302 lines
13 KiB
C++
302 lines
13 KiB
C++
|
//
|
||
|
// Copyright 2020 Electronic Arts Inc.
|
||
|
//
|
||
|
// TiberianDawn.DLL and RedAlert.dll and corresponding source code is free
|
||
|
// software: you can redistribute it and/or modify it under the terms of
|
||
|
// the GNU General Public License as published by the Free Software Foundation,
|
||
|
// either version 3 of the License, or (at your option) any later version.
|
||
|
|
||
|
// TiberianDawn.DLL and RedAlert.dll and corresponding source code is distributed
|
||
|
// in the hope that it will be useful, but with permitted additional restrictions
|
||
|
// under Section 7 of the GPL. See the GNU General Public License in LICENSE.TXT
|
||
|
// distributed with this program. You should have received a copy of the
|
||
|
// GNU General Public License along with permitted additional restrictions
|
||
|
// with this program. If not, see https://github.com/electronicarts/CnC_Remastered_Collection
|
||
|
|
||
|
/* $Header: /CounterStrike/INT.H 1 3/03/97 10:24a Joe_bostic $ */
|
||
|
/***********************************************************************************************
|
||
|
*** C O N F I D E N T I A L --- W E S T W O O D S T U D I O S ***
|
||
|
***********************************************************************************************
|
||
|
* *
|
||
|
* Project Name : Command & Conquer *
|
||
|
* *
|
||
|
* File Name : INT.H *
|
||
|
* *
|
||
|
* Programmer : Joe L. Bostic *
|
||
|
* *
|
||
|
* Start Date : 04/26/96 *
|
||
|
* *
|
||
|
* Last Update : April 26, 1996 [JLB] *
|
||
|
* *
|
||
|
*---------------------------------------------------------------------------------------------*
|
||
|
* Functions: *
|
||
|
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||
|
|
||
|
|
||
|
#ifndef INT_H
|
||
|
#define INT_H
|
||
|
|
||
|
#include <memory.h>
|
||
|
#include <limits.h>
|
||
|
#include <assert.h>
|
||
|
#include "mp.h"
|
||
|
#include "straw.h"
|
||
|
|
||
|
//#pragma warn -inl
|
||
|
|
||
|
template<int PRECISION>
|
||
|
class Int {
|
||
|
public:
|
||
|
|
||
|
/*
|
||
|
** Constructors and initializers.
|
||
|
*/
|
||
|
Int(void) {XMP_Init(®[0], 0, PRECISION);}
|
||
|
Int(unsigned long value) {XMP_Init(®[0], value, PRECISION);}
|
||
|
|
||
|
void Randomize(Straw & rng, int bitcount) {XMP_Randomize(®[0], rng, bitcount, PRECISION);}
|
||
|
void Randomize(Straw & rng, const Int & minval, const Int & maxval) {XMP_Randomize(®[0], rng, minval, maxval, PRECISION); reg[0] |= 1;}
|
||
|
|
||
|
/*
|
||
|
** Convenient conversion operators to get at the underlying array of
|
||
|
** integers. Big number math is basically manipulation of arbitrary
|
||
|
** length arrays.
|
||
|
*/
|
||
|
operator digit * () {return & reg[0];}
|
||
|
operator const digit * () const {return & reg[0];}
|
||
|
|
||
|
/*
|
||
|
** Array access operator (references bit position). Bit 0 is the first bit.
|
||
|
*/
|
||
|
bool operator[](unsigned bit) const {return(XMP_Test_Bit(®[0], bit));}
|
||
|
|
||
|
/*
|
||
|
** Unary operators.
|
||
|
*/
|
||
|
Int & operator ++ (void) {XMP_Inc(®[0], PRECISION);return(*this);}
|
||
|
Int & operator -- (void) {XMP_Dec(®[0], PRECISION);return(*this);}
|
||
|
int operator ! (void) const {return(XMP_Test_Eq_Int(®[0], 0, PRECISION));}
|
||
|
Int operator ~ (void) {XMP_Not(®[0], PRECISION);return(*this);}
|
||
|
Int operator - (void) const {Int a = *this;a.Negate();return (a);}
|
||
|
|
||
|
/*
|
||
|
** Attribute query functions.
|
||
|
*/
|
||
|
int ByteCount(void) const {return(XMP_Count_Bytes(®[0], PRECISION));}
|
||
|
int BitCount(void) const {return(XMP_Count_Bits(®[0], PRECISION));}
|
||
|
bool Is_Negative(void) const {return(XMP_Is_Negative(®[0], PRECISION));}
|
||
|
unsigned MaxBitPrecision() const {return PRECISION*(sizeof(unsigned long)*CHAR_BIT);}
|
||
|
bool IsSmallPrime(void) const {return(XMP_Is_Small_Prime(®[0], PRECISION));}
|
||
|
bool SmallDivisorsTest(void) const {return(XMP_Small_Divisors_Test(®[0], PRECISION));}
|
||
|
bool FermatTest(unsigned rounds) const {return(XMP_Fermat_Test(®[0], rounds, PRECISION));}
|
||
|
bool IsPrime(void) const {return(XMP_Is_Prime(®[0], PRECISION));}
|
||
|
bool RabinMillerTest(Straw & rng, unsigned int rounds) const {return(XMP_Rabin_Miller_Test(rng, ®[0], rounds, PRECISION));}
|
||
|
|
||
|
/*
|
||
|
** 'in-place' binary operators.
|
||
|
*/
|
||
|
Int & operator += (const Int & number) {Carry = XMP_Add(®[0], ®[0], number, 0, PRECISION);return(*this);}
|
||
|
Int & operator -= (const Int & number) {Borrow = XMP_Sub(®[0], ®[0], number, 0, PRECISION);return(*this);}
|
||
|
Int & operator *= (const Int & multiplier) {Remainder = *this;Error=XMP_Signed_Mult(®[0], Remainder, multiplier, PRECISION);return(*this);}
|
||
|
Int & operator /= (const Int & t) {*this = (*this) / t;return *this;}
|
||
|
Int & operator %= (const Int & t) {*this = (*this) % t;return *this;}
|
||
|
Int & operator <<= (int bits) {XMP_Shift_Left_Bits(®[0], bits, PRECISION);return *this;}
|
||
|
Int & operator >>= (int bits) {XMP_Shift_Right_Bits(®[0], bits, PRECISION);return *this;}
|
||
|
|
||
|
/*
|
||
|
** Mathematical binary operators.
|
||
|
*/
|
||
|
Int operator + (const Int & number) const {Int term;Carry = XMP_Add(term, ®[0], number, 0, PRECISION);return(term);}
|
||
|
Int operator + (unsigned short b) const {Int result;Carry=XMP_Add_Int(result, ®[0], b, 0, PRECISION);return(result);}
|
||
|
// friend Int<PRECISION> operator + (digit b, const Int<PRECISION> & a) {return(Int<PRECISION>(b) + a);}
|
||
|
Int operator - (const Int & number) const {Int term;Borrow = XMP_Sub(term, ®[0], number, 0, PRECISION);return(term);}
|
||
|
Int operator - (unsigned short b) const {Int result;Borrow = XMP_Sub_Int(result, ®[0], b, 0, PRECISION);return(result);}
|
||
|
// friend Int<PRECISION> operator - (digit b, const Int<PRECISION> & a) {return(Int<PRECISION>(b) - a);}
|
||
|
Int operator * (const Int & multiplier) const {Int result;Error=XMP_Signed_Mult(result, ®[0], multiplier, PRECISION);return result;}
|
||
|
Int operator * (unsigned short b) const {Int result;Error=XMP_Unsigned_Mult_Int(result, ®[0], b, PRECISION);return(result);}
|
||
|
// friend Int<PRECISION> operator * (digit b, const Int<PRECISION> & a) {return(Int<PRECISION>(b) * a);}
|
||
|
Int operator / (const Int & divisor) const {Int quotient = *this;XMP_Signed_Div(Remainder, quotient, ®[0], divisor, PRECISION);return (quotient);}
|
||
|
Int operator / (unsigned long b) const {return(*this / Int<PRECISION>(b));}
|
||
|
Int operator / (unsigned short divisor) const {Int quotient;Error=XMP_Unsigned_Div_Int(quotient, ®[0], divisor, PRECISION);return(quotient);}
|
||
|
// friend Int<PRECISION> operator / (digit a, const Int<PRECISION> & b) {return(Int<PRECISION>(a) / b);}
|
||
|
Int operator % (const Int & divisor) const {Int remainder;XMP_Signed_Div(remainder, Remainder, ®[0], divisor, PRECISION);return(remainder);}
|
||
|
Int operator % (unsigned long b) const {return(*this % Int<PRECISION>(b));}
|
||
|
unsigned short operator % (unsigned short divisor) const {return(XMP_Unsigned_Div_Int(Remainder, ®[0], divisor, PRECISION));}
|
||
|
// friend Int<PRECISION> operator % (digit a, const Int<PRECISION> & b) {return(Int<PRECISION>(a) % b);}
|
||
|
|
||
|
/*
|
||
|
** Bitwise binary operators.
|
||
|
*/
|
||
|
Int operator >> (int bits) const {Int result = *this; XMP_Shift_Right_Bits(result, bits, PRECISION);return result;}
|
||
|
Int operator << (int bits) const {Int result = *this; XMP_Shift_Left_Bits(result, bits, PRECISION);return result;}
|
||
|
|
||
|
/*
|
||
|
** Comparison binary operators.
|
||
|
*/
|
||
|
int operator == (const Int &b) const {return (memcmp(®[0], &b.reg[0], (MAX_BIT_PRECISION/CHAR_BIT))==0);}
|
||
|
int operator != (const Int& b) const {return !(*this == b);}
|
||
|
int operator > (const Int & number) const {return(XMP_Compare(®[0], number, PRECISION) > 0);}
|
||
|
int operator >= (const Int & number) const {return(XMP_Compare(®[0], number, PRECISION) >= 0);}
|
||
|
int operator < (const Int & number) const {return(XMP_Compare(®[0], number, PRECISION) < 0);}
|
||
|
int operator <= (const Int & number) const {return(XMP_Compare(®[0], number, PRECISION) <= 0);}
|
||
|
|
||
|
/*
|
||
|
** Misc. mathematical and logical functions.
|
||
|
*/
|
||
|
void Negate(void) {XMP_Neg(®[0], PRECISION);}
|
||
|
Int Abs(void) {XMP_Abs(®[0], PRECISION);return(*this);}
|
||
|
Int times_b_mod_c(Int const & multiplier, Int const & modulus) const {
|
||
|
Int result;
|
||
|
Error=xmp_stage_modulus(modulus, PRECISION);
|
||
|
Error=XMP_Mod_Mult(result, ®[0], multiplier, PRECISION);
|
||
|
XMP_Mod_Mult_Clear(PRECISION);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
Int exp_b_mod_c(const Int & e, const Int & m) const {
|
||
|
Int result;
|
||
|
Error=xmp_exponent_mod(result, ®[0], e, m, PRECISION);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
static Int Unsigned_Mult(Int const & multiplicand, Int const & multiplier) {Int product;Error=XMP_Unsigned_Mult(&product.reg[0], &multiplicand.reg[0], &multiplier.reg[0], PRECISION);return(product);}
|
||
|
static void Unsigned_Divide(Int & remainder, Int & quotient, const Int & dividend, const Int & divisor) {Error=XMP_Unsigned_Div(remainder, quotient, dividend, divisor, PRECISION);}
|
||
|
static void Signed_Divide(Int & remainder, Int & quotient, const Int & dividend, const Int & divisor) {XMP_Signed_Div(remainder, quotient, dividend, divisor, PRECISION);}
|
||
|
Int Inverse(const Int & modulus) const {Int result;XMP_Inverse_A_Mod_B(result, ®[0], modulus, PRECISION);return(result);}
|
||
|
|
||
|
static Int Decode_ASCII(char const * string) {Int result;XMP_Decode_ASCII(string, result, PRECISION);return(result);}
|
||
|
|
||
|
// Number (sign independand) inserted into buffer.
|
||
|
int Encode(unsigned char *output) const {return(XMP_Encode(output, ®[0], PRECISION));}
|
||
|
int Encode(unsigned char * output, unsigned length) const {return(XMP_Encode(output, length, ®[0], PRECISION));}
|
||
|
void Signed_Decode(const unsigned char * from, int frombytes) {XMP_Signed_Decode(®[0], from, frombytes, PRECISION);}
|
||
|
void Unsigned_Decode(const unsigned char * from, int frombytes) {XMP_Unsigned_Decode(®[0], from, frombytes, PRECISION);}
|
||
|
|
||
|
// encode Int using Distinguished Encoding Rules, returns size of output
|
||
|
int DEREncode(unsigned char * output) const {return(XMP_DER_Encode(®[0], output, PRECISION));}
|
||
|
void DERDecode(const unsigned char *input) {XMP_DER_Decode(®[0], input, PRECISION);}
|
||
|
|
||
|
// Friend helper functions.
|
||
|
friend Int<PRECISION> Generate_Prime(Straw & rng, int pbits, Int<PRECISION> const * = 0);
|
||
|
friend Int<PRECISION> Gcd(const Int<PRECISION> & a, const Int<PRECISION> & b);
|
||
|
// friend bool NextPrime(Int<PRECISION> & p, const Int<PRECISION> & max, bool blumInt=false);
|
||
|
// friend Int<PRECISION> a_exp_b_mod_pq(const Int<PRECISION> & a, const Int<PRECISION> & ep, const Int<PRECISION> & eq, const Int<PRECISION> & p, const Int<PRECISION> & q, const Int<PRECISION> & u);
|
||
|
|
||
|
static int Error;
|
||
|
|
||
|
// Carry result from last addition.
|
||
|
static bool Carry;
|
||
|
|
||
|
// Borrow result from last subtraction.
|
||
|
static bool Borrow;
|
||
|
|
||
|
// Remainder value from the various division routines.
|
||
|
static Int Remainder;
|
||
|
|
||
|
|
||
|
private:
|
||
|
digit reg[PRECISION];
|
||
|
|
||
|
|
||
|
struct RemainderTable
|
||
|
{
|
||
|
RemainderTable(const Int<PRECISION> & p) : HasZeroEntry(false)
|
||
|
{
|
||
|
for (unsigned i = 0; i < ARRAY_SIZE(primeTable); i++) {
|
||
|
table[i] = p % primeTable[i];
|
||
|
}
|
||
|
}
|
||
|
bool HasZero() const {return(HasZeroEntry);}
|
||
|
void Increment(unsigned short increment = 1)
|
||
|
{
|
||
|
HasZeroEntry = false;
|
||
|
for (unsigned int i = 0; i < ARRAY_SIZE(primeTable); i++) {
|
||
|
table[i] += increment;
|
||
|
while (table[i] >= primeTable[i]) {
|
||
|
table[i] -= primeTable[i];
|
||
|
}
|
||
|
HasZeroEntry = (HasZeroEntry || !table[i]);
|
||
|
}
|
||
|
}
|
||
|
void Increment(const RemainderTable & rtQ)
|
||
|
{
|
||
|
HasZeroEntry = false;
|
||
|
for (unsigned int i = 0; i < ARRAY_SIZE(primeTable); i++) {
|
||
|
table[i] += rtQ.table[i];
|
||
|
if (table[i] >= primeTable[i]) {
|
||
|
table[i] -= primeTable[i];
|
||
|
}
|
||
|
HasZeroEntry = (HasZeroEntry || !table[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool HasZeroEntry;
|
||
|
unsigned short table[ARRAY_SIZE(primeTable)];
|
||
|
};
|
||
|
|
||
|
};
|
||
|
|
||
|
|
||
|
template<class T>
|
||
|
T Gcd(const T & a, const T & n)
|
||
|
{
|
||
|
T g[3]={n, a, 0UL};
|
||
|
|
||
|
unsigned int i = 1;
|
||
|
while (!!g[i%3]) {
|
||
|
g[(i+1)%3] = g[(i-1)%3] % g[i%3];
|
||
|
i++;
|
||
|
}
|
||
|
return g[(i-1)%3];
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
//#pragma warning 604 9
|
||
|
//#pragma warning 595 9
|
||
|
template<class T>
|
||
|
T Generate_Prime(Straw & rng, int pbits, T const *)
|
||
|
{
|
||
|
T minQ = (T(1UL) << (unsigned short)(pbits-(unsigned short)2));
|
||
|
T maxQ = ((T(1UL) << (unsigned short)(pbits-(unsigned short)1)) - (unsigned short)1);
|
||
|
|
||
|
T q;
|
||
|
T p;
|
||
|
|
||
|
do {
|
||
|
q.Randomize(rng, minQ, maxQ);
|
||
|
p = (q*2) + (unsigned short)1;
|
||
|
|
||
|
T::RemainderTable rtQ(q);
|
||
|
T::RemainderTable rtP(p);
|
||
|
|
||
|
while (rtQ.HasZero() || rtP.HasZero() || !q.IsPrime() || !p.IsPrime()) {
|
||
|
q += 2;
|
||
|
p += 4;
|
||
|
if (q > maxQ) break;
|
||
|
|
||
|
rtQ.Increment(2);
|
||
|
rtP.Increment(4);
|
||
|
}
|
||
|
} while (q > maxQ);
|
||
|
|
||
|
return(p);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
typedef Int<MAX_UNIT_PRECISION> bignum;
|
||
|
typedef Int<MAX_UNIT_PRECISION> BigInt;
|
||
|
|
||
|
|
||
|
|
||
|
//BigInt Gcd(const BigInt & a, const BigInt & n);
|
||
|
//BigInt Generate_Prime(RandomNumberGenerator & rng, int pbits, BigInt const * dummy);
|
||
|
|
||
|
#endif
|
||
|
|