|
|
var zero T
|
|
t := reflect.TypeOf(&zero).Elem()
|
|
fieldSet := set.Set[string]{}
|
|
for _, f := range fields {
|
|
if _, ok := t.FieldByName(f); !ok {
|
|
panic(fmt.Sprintf("unknown field %q for type %v", f, t))
|
|
}
|
|
fieldSet.Add(f)
|
|
}
|
|
return fieldFilterOpt{t, fieldSet, include}
|
|
}
|
|
|
|
// HasherForType returns a hash that is specialized for the provided type.
|
|
//
|
|
// HasherForType panics if the opts are invalid for the provided type.
|
|
//
|
|
// Currently, at most one option can be provided (IncludeFields or
|
|
// ExcludeFields) and its type must match the type of T. Those restrictions may
|
|
// be removed in the future, along with documentation about their precedence
|
|
// when combined.
|
|
func HasherForType[T any](opts ...Option) func(*T) Sum {
|
|
var v *T
|
|
seedOnce.Do(initSeed)
|
|
if len(opts) > 1 {
|
|
panic("HasherForType only accepts one optional argument") // for now
|
|
}
|
|
t := reflect.TypeOf(v).Elem()
|
|
var hash typeHasherFunc
|
|
for _, o := range opts {
|
|
switch o := o.(type) {
|
|
default:
|
|
panic(fmt.Sprintf("unknown HasherOpt %T", o))
|
|
case fieldFilterOpt:
|
|
if t.Kind() != reflect.Struct {
|
|
panic("HasherForStructTypeWithFieldFilter requires T of kind struct")
|
|
}
|
|
if t != o.t {
|
|
panic(fmt.Sprintf("field filter for type %v does not match HasherForType type %v", o.t, t))
|
|
}
|
|
hash = makeStructHasher(t, o.filterStructField)
|
|
}
|
|
}
|
|
if hash == nil {
|
|
hash = lookupTypeHasher(t)
|
|
}
|
|
return func(v *T) (s Sum) {
|
|
// This logic is identical to Hash, but pull out a few statements.
|
|
h := hasherPool.Get().(*hasher)
|
|
defer hasherPool.Put(h)
|
|
h.reset()
|
|
h.HashUint64(seed)
|
|
|
|
h.hashType(t)
|
|
if v == nil {
|
|
h.HashUint8(0) // indicates nil
|
|
} else {
|
|
h.HashUint8(1) // indicates visiting pointer element
|
|
p := pointerOf(reflect.ValueOf(v))
|
|
hash(h, p)
|
|
}
|
|
return h.sum()
|
|
}
|
|
}
|
|
|
|
// Update sets last to the hash of v and reports whether its value changed.
|
|
func Update[T any](last *Sum, v *T) (changed bool) {
|
|
sum := Hash(v)
|
|
changed = sum != *last
|
|
if changed {
|
|
*last = sum
|
|
}
|
|
return changed
|
|
}
|
|
|
|
// typeHasherFunc hashes the value pointed at by p for a given type.
|
|
// For example, if t is a bool, then p is a *bool.
|
|
// The provided pointer must always be non-nil.
|
|
type typeHasherFunc func(h *hasher, p pointer)
|
|
|
|
var typeHasherCache sync.Map // map[reflect.Type]typeHasherFunc
|
|
|
|
func lookupTypeHasher(t reflect.Type) typeHasherFunc {
|
|
if v, ok := typeHasherCache.Load(t); ok {
|
|
return v.(typeHasherFunc)
|
|
}
|
|
hash := makeTypeHasher(t)
|
|
v, _ := typeHasherCache.LoadOrStore(t, hash)
|
|
return v.(typeHasherFunc)
|
|
}
|
|
|
|
func makeTypeHasher(t reflect.Type) typeHasherFunc {
|
|
// Types with specific hashing.
|
|
switch t {
|
|
case timeTimeType:
|
|
return hashTime
|
|
case netipAddrType:
|
|
return hashAddr
|
|
}
|
|
|
|
// Types that implement their own hashing.
|
|
if t.Kind() != reflect.Pointer && t.Kind() != reflect.Interface {
|
|
// A method can be implemented on either the value receiver or pointer receiver.
|
|
if t.Implements(selfHasherType) || reflect.PointerTo(t).Implements(selfHasherType) {
|
|
return makeSelfHasher(t)
|
|
}
|
|
}
|
|
|
|
// Types that can have their memory representation directly hashed.
|
|
if typeIsMemHashable(t) {
|
|
return makeMemHasher(t.Size())
|
|
}
|
|
|
|
switch t.Kind() {
|
|
case reflect.String:
|
|
return hashString
|
|
case reflect.Array:
|
|
return makeArrayHasher(t)
|
|
case reflect.Slice:
|
|
return makeSliceHasher(t)
|
|
case reflect.Struct:
|
|
return makeStructHasher(t, keepAllStructFields)
|
|
case reflect.Map:
|
|
return makeMapHasher(t)
|
|
case reflect.Pointer:
|
|
return makePointerHasher(t)
|
|
case reflect.Interface:
|
|
return makeInterfaceHasher(t)
|
|
default: // Func, Chan, UnsafePointer
|
|
return func(*hasher, pointer) {}
|
|
}
|
|
}
|
|
|
|
func hashTime(h *hasher, p pointer) {
|
|
// Include the zone offset (but not the name) to keep
|
|
// Hash(t1) == Hash(t2) being semantically equivalent to
|
|
// t1.Format(time.RFC3339Nano) == t2.Format(time.RFC3339Nano).
|
|
t := *p.asTime()
|
|
_, offset := t.Zone()
|
|
h.HashUint64(uint64(t.Unix()))
|
|
h.HashUint32(uint32(t.Nanosecond()))
|
|
h.HashUint32(uint32(offset))
|
|
}
|
|
|
|
func hashAddr(h *hasher, p pointer) {
|
|
// The formatting of netip.Addr covers the
|
|
// IP version, the address, and the optional zone name (for v6).
|
|
// This is equivalent to a1.MarshalBinary() == a2.MarshalBinary().
|
|
ip := *p.asAddr()
|
|
switch {
|
|
case !ip.IsValid():
|
|
h.HashUint64(0)
|
|
case ip.Is4():
|
|
b := ip.As4()
|
|
h.HashUint64(4)
|
|
h.HashUint32(binary.LittleEndian.Uint32(b[:]))
|
|
case ip.Is6():
|
|
b := ip.As16()
|
|
z := ip.Zone()
|
|
h.HashUint64(16 + uint64(len(z)))
|
|
h.HashUint64(binary.LittleEndian.Uint64(b[:8]))
|
|
h.HashUint64(binary.LittleEndian.Uint64(b[8:]))
|
|
h.HashString(z)
|
|
}
|
|
}
|
|
|
|
func makeSelfHasher(t reflect.Type) typeHasherFunc {
|
|
return func(h *hasher, p pointer) {
|
|
p.asValue(t).Interface().(SelfHasher).Hash(Hasher{&h.Block512})
|
|
}
|
|
}
|
|
|
|
func hashString(h *hasher, p pointer) {
|
|
s := *p.asString()
|
|
h.HashUint64(uint64(len(s)))
|
|
h.HashString(s)
|
|
}
|
|
|
|
func makeMemHasher(n uintptr) typeHasherFunc {
|
|
return func(h *hasher, p pointer) {
|
|
h.HashBytes(p.asMemory(n))
|
|
}
|
|
}
|
|
|
|
func makeArrayHasher(t reflect.Type) typeHasherFunc {
|
|
var once sync.Once
|
|
var hashElem typeHasherFunc
|
|
init := func() {
|
|
hashElem = lookupTypeHasher(t.Elem())
|
|
}
|
|
|
|
n := t.Len() // number of array elements
|
|
nb := t.Elem().Size() // byte size of each array element
|
|
return func(h *hasher, p pointer) {
|
|
once.Do(init)
|
|
for i := 0; i < n; i++ {
|
|
hashElem(h, p.arrayIndex(i, nb))
|
|
}
|
|
}
|
|
}
|
|
|
|
func makeSliceHasher(t reflect.Type) typeHasherFunc {
|
|
nb := t.Elem().Size() // byte size of each slice element
|
|
if typeIsMemHashable(t.Elem()) {
|
|
return func(h *hasher, p pointer) {
|
|
pa := p.sliceArray()
|
|
if pa.isNil() {
|
|
h.HashUint8(0) // indicates nil
|
|
return
|
|
}
|
|
h.HashUint8(1) // indicates visiting slice
|
|
n := p.sliceLen()
|
|
b := pa.asMemory(uintptr(n) * nb)
|
|
h.HashUint64(uint64(n))
|
|
h.HashBytes(b)
|
|
}
|
|
}
|
|
|
|
var once sync.Once
|
|
var hashElem typeHasherFunc
|
|
init := func() {
|
|
hashElem = lookupTypeHasher(t.Elem())
|
|
if typeIsRecursive(t) {
|
|
hashElemDefault := hashElem
|
|
hashElem = func(h *hasher, p pointer) {
|
|
if idx, ok := h.visitStack.seen(p.p); ok {
|
|
h.HashUint8(2) // indicates cycle
|
|
h.HashUint64(uint64(idx))
|
|
return
|
|
}
|
|
h.HashUint8(1) // indicates visiting slice element
|
|
h.visitStack.push(p.p)
|
|
defer h.visitStack.pop(p.p)
|
|
hashElemDefault(h, p)
|
|
}
|
|
}
|
|
}
|
|
|
|
return func(h *hasher, p pointer) {
|
|
pa := p.sliceArray()
|
|
if pa.isNil() {
|
|
h.HashUint8(0) // indicates nil
|
|
return
|
|
}
|
|
once.Do(init)
|
|
h.HashUint8(1) // indicates visiting slice
|
|
n := p.sliceLen()
|
|
h.HashUint64(uint64(n))
|
|
for i := 0; i < n; i++ {
|
|
pe := pa.arrayIndex(i, nb)
|
|
hashElem(h, pe)
|
|
}
|
|
}
|
|
}
|
|
|
|
func keepAllStructFields(keepField reflect.StructField) bool { return true }
|
|
|
|
func makeStructHasher(t reflect.Type, keepField func(reflect.StructField) bool) typeHasherFunc {
|
|
type fieldHasher struct {
|
|
idx int // index of field for reflect.Type.Field(n); negative if memory is directly hashable
|
|
keep bool
|
|
hash typeHasherFunc // only valid if idx is not negative
|
|
offset uintptr
|
|
size uintptr
|
|
}
|
|
var once sync.Once
|
|
var fields []fieldHasher
|
|
init := func() {
|
|
for i, numField := 0, t.NumField(); i < numField; i++ {
|
|
sf := t.Field(i)
|
|
f := fieldHasher{i, keepField(sf), nil, sf.Offset, sf.Type.Size()}
|
|
if f.keep && typeIsMemHashable(sf.Type) {
|
|
f.idx = -1
|
|
}
|
|
|
|
// Combine with previous field if both contiguous and mem-hashable.
|
|
if f.idx < 0 && len(fields) > 0 {
|
|
if last := &fields[len(fields)-1]; last.idx < 0 && last.offset+last.size == f.offset {
|
|
last.size += f.size
|
|
continue
|
|
}
|
|
}
|
|
fields = append(fields, f)
|
|
}
|
|
|
|
for i, f := range fields {
|
|
if f.idx >= 0 {
|
|
fields[i].hash = lookupTypeHasher(t.Field(f.idx).Type)
|
|
}
|
|
}
|
|
}
|
|
|
|
return func(h *hasher, p pointer) {
|
|
once.Do(init)
|
|
for _, field := range fields {
|
|
if !field.keep {
|
|
continue
|
|
}
|
|
pf := p.structField(field.idx, field.offset, field.size)
|
|
if field.idx < 0 {
|
|
h.HashBytes(pf.asMemory(field.size))
|
|
} else {
|
|
field.hash(h, pf)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func makeMapHasher(t reflect.Type) typeHasherFunc {
|
|
var once sync.Once
|
|
var hashKey, hashValue typeHasherFunc
|
|
var isRecursive bool
|
|
init := func() {
|
|
hashKey = lookupTypeHasher(t.Key())
|
|
hashValue = lookupTypeHasher(t.Elem())
|
|
isRecursive = typeIsRecursive(t)
|
|
}
|
|
|
|
return func(h *hasher, p pointer) {
|
|
v := p.asValue(t).Elem() // reflect.Map kind
|
|
if v.IsNil() {
|
|
h.HashUint8(0) // indicates nil
|
|
return
|
|
}
|
|
once.Do(init)
|
|
if isRecursive {
|
|
pm := v.UnsafePointer() // underlying pointer of map
|
|
if idx, ok := h.visitStack.seen(pm); ok {
|
|
h.HashUint8(2) // indicates cycle
|
|
h.HashUint64(uint64(idx))
|
|
return
|
|
}
|
|
h.visitStack.push(pm)
|
|
defer h.visitStack.pop(pm)
|
|
}
|
|
h.HashUint8(1) // indicates visiting map entries
|
|
h.HashUint64(uint64(v.Len()))
|
|
|
|
mh := mapHasherPool.Get().(*mapHasher)
|
|
defer mapHasherPool.Put(mh)
|
|
|
|
// Hash a map in a sort-free manner.
|
|
// It relies on a map being a an unordered set of KV entries.
|
|
// So long as we hash each KV entry together, we can XOR all the
|
|
// individual hashes to produce a unique hash for the entire map.
|
|
k := mh.valKey.get(v.Type().Key())
|
|
e := mh.valElem.get(v.Type().Elem())
|
|
mh.sum = Sum{}
|
|
mh.h.visitStack = h.visitStack // always use the parent's visit stack to avoid cycles
|
|
for iter := v.MapRange(); iter.Next(); {
|
|
k.SetIterKey(iter)
|
|
e.SetIterValue(iter)
|
|
mh.h.reset()
|
|
hashKey(&mh.h, pointerOf(k.Addr()))
|
|
hashValue(&mh.h, pointerOf(e.Addr()))
|
|
mh.sum.xor(mh.h.sum())
|
|
}
|
|
h.HashBytes(mh.sum.sum[:])
|
|
}
|
|
}
|
|
|
|
func makePointerHasher(t reflect.Type) typeHasherFunc {
|
|
var once sync.Once
|
|
var hashElem typeHasherFunc
|
|
var isRecursive bool
|
|
init := func() {
|
|
hashElem = lookupTypeHasher(t.Elem())
|
|
isRecursive = typeIsRecursive(t)
|
|
}
|
|
return func(h *hasher, p pointer) {
|
|
pe := p.pointerElem()
|
|
if pe.isNil() {
|
|
h.HashUint8(0) // indicates nil
|
|
return
|
|
}
|
|
once.Do(init)
|
|
if isRecursive {
|
|
if idx, ok := h.visitStack.seen(pe.p); ok {
|
|
h.HashUint8(2) // indicates cycle
|
|
h.HashUint64(uint64(idx))
|
|
return
|
|
}
|
|
h.visitStack.push(pe.p)
|
|
defer h.visitStack.pop(pe.p)
|
|
}
|
|
h.HashUint8(1) // indicates visiting a pointer element
|
|
hashElem(h, pe)
|
|
}
|
|
}
|
|
|
|
func makeInterfaceHasher(t reflect.Type) typeHasherFunc {
|
|
return func(h *hasher, p pointer) {
|
|
v := p.asValue(t).Elem() // reflect.Interface kind
|
|
if v.IsNil() {
|
|
h.HashUint8(0) // indicates nil
|
|
return
|
|
}
|
|
h.HashUint8(1) // indicates visiting an interface value
|
|
v = v.Elem()
|
|
t := v.Type()
|
|
h.hashType(t)
|
|
va := reflect.New(t).Elem()
|
|
va.Set(v)
|
|
hashElem := lookupTypeHasher(t)
|
|
hashElem(h, pointerOf(va.Addr()))
|
|
}
|
|
}
|
|
|
|
type mapHasher struct {
|
|
h hasher
|
|
valKey valueCache
|
|
valElem valueCache
|
|
sum Sum
|
|
}
|
|
|
|
var mapHasherPool = &sync.Pool{
|
|
New: func() any { return new(mapHasher) },
|
|
}
|
|
|
|
type valueCache map[reflect.Type]reflect.Value
|
|
|
|
// get returns an addressable reflect.Value for the given type.
|
|
func (c *valueCache) get(t reflect.Type) reflect.Value {
|
|
v, ok := (*c)[t]
|
|
if !ok {
|
|
v = reflect.New(t).Elem()
|
|
if *c == nil {
|
|
*c = make(valueCache)
|
|
}
|
|
(*c)[t] = v
|
|
}
|
|
return v
|
|
}
|