CnC_Remastered_Collection/REDALERT/INT.H

302 lines
13 KiB
C++

//
// Copyright 2020 Electronic Arts Inc.
//
// TiberianDawn.DLL and RedAlert.dll and corresponding source code is free
// software: you can redistribute it and/or modify it under the terms of
// the GNU General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
// TiberianDawn.DLL and RedAlert.dll and corresponding source code is distributed
// in the hope that it will be useful, but with permitted additional restrictions
// under Section 7 of the GPL. See the GNU General Public License in LICENSE.TXT
// distributed with this program. You should have received a copy of the
// GNU General Public License along with permitted additional restrictions
// with this program. If not, see https://github.com/electronicarts/CnC_Remastered_Collection
/* $Header: /CounterStrike/INT.H 1 3/03/97 10:24a Joe_bostic $ */
/***********************************************************************************************
*** C O N F I D E N T I A L --- W E S T W O O D S T U D I O S ***
***********************************************************************************************
* *
* Project Name : Command & Conquer *
* *
* File Name : INT.H *
* *
* Programmer : Joe L. Bostic *
* *
* Start Date : 04/26/96 *
* *
* Last Update : April 26, 1996 [JLB] *
* *
*---------------------------------------------------------------------------------------------*
* Functions: *
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
#ifndef INT_H
#define INT_H
#include <memory.h>
#include <limits.h>
#include <assert.h>
#include "mp.h"
#include "straw.h"
//#pragma warn -inl
template<int PRECISION>
class Int {
public:
/*
** Constructors and initializers.
*/
Int(void) {XMP_Init(&reg[0], 0, PRECISION);}
Int(unsigned long value) {XMP_Init(&reg[0], value, PRECISION);}
void Randomize(Straw & rng, int bitcount) {XMP_Randomize(&reg[0], rng, bitcount, PRECISION);}
void Randomize(Straw & rng, const Int & minval, const Int & maxval) {XMP_Randomize(&reg[0], rng, minval, maxval, PRECISION); reg[0] |= 1;}
/*
** Convenient conversion operators to get at the underlying array of
** integers. Big number math is basically manipulation of arbitrary
** length arrays.
*/
operator digit * () {return & reg[0];}
operator const digit * () const {return & reg[0];}
/*
** Array access operator (references bit position). Bit 0 is the first bit.
*/
bool operator[](unsigned bit) const {return(XMP_Test_Bit(&reg[0], bit));}
/*
** Unary operators.
*/
Int & operator ++ (void) {XMP_Inc(&reg[0], PRECISION);return(*this);}
Int & operator -- (void) {XMP_Dec(&reg[0], PRECISION);return(*this);}
int operator ! (void) const {return(XMP_Test_Eq_Int(&reg[0], 0, PRECISION));}
Int operator ~ (void) {XMP_Not(&reg[0], PRECISION);return(*this);}
Int operator - (void) const {Int a = *this;a.Negate();return (a);}
/*
** Attribute query functions.
*/
int ByteCount(void) const {return(XMP_Count_Bytes(&reg[0], PRECISION));}
int BitCount(void) const {return(XMP_Count_Bits(&reg[0], PRECISION));}
bool Is_Negative(void) const {return(XMP_Is_Negative(&reg[0], PRECISION));}
unsigned MaxBitPrecision() const {return PRECISION*(sizeof(unsigned long)*CHAR_BIT);}
bool IsSmallPrime(void) const {return(XMP_Is_Small_Prime(&reg[0], PRECISION));}
bool SmallDivisorsTest(void) const {return(XMP_Small_Divisors_Test(&reg[0], PRECISION));}
bool FermatTest(unsigned rounds) const {return(XMP_Fermat_Test(&reg[0], rounds, PRECISION));}
bool IsPrime(void) const {return(XMP_Is_Prime(&reg[0], PRECISION));}
bool RabinMillerTest(Straw & rng, unsigned int rounds) const {return(XMP_Rabin_Miller_Test(rng, &reg[0], rounds, PRECISION));}
/*
** 'in-place' binary operators.
*/
Int & operator += (const Int & number) {Carry = XMP_Add(&reg[0], &reg[0], number, 0, PRECISION);return(*this);}
Int & operator -= (const Int & number) {Borrow = XMP_Sub(&reg[0], &reg[0], number, 0, PRECISION);return(*this);}
Int & operator *= (const Int & multiplier) {Remainder = *this;Error=XMP_Signed_Mult(&reg[0], Remainder, multiplier, PRECISION);return(*this);}
Int & operator /= (const Int & t) {*this = (*this) / t;return *this;}
Int & operator %= (const Int & t) {*this = (*this) % t;return *this;}
Int & operator <<= (int bits) {XMP_Shift_Left_Bits(&reg[0], bits, PRECISION);return *this;}
Int & operator >>= (int bits) {XMP_Shift_Right_Bits(&reg[0], bits, PRECISION);return *this;}
/*
** Mathematical binary operators.
*/
Int operator + (const Int & number) const {Int term;Carry = XMP_Add(term, &reg[0], number, 0, PRECISION);return(term);}
Int operator + (unsigned short b) const {Int result;Carry=XMP_Add_Int(result, &reg[0], b, 0, PRECISION);return(result);}
// friend Int<PRECISION> operator + (digit b, const Int<PRECISION> & a) {return(Int<PRECISION>(b) + a);}
Int operator - (const Int & number) const {Int term;Borrow = XMP_Sub(term, &reg[0], number, 0, PRECISION);return(term);}
Int operator - (unsigned short b) const {Int result;Borrow = XMP_Sub_Int(result, &reg[0], b, 0, PRECISION);return(result);}
// friend Int<PRECISION> operator - (digit b, const Int<PRECISION> & a) {return(Int<PRECISION>(b) - a);}
Int operator * (const Int & multiplier) const {Int result;Error=XMP_Signed_Mult(result, &reg[0], multiplier, PRECISION);return result;}
Int operator * (unsigned short b) const {Int result;Error=XMP_Unsigned_Mult_Int(result, &reg[0], b, PRECISION);return(result);}
// friend Int<PRECISION> operator * (digit b, const Int<PRECISION> & a) {return(Int<PRECISION>(b) * a);}
Int operator / (const Int & divisor) const {Int quotient = *this;XMP_Signed_Div(Remainder, quotient, &reg[0], divisor, PRECISION);return (quotient);}
Int operator / (unsigned long b) const {return(*this / Int<PRECISION>(b));}
Int operator / (unsigned short divisor) const {Int quotient;Error=XMP_Unsigned_Div_Int(quotient, &reg[0], divisor, PRECISION);return(quotient);}
// friend Int<PRECISION> operator / (digit a, const Int<PRECISION> & b) {return(Int<PRECISION>(a) / b);}
Int operator % (const Int & divisor) const {Int remainder;XMP_Signed_Div(remainder, Remainder, &reg[0], divisor, PRECISION);return(remainder);}
Int operator % (unsigned long b) const {return(*this % Int<PRECISION>(b));}
unsigned short operator % (unsigned short divisor) const {return(XMP_Unsigned_Div_Int(Remainder, &reg[0], divisor, PRECISION));}
// friend Int<PRECISION> operator % (digit a, const Int<PRECISION> & b) {return(Int<PRECISION>(a) % b);}
/*
** Bitwise binary operators.
*/
Int operator >> (int bits) const {Int result = *this; XMP_Shift_Right_Bits(result, bits, PRECISION);return result;}
Int operator << (int bits) const {Int result = *this; XMP_Shift_Left_Bits(result, bits, PRECISION);return result;}
/*
** Comparison binary operators.
*/
int operator == (const Int &b) const {return (memcmp(&reg[0], &b.reg[0], (MAX_BIT_PRECISION/CHAR_BIT))==0);}
int operator != (const Int& b) const {return !(*this == b);}
int operator > (const Int & number) const {return(XMP_Compare(&reg[0], number, PRECISION) > 0);}
int operator >= (const Int & number) const {return(XMP_Compare(&reg[0], number, PRECISION) >= 0);}
int operator < (const Int & number) const {return(XMP_Compare(&reg[0], number, PRECISION) < 0);}
int operator <= (const Int & number) const {return(XMP_Compare(&reg[0], number, PRECISION) <= 0);}
/*
** Misc. mathematical and logical functions.
*/
void Negate(void) {XMP_Neg(&reg[0], PRECISION);}
Int Abs(void) {XMP_Abs(&reg[0], PRECISION);return(*this);}
Int times_b_mod_c(Int const & multiplier, Int const & modulus) const {
Int result;
Error=xmp_stage_modulus(modulus, PRECISION);
Error=XMP_Mod_Mult(result, &reg[0], multiplier, PRECISION);
XMP_Mod_Mult_Clear(PRECISION);
return result;
}
Int exp_b_mod_c(const Int & e, const Int & m) const {
Int result;
Error=xmp_exponent_mod(result, &reg[0], e, m, PRECISION);
return result;
}
static Int Unsigned_Mult(Int const & multiplicand, Int const & multiplier) {Int product;Error=XMP_Unsigned_Mult(&product.reg[0], &multiplicand.reg[0], &multiplier.reg[0], PRECISION);return(product);}
static void Unsigned_Divide(Int & remainder, Int & quotient, const Int & dividend, const Int & divisor) {Error=XMP_Unsigned_Div(remainder, quotient, dividend, divisor, PRECISION);}
static void Signed_Divide(Int & remainder, Int & quotient, const Int & dividend, const Int & divisor) {XMP_Signed_Div(remainder, quotient, dividend, divisor, PRECISION);}
Int Inverse(const Int & modulus) const {Int result;XMP_Inverse_A_Mod_B(result, &reg[0], modulus, PRECISION);return(result);}
static Int Decode_ASCII(char const * string) {Int result;XMP_Decode_ASCII(string, result, PRECISION);return(result);}
// Number (sign independand) inserted into buffer.
int Encode(unsigned char *output) const {return(XMP_Encode(output, &reg[0], PRECISION));}
int Encode(unsigned char * output, unsigned length) const {return(XMP_Encode(output, length, &reg[0], PRECISION));}
void Signed_Decode(const unsigned char * from, int frombytes) {XMP_Signed_Decode(&reg[0], from, frombytes, PRECISION);}
void Unsigned_Decode(const unsigned char * from, int frombytes) {XMP_Unsigned_Decode(&reg[0], from, frombytes, PRECISION);}
// encode Int using Distinguished Encoding Rules, returns size of output
int DEREncode(unsigned char * output) const {return(XMP_DER_Encode(&reg[0], output, PRECISION));}
void DERDecode(const unsigned char *input) {XMP_DER_Decode(&reg[0], input, PRECISION);}
// Friend helper functions.
friend Int<PRECISION> Generate_Prime(Straw & rng, int pbits, Int<PRECISION> const * = 0);
friend Int<PRECISION> Gcd(const Int<PRECISION> & a, const Int<PRECISION> & b);
// friend bool NextPrime(Int<PRECISION> & p, const Int<PRECISION> & max, bool blumInt=false);
// friend Int<PRECISION> a_exp_b_mod_pq(const Int<PRECISION> & a, const Int<PRECISION> & ep, const Int<PRECISION> & eq, const Int<PRECISION> & p, const Int<PRECISION> & q, const Int<PRECISION> & u);
static int Error;
// Carry result from last addition.
static bool Carry;
// Borrow result from last subtraction.
static bool Borrow;
// Remainder value from the various division routines.
static Int Remainder;
private:
digit reg[PRECISION];
struct RemainderTable
{
RemainderTable(const Int<PRECISION> & p) : HasZeroEntry(false)
{
for (unsigned i = 0; i < ARRAY_SIZE(primeTable); i++) {
table[i] = p % primeTable[i];
}
}
bool HasZero() const {return(HasZeroEntry);}
void Increment(unsigned short increment = 1)
{
HasZeroEntry = false;
for (unsigned int i = 0; i < ARRAY_SIZE(primeTable); i++) {
table[i] += increment;
while (table[i] >= primeTable[i]) {
table[i] -= primeTable[i];
}
HasZeroEntry = (HasZeroEntry || !table[i]);
}
}
void Increment(const RemainderTable & rtQ)
{
HasZeroEntry = false;
for (unsigned int i = 0; i < ARRAY_SIZE(primeTable); i++) {
table[i] += rtQ.table[i];
if (table[i] >= primeTable[i]) {
table[i] -= primeTable[i];
}
HasZeroEntry = (HasZeroEntry || !table[i]);
}
}
bool HasZeroEntry;
unsigned short table[ARRAY_SIZE(primeTable)];
};
};
template<class T>
T Gcd(const T & a, const T & n)
{
T g[3]={n, a, 0UL};
unsigned int i = 1;
while (!!g[i%3]) {
g[(i+1)%3] = g[(i-1)%3] % g[i%3];
i++;
}
return g[(i-1)%3];
}
//#pragma warning 604 9
//#pragma warning 595 9
template<class T>
T Generate_Prime(Straw & rng, int pbits, T const *)
{
T minQ = (T(1UL) << (unsigned short)(pbits-(unsigned short)2));
T maxQ = ((T(1UL) << (unsigned short)(pbits-(unsigned short)1)) - (unsigned short)1);
T q;
T p;
do {
q.Randomize(rng, minQ, maxQ);
p = (q*2) + (unsigned short)1;
T::RemainderTable rtQ(q);
T::RemainderTable rtP(p);
while (rtQ.HasZero() || rtP.HasZero() || !q.IsPrime() || !p.IsPrime()) {
q += 2;
p += 4;
if (q > maxQ) break;
rtQ.Increment(2);
rtP.Increment(4);
}
} while (q > maxQ);
return(p);
}
typedef Int<MAX_UNIT_PRECISION> bignum;
typedef Int<MAX_UNIT_PRECISION> BigInt;
//BigInt Gcd(const BigInt & a, const BigInt & n);
//BigInt Generate_Prime(RandomNumberGenerator & rng, int pbits, BigInt const * dummy);
#endif