Tasmota/tasmota/support.ino

2179 lines
64 KiB
Arduino
Raw Normal View History

2017-01-28 13:41:01 +00:00
/*
support.ino - support for Tasmota
2019-12-31 13:23:34 +00:00
Copyright (C) 2020 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
2017-01-28 13:41:01 +00:00
*/
2019-11-18 10:02:04 +00:00
extern "C" {
extern struct rst_info resetInfo;
}
/*********************************************************************************************\
* Watchdog extension (https://github.com/esp8266/Arduino/issues/1532)
\*********************************************************************************************/
2018-11-20 14:00:24 +00:00
#include <Ticker.h>
Ticker tickerOSWatch;
const uint32_t OSWATCH_RESET_TIME = 120;
static unsigned long oswatch_last_loop_time;
uint8_t oswatch_blocked_loop = 0;
#ifndef USE_WS2812_DMA // Collides with Neopixelbus but solves exception
//void OsWatchTicker() ICACHE_RAM_ATTR;
#endif // USE_WS2812_DMA
#ifdef USE_KNX
bool knx_started = false;
#endif // USE_KNX
2018-11-14 13:32:09 +00:00
void OsWatchTicker(void)
{
2019-07-28 12:54:52 +01:00
uint32_t t = millis();
2020-10-22 14:23:22 +01:00
uint32_t last_run = t - oswatch_last_loop_time;
#ifdef DEBUG_THEO
int32_t rssi = WiFi.RSSI();
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_OSWATCH " FreeRam %d, rssi %d %% (%d dBm), last_run %d"), ESP_getFreeHeap(), WifiGetRssiAsQuality(rssi), rssi, last_run);
#endif // DEBUG_THEO
if (last_run >= (OSWATCH_RESET_TIME * 1000)) {
// AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_OSWATCH " " D_BLOCKED_LOOP ". " D_RESTARTING)); // Save iram space
RtcSettings.oswatch_blocked_loop = 1;
RtcSettingsSave();
2019-12-28 13:54:26 +00:00
// ESP.restart(); // normal reboot
2019-12-28 13:54:26 +00:00
// ESP.reset(); // hard reset
// Force an exception to get a stackdump
volatile uint32_t dummy;
dummy = *((uint32_t*) 0x00000000);
2020-11-12 18:38:21 +00:00
(void)dummy; // avoid compiler warning
}
}
2018-11-14 13:32:09 +00:00
void OsWatchInit(void)
{
oswatch_blocked_loop = RtcSettings.oswatch_blocked_loop;
RtcSettings.oswatch_blocked_loop = 0;
oswatch_last_loop_time = millis();
tickerOSWatch.attach_ms(((OSWATCH_RESET_TIME / 3) * 1000), OsWatchTicker);
}
2018-11-14 13:32:09 +00:00
void OsWatchLoop(void)
{
oswatch_last_loop_time = millis();
// while(1) delay(1000); // this will trigger the os watch
}
2019-11-20 20:49:57 +00:00
bool OsWatchBlockedLoop(void)
{
return oswatch_blocked_loop;
}
uint32_t ResetReason(void)
{
/*
user_interface.h
REASON_DEFAULT_RST = 0, // "Power on" normal startup by power on
REASON_WDT_RST = 1, // "Hardware Watchdog" hardware watch dog reset
REASON_EXCEPTION_RST = 2, // "Exception" exception reset, GPIO status wont change
REASON_SOFT_WDT_RST = 3, // "Software Watchdog" software watch dog reset, GPIO status wont change
REASON_SOFT_RESTART = 4, // "Software/System restart" software restart ,system_restart , GPIO status wont change
REASON_DEEP_SLEEP_AWAKE = 5, // "Deep-Sleep Wake" wake up from deep-sleep
REASON_EXT_SYS_RST = 6 // "External System" external system reset
*/
2020-04-16 17:33:26 +01:00
return ESP_ResetInfoReason();
2019-11-20 20:49:57 +00:00
}
2018-11-14 13:32:09 +00:00
String GetResetReason(void)
{
if (oswatch_blocked_loop) {
2019-10-30 13:08:43 +00:00
char buff[32];
strncpy_P(buff, PSTR(D_JSON_BLOCKED_LOOP), sizeof(buff));
return String(buff);
} else {
return ESP_getResetReason();
}
}
/*********************************************************************************************\
* Miscellaneous
\*********************************************************************************************/
2020-09-23 16:13:10 +01:00
/*
2020-08-20 16:58:58 +01:00
String GetBinary(const void* ptr, size_t count) {
uint32_t value = *(uint32_t*)ptr;
value <<= (32 - count);
String result;
result.reserve(count + 1);
for (uint32_t i = 0; i < count; i++) {
result += (value &0x80000000) ? '1' : '0';
value <<= 1;
}
return result;
}
2020-09-23 16:13:10 +01:00
*/
String GetBinary8(uint8_t value, size_t count) {
if (count > 8) { count = 8; }
value <<= (8 - count);
String result;
result.reserve(count + 1);
for (uint32_t i = 0; i < count; i++) {
result += (value &0x80) ? '1' : '0';
value <<= 1;
}
return result;
}
2020-08-20 15:22:40 +01:00
// Get span until single character in string
size_t strchrspn(const char *str1, int character)
{
size_t ret = 0;
char *start = (char*)str1;
char *end = strchr(str1, character);
if (end) ret = end - start;
return ret;
}
uint32_t ChrCount(const char *str, const char *delim) {
uint32_t count = 0;
char* read = (char*)str;
char ch = '.';
while (ch != '\0') {
ch = *read++;
if (ch == *delim) { count++; }
}
return count;
}
2018-07-23 05:32:54 +01:00
// Function to return a substring defined by a delimiter at an index
char* subStr(char* dest, char* str, const char *delim, int index)
{
char *act;
char *sub = nullptr;
2018-07-23 05:32:54 +01:00
char *ptr;
int i;
// Since strtok consumes the first arg, make a copy
2018-09-06 18:21:52 +01:00
strncpy(dest, str, strlen(str)+1);
for (i = 1, act = dest; i <= index; i++, act = nullptr) {
2018-07-23 05:32:54 +01:00
sub = strtok_r(act, delim, &ptr);
if (sub == nullptr) break;
2018-07-23 05:32:54 +01:00
}
sub = Trim(sub);
return sub;
}
float CharToFloat(const char *str)
{
// simple ascii to double, because atof or strtod are too large
char strbuf[24];
strlcpy(strbuf, str, sizeof(strbuf));
char *pt = strbuf;
if (*pt == '\0') { return 0.0; }
while ((*pt != '\0') && isblank(*pt)) { pt++; } // Trim leading spaces
signed char sign = 1;
if (*pt == '-') { sign = -1; }
if (*pt == '-' || *pt == '+') { pt++; } // Skip any sign
float left = 0;
if (*pt != '.') {
left = atoi(pt); // Get left part
while (isdigit(*pt)) { pt++; } // Skip number
}
float right = 0;
if (*pt == '.') {
pt++;
uint32_t max_decimals = 0;
while ((max_decimals < 8) && isdigit(pt[max_decimals])) { max_decimals++; }
pt[max_decimals] = '\0'; // Limit decimals to float max of 8
right = atoi(pt); // Decimal part
while (isdigit(*pt)) {
pt++;
right /= 10.0f;
}
}
float result = left + right;
if (sign < 0) {
return -result; // Add negative sign
}
return result;
}
int TextToInt(char *str)
{
char *p;
uint8_t radix = 10;
if ('#' == str[0]) {
radix = 16;
str++;
}
return strtol(str, &p, radix);
}
char* ulltoa(unsigned long long value, char *str, int radix)
{
char digits[64];
char *dst = str;
int i = 0;
// if (radix < 2 || radix > 36) { radix = 10; }
do {
2019-10-30 13:08:43 +00:00
int n = value % radix;
digits[i++] = (n < 10) ? (char)n+'0' : (char)n-10+'A';
value /= radix;
} while (value != 0);
while (i > 0) { *dst++ = digits[--i]; }
*dst = 0;
return str;
}
// see https://stackoverflow.com/questions/6357031/how-do-you-convert-a-byte-array-to-a-hexadecimal-string-in-c
2020-04-10 09:52:22 +01:00
// char* ToHex_P(unsigned char * in, size_t insz, char * out, size_t outsz, char inbetween = '\0'); in tasmota_globals.h
char* ToHex_P(const unsigned char * in, size_t insz, char * out, size_t outsz, char inbetween)
{
// ToHex_P(in, insz, out, outz) -> "12345667"
// ToHex_P(in, insz, out, outz, ' ') -> "12 34 56 67"
// ToHex_P(in, insz, out, outz, ':') -> "12:34:56:67"
static const char * hex = "0123456789ABCDEF";
int between = (inbetween) ? 3 : 2;
const unsigned char * pin = in;
char * pout = out;
for (; pin < in+insz; pout += between, pin++) {
pout[0] = hex[(pgm_read_byte(pin)>>4) & 0xF];
pout[1] = hex[ pgm_read_byte(pin) & 0xF];
if (inbetween) { pout[2] = inbetween; }
if (pout + 3 - out > outsz) { break; } // Better to truncate output string than overflow buffer
}
pout[(inbetween && insz) ? -1 : 0] = 0; // Discard last inbetween if any input
return out;
}
char* Uint64toHex(uint64_t value, char *str, uint16_t bits)
{
ulltoa(value, str, 16); // Get 64bit value
int fill = 8;
if ((bits > 3) && (bits < 65)) {
fill = bits / 4; // Max 16
if (bits % 4) { fill++; }
}
int len = strlen(str);
fill -= len;
if (fill > 0) {
memmove(str + fill, str, len +1);
memset(str, '0', fill);
}
return str;
}
char* dtostrfd(double number, unsigned char prec, char *s)
{
if ((isnan(number)) || (isinf(number))) { // Fix for JSON output (https://stackoverflow.com/questions/1423081/json-left-out-infinity-and-nan-json-status-in-ecmascript)
strcpy(s, "null");
return s;
} else {
return dtostrf(number, 1, prec, s);
}
}
char* Unescape(char* buffer, uint32_t* size)
{
uint8_t* read = (uint8_t*)buffer;
uint8_t* write = (uint8_t*)buffer;
int32_t start_size = *size;
int32_t end_size = *size;
uint8_t che = 0;
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t*)buffer, *size);
while (start_size > 0) {
uint8_t ch = *read++;
start_size--;
if (ch != '\\') {
*write++ = ch;
} else {
if (start_size > 0) {
uint8_t chi = *read++;
start_size--;
end_size--;
switch (chi) {
case '\\': che = '\\'; break; // 5C Backslash
case 'a': che = '\a'; break; // 07 Bell (Alert)
case 'b': che = '\b'; break; // 08 Backspace
case 'e': che = '\e'; break; // 1B Escape
case 'f': che = '\f'; break; // 0C Formfeed
case 'n': che = '\n'; break; // 0A Linefeed (Newline)
case 'r': che = '\r'; break; // 0D Carriage return
case 's': che = ' '; break; // 20 Space
case 't': che = '\t'; break; // 09 Horizontal tab
case 'v': che = '\v'; break; // 0B Vertical tab
case 'x': {
uint8_t* start = read;
che = (uint8_t)strtol((const char*)read, (char**)&read, 16);
start_size -= (uint16_t)(read - start);
end_size -= (uint16_t)(read - start);
break;
}
case '"': che = '\"'; break; // 22 Quotation mark
// case '?': che = '\?'; break; // 3F Question mark
default : {
che = chi;
*write++ = ch;
end_size++;
}
}
*write++ = che;
}
}
}
*size = end_size;
*write++ = 0; // add the end string pointer reference
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t*)buffer, *size);
return buffer;
}
2020-10-10 16:00:37 +01:00
char* RemoveSpace(char* p) {
// Remove white-space character (' ','\t','\n','\v','\f','\r')
char* write = p;
char* read = p;
char ch = '.';
while (ch != '\0') {
ch = *read++;
if (!isspace(ch)) {
*write++ = ch;
}
}
return p;
}
2020-10-10 16:00:37 +01:00
char* RemoveControlCharacter(char* p) {
// Remove control character (0x00 .. 0x1F and 0x7F)
2020-10-10 15:44:35 +01:00
char* write = p;
char* read = p;
char ch = '.';
while (ch != '\0') {
ch = *read++;
if (!iscntrl(ch)) {
*write++ = ch;
}
}
*write++ = '\0';
2020-10-10 15:44:35 +01:00
return p;
}
char* ReplaceChar(char* p, char find, char replace) {
char* write = (char*)p;
char* read = (char*)p;
char ch = '.';
while (ch != '\0') {
ch = *read++;
if (ch == find) {
ch = replace;
}
*write++ = ch;
}
return p;
}
char* ReplaceCommaWithDot(char* p) {
return ReplaceChar(p, ',', '.');
}
2019-03-26 16:10:07 +00:00
char* LowerCase(char* dest, const char* source)
{
char* write = dest;
const char* read = source;
char ch = '.';
while (ch != '\0') {
ch = *read++;
*write++ = tolower(ch);
}
return dest;
}
char* UpperCase(char* dest, const char* source)
{
char* write = dest;
const char* read = source;
char ch = '.';
while (ch != '\0') {
ch = *read++;
*write++ = toupper(ch);
}
return dest;
}
char* UpperCase_P(char* dest, const char* source)
{
char* write = dest;
const char* read = source;
char ch = '.';
while (ch != '\0') {
ch = pgm_read_byte(read++);
*write++ = toupper(ch);
}
return dest;
}
char* Trim(char* p)
{
if (*p != '\0') {
while ((*p != '\0') && isblank(*p)) { p++; } // Trim leading spaces
char* q = p + strlen(p) -1;
while ((q >= p) && isblank(*q)) { q--; } // Trim trailing spaces
q++;
*q = '\0';
}
return p;
}
2020-10-10 16:00:37 +01:00
/*
2019-12-09 20:43:30 +00:00
char* RemoveAllSpaces(char* p)
{
// remove any white space from the base64
char *cursor = p;
uint32_t offset = 0;
while (1) {
*cursor = *(cursor + offset);
if ((' ' == *cursor) || ('\t' == *cursor) || ('\n' == *cursor)) { // if space found, remove this char until end of string
offset++;
} else {
if (0 == *cursor) { break; }
cursor++;
}
}
return p;
}
2020-10-10 16:00:37 +01:00
*/
2019-12-09 20:43:30 +00:00
char* NoAlNumToUnderscore(char* dest, const char* source)
{
char* write = dest;
const char* read = source;
char ch = '.';
while (ch != '\0') {
ch = *read++;
*write++ = (isalnum(ch) || ('\0' == ch)) ? ch : '_';
}
return dest;
}
2019-11-20 19:53:12 +00:00
char IndexSeparator(void)
{
/*
// 20 bytes more costly !?!
const char separators[] = { "-_" };
return separators[Settings.flag3.use_underscore];
*/
2019-11-03 12:51:22 +00:00
if (Settings.flag3.use_underscore) { // SetOption64 - Enable "_" instead of "-" as sensor index separator
return '_';
} else {
return '-';
}
}
void SetShortcutDefault(void)
{
if ('\0' != XdrvMailbox.data[0]) { // There must be at least one character in the buffer
XdrvMailbox.data[0] = '0' + SC_DEFAULT; // SC_CLEAR, SC_DEFAULT, SC_USER
XdrvMailbox.data[1] = '\0';
}
}
2019-11-20 19:53:12 +00:00
uint8_t Shortcut(void)
{
uint8_t result = 10;
if ('\0' == XdrvMailbox.data[1]) { // Only allow single character input for shortcut
if (('"' == XdrvMailbox.data[0]) || ('0' == XdrvMailbox.data[0])) {
result = SC_CLEAR;
} else {
result = atoi(XdrvMailbox.data); // 1 = SC_DEFAULT, 2 = SC_USER
if (0 == result) {
result = 10;
}
}
}
return result;
}
bool ValidIpAddress(const char* str)
{
const char* p = str;
while (*p && ((*p == '.') || ((*p >= '0') && (*p <= '9')))) { p++; }
return (*p == '\0');
}
bool ParseIp(uint32_t* addr, const char* str)
{
uint8_t *part = (uint8_t*)addr;
uint8_t i;
*addr = 0;
for (i = 0; i < 4; i++) {
part[i] = strtoul(str, nullptr, 10); // Convert byte
str = strchr(str, '.');
if (str == nullptr || *str == '\0') {
break; // No more separators, exit
}
str++; // Point to next character after separator
}
return (3 == i);
}
uint32_t ParseParameters(uint32_t count, uint32_t *params)
{
char *p;
uint32_t i = 0;
for (char *str = strtok_r(XdrvMailbox.data, ", ", &p); str && i < count; str = strtok_r(nullptr, ", ", &p), i++) {
params[i] = strtoul(str, nullptr, 0);
}
return i;
}
// Function to parse & check if version_str is newer than our currently installed version.
bool NewerVersion(char* version_str)
{
uint32_t version = 0;
uint32_t i = 0;
char *str_ptr;
2020-01-09 10:35:01 +00:00
char version_dup[strlen(version_str) +1];
strncpy(version_dup, version_str, sizeof(version_dup)); // Duplicate the version_str as strtok_r will modify it.
// Loop through the version string, splitting on '.' seperators.
for (char *str = strtok_r(version_dup, ".", &str_ptr); str && i < sizeof(VERSION); str = strtok_r(nullptr, ".", &str_ptr), i++) {
int field = atoi(str);
// The fields in a version string can only range from 0-255.
if ((field < 0) || (field > 255)) {
return false;
}
// Shuffle the accumulated bytes across, and add the new byte.
version = (version << 8) + field;
// Check alpha delimiter after 1.2.3 only
if ((2 == i) && isalpha(str[strlen(str)-1])) {
field = str[strlen(str)-1] & 0x1f;
version = (version << 8) + field;
i++;
}
}
// A version string should have 2-4 fields. e.g. 1.2, 1.2.3, or 1.2.3a (= 1.2.3.1).
// If not, then don't consider it a valid version string.
if ((i < 2) || (i > sizeof(VERSION))) {
return false;
}
// Keep shifting the parsed version until we hit the maximum number of tokens.
// VERSION stores the major number of the version in the most significant byte of the uint32_t.
while (i < sizeof(VERSION)) {
version <<= 8;
i++;
}
// Now we should have a fully constructed version number in uint32_t form.
return (version > VERSION);
}
2019-07-28 12:54:52 +01:00
char* GetPowerDevice(char* dest, uint32_t idx, size_t size, uint32_t option)
{
strncpy_P(dest, S_RSLT_POWER, size); // POWER
2020-10-30 11:29:48 +00:00
if ((TasmotaGlobal.devices_present + option) > 1) {
2019-10-30 13:08:43 +00:00
char sidx[8];
snprintf_P(sidx, sizeof(sidx), PSTR("%d"), idx); // x
strncat(dest, sidx, size - strlen(dest) -1); // POWERx
}
return dest;
}
2019-07-28 12:54:52 +01:00
char* GetPowerDevice(char* dest, uint32_t idx, size_t size)
{
return GetPowerDevice(dest, idx, size, 0);
}
2019-12-02 09:31:33 +00:00
void GetEspHardwareType(void)
{
#ifdef ESP8266
2019-12-02 09:31:33 +00:00
// esptool.py get_efuses
uint32_t efuse1 = *(uint32_t*)(0x3FF00050);
uint32_t efuse2 = *(uint32_t*)(0x3FF00054);
// uint32_t efuse3 = *(uint32_t*)(0x3FF00058);
// uint32_t efuse4 = *(uint32_t*)(0x3FF0005C);
2020-10-30 11:29:48 +00:00
TasmotaGlobal.is_8285 = ( (efuse1 & (1 << 4)) || (efuse2 & (1 << 16)) );
if (TasmotaGlobal.is_8285 && (ESP.getFlashChipRealSize() > 1048576)) {
TasmotaGlobal.is_8285 = false; // ESP8285 can only have 1M flash
2019-12-02 09:31:33 +00:00
}
#else
2020-10-30 11:29:48 +00:00
TasmotaGlobal.is_8285 = false; // ESP8285 can only have 1M flash
#endif
2019-12-02 09:31:33 +00:00
}
String GetDeviceHardware(void)
{
char buff[10];
#ifdef ESP8266
2020-10-30 11:29:48 +00:00
if (TasmotaGlobal.is_8285) {
2019-12-02 09:31:33 +00:00
strcpy_P(buff, PSTR("ESP8285"));
} else {
strcpy_P(buff, PSTR("ESP8266EX"));
}
2020-11-28 15:39:15 +00:00
#endif // ESP8266
#ifdef ESP32
strcpy_P(buff, PSTR("ESP32"));
2020-11-28 15:39:15 +00:00
#endif // ESP32
2019-12-02 09:31:33 +00:00
return String(buff);
}
float ConvertTemp(float c)
{
float result = c;
2020-10-28 16:32:07 +00:00
TasmotaGlobal.global_update = TasmotaGlobal.uptime;
2020-10-28 18:03:39 +00:00
TasmotaGlobal.temperature_celsius = c;
2019-11-03 11:33:36 +00:00
if (!isnan(c) && Settings.flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit
result = c * 1.8 + 32; // Fahrenheit
}
2019-11-18 08:23:21 +00:00
result = result + (0.1 * Settings.temp_comp);
return result;
}
float ConvertTempToCelsius(float c)
{
float result = c;
2019-11-03 11:33:36 +00:00
if (!isnan(c) && Settings.flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit
result = (c - 32) / 1.8; // Celsius
}
2019-11-18 08:23:21 +00:00
result = result + (0.1 * Settings.temp_comp);
return result;
}
2018-11-14 13:32:09 +00:00
char TempUnit(void)
{
// SetOption8 - Switch between Celsius or Fahrenheit
2020-05-08 10:17:18 +01:00
return (Settings.flag.temperature_conversion) ? D_UNIT_FAHRENHEIT[0] : D_UNIT_CELSIUS[0];
}
float ConvertHumidity(float h)
{
2020-03-16 17:29:55 +00:00
float result = h;
2020-10-28 16:32:07 +00:00
TasmotaGlobal.global_update = TasmotaGlobal.uptime;
2020-10-28 18:03:39 +00:00
TasmotaGlobal.humidity = h;
2020-03-16 17:29:55 +00:00
result = result + (0.1 * Settings.hum_comp);
2020-03-16 17:29:55 +00:00
return result;
}
float CalcTempHumToDew(float t, float h)
{
if (isnan(h) || isnan(t)) { return NAN; }
if (Settings.flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit
t = (t - 32) / 1.8; // Celsius
}
float gamma = TaylorLog(h / 100) + 17.62 * t / (243.5 + t);
float result = (243.5 * gamma / (17.62 - gamma));
if (Settings.flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit
result = result * 1.8 + 32; // Fahrenheit
}
return result;
}
float ConvertPressure(float p)
2018-11-01 15:36:22 +00:00
{
float result = p;
2020-10-28 16:32:07 +00:00
TasmotaGlobal.global_update = TasmotaGlobal.uptime;
2020-10-28 18:03:39 +00:00
TasmotaGlobal.pressure_hpa = p;
2019-11-03 11:33:36 +00:00
if (!isnan(p) && Settings.flag.pressure_conversion) { // SetOption24 - Switch between hPa or mmHg pressure unit
result = p * 0.75006375541921; // mmHg
2018-11-01 15:36:22 +00:00
}
return result;
}
float ConvertPressureForSeaLevel(float pressure)
{
if (pressure == 0.0f)
return pressure;
return ConvertPressure((pressure / FastPrecisePow(1.0 - ((float)Settings.altitude / 44330.0f), 5.255f)) - 21.6f);
}
2018-11-14 13:32:09 +00:00
String PressureUnit(void)
{
return (Settings.flag.pressure_conversion) ? String(D_UNIT_MILLIMETER_MERCURY) : String(D_UNIT_PRESSURE);
}
float ConvertSpeed(float s)
{
// Entry in m/s
return s * kSpeedConversionFactor[Settings.flag2.speed_conversion];
}
String SpeedUnit(void)
{
char speed[8];
return String(GetTextIndexed(speed, sizeof(speed), Settings.flag2.speed_conversion, kSpeedUnit));
}
2018-11-14 13:32:09 +00:00
void ResetGlobalValues(void)
{
2020-10-28 16:32:07 +00:00
if ((TasmotaGlobal.uptime - TasmotaGlobal.global_update) > GLOBAL_VALUES_VALID) { // Reset after 5 minutes
TasmotaGlobal.global_update = 0;
2020-10-28 18:03:39 +00:00
TasmotaGlobal.temperature_celsius = NAN;
TasmotaGlobal.humidity = 0.0f;
TasmotaGlobal.pressure_hpa = 0.0f;
}
}
uint32_t SqrtInt(uint32_t num)
{
if (num <= 1) {
return num;
}
uint32_t x = num / 2;
uint32_t y;
do {
y = (x + num / x) / 2;
if (y >= x) {
return x;
}
x = y;
} while (true);
}
uint32_t RoundSqrtInt(uint32_t num)
{
uint32_t s = SqrtInt(4 * num);
if (s & 1) {
s++;
}
return s / 2;
}
char* GetTextIndexed(char* destination, size_t destination_size, uint32_t index, const char* haystack)
{
// Returns empty string if not found
// Returns text of found
char* write = destination;
const char* read = haystack;
index++;
while (index--) {
size_t size = destination_size -1;
write = destination;
char ch = '.';
while ((ch != '\0') && (ch != '|')) {
ch = pgm_read_byte(read++);
if (size && (ch != '|')) {
*write++ = ch;
size--;
}
}
if (0 == ch) {
if (index) {
write = destination;
}
break;
}
}
*write = '\0';
return destination;
}
int GetCommandCode(char* destination, size_t destination_size, const char* needle, const char* haystack)
{
// Returns -1 of not found
// Returns index and command if found
int result = -1;
const char* read = haystack;
char* write = destination;
while (true) {
result++;
size_t size = destination_size -1;
write = destination;
char ch = '.';
while ((ch != '\0') && (ch != '|')) {
ch = pgm_read_byte(read++);
if (size && (ch != '|')) {
*write++ = ch;
size--;
}
}
*write = '\0';
if (!strcasecmp(needle, destination)) {
break;
}
if (0 == ch) {
result = -1;
break;
}
}
return result;
}
bool DecodeCommand(const char* haystack, void (* const MyCommand[])(void))
{
GetTextIndexed(XdrvMailbox.command, CMDSZ, 0, haystack); // Get prefix if available
int prefix_length = strlen(XdrvMailbox.command);
if (prefix_length) {
char prefix[prefix_length +1];
snprintf_P(prefix, sizeof(prefix), XdrvMailbox.topic); // Copy prefix part only
if (strcasecmp(prefix, XdrvMailbox.command)) {
return false; // Prefix not in command
}
}
int command_code = GetCommandCode(XdrvMailbox.command + prefix_length, CMDSZ, XdrvMailbox.topic + prefix_length, haystack);
if (command_code > 0) { // Skip prefix
XdrvMailbox.command_code = command_code -1;
MyCommand[XdrvMailbox.command_code]();
return true;
}
return false;
}
const char kOptions[] PROGMEM = "OFF|" D_OFF "|FALSE|" D_FALSE "|STOP|" D_STOP "|" D_CELSIUS "|" // 0
"ON|" D_ON "|TRUE|" D_TRUE "|START|" D_START "|" D_FAHRENHEIT "|" D_USER "|" // 1
"TOGGLE|" D_TOGGLE "|" D_ADMIN "|" // 2
"BLINK|" D_BLINK "|" // 3
"BLINKOFF|" D_BLINKOFF "|" // 4
"ALL" ; // 255
const uint8_t sNumbers[] PROGMEM = { 0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,
2,2,2,
3,3,
4,4,
255 };
int GetStateNumber(char *state_text)
{
char command[CMDSZ];
int state_number = GetCommandCode(command, sizeof(command), state_text, kOptions);
if (state_number >= 0) {
state_number = pgm_read_byte(sNumbers + state_number);
}
return state_number;
}
String GetSerialConfig(void) {
// Settings.serial_config layout
// b000000xx - 5, 6, 7 or 8 data bits
// b00000x00 - 1 or 2 stop bits
// b000xx000 - None, Even or Odd parity
const char kParity[] = "NEOI";
char config[4];
config[0] = '5' + (Settings.serial_config & 0x3);
config[1] = kParity[(Settings.serial_config >> 3) & 0x3];
config[2] = '1' + ((Settings.serial_config >> 2) & 0x1);
config[3] = '\0';
return String(config);
}
2020-12-07 16:03:22 +00:00
uint32_t GetSerialBaudrate(void) {
return (Serial.baudRate() / 300) * 300; // Fix ESP32 strange results like 115201
}
void SetSerialBegin(void) {
2020-10-28 16:32:07 +00:00
TasmotaGlobal.baudrate = Settings.baudrate * 300;
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_SERIAL "Set to %s %d bit/s"), GetSerialConfig().c_str(), TasmotaGlobal.baudrate);
Serial.flush();
#ifdef ESP8266
2020-10-28 16:32:07 +00:00
Serial.begin(TasmotaGlobal.baudrate, (SerialConfig)pgm_read_byte(kTasmotaSerialConfig + Settings.serial_config));
2020-11-28 15:39:15 +00:00
#endif // ESP8266
#ifdef ESP32
2020-10-31 16:53:12 +00:00
delay(10); // Allow time to cleanup queues - if not used hangs ESP32
2020-10-31 16:28:33 +00:00
Serial.end();
delay(10); // Allow time to cleanup queues - if not used hangs ESP32
uint32_t config = pgm_read_dword(kTasmotaSerialConfig + Settings.serial_config);
Serial.begin(TasmotaGlobal.baudrate, config);
2020-11-28 15:39:15 +00:00
#endif // ESP32
}
void SetSerialConfig(uint32_t serial_config) {
if (serial_config > TS_SERIAL_8O2) {
serial_config = TS_SERIAL_8N1;
}
if (serial_config != Settings.serial_config) {
Settings.serial_config = serial_config;
SetSerialBegin();
}
}
2020-10-28 16:32:07 +00:00
void SetSerialBaudrate(uint32_t baudrate) {
TasmotaGlobal.baudrate = baudrate;
Settings.baudrate = TasmotaGlobal.baudrate / 300;
2020-12-07 16:03:22 +00:00
if (GetSerialBaudrate() != TasmotaGlobal.baudrate) {
SetSerialBegin();
}
}
2020-10-28 16:32:07 +00:00
void SetSerial(uint32_t baudrate, uint32_t serial_config) {
Settings.flag.mqtt_serial = 0; // CMND_SERIALSEND and CMND_SERIALLOG
Settings.serial_config = serial_config;
2020-10-28 16:32:07 +00:00
TasmotaGlobal.baudrate = baudrate;
Settings.baudrate = TasmotaGlobal.baudrate / 300;
SetSeriallog(LOG_LEVEL_NONE);
SetSerialBegin();
}
void ClaimSerial(void) {
2020-10-30 11:29:48 +00:00
TasmotaGlobal.serial_local = true;
AddLog_P(LOG_LEVEL_INFO, PSTR("SNS: Hardware Serial"));
SetSeriallog(LOG_LEVEL_NONE);
2020-12-07 16:03:22 +00:00
TasmotaGlobal.baudrate = GetSerialBaudrate();
2020-10-28 16:32:07 +00:00
Settings.baudrate = TasmotaGlobal.baudrate / 300;
}
void SerialSendRaw(char *codes)
{
char *p;
char stemp[3];
uint8_t code;
int size = strlen(codes);
2019-10-15 07:27:32 +01:00
while (size > 1) {
strlcpy(stemp, codes, sizeof(stemp));
code = strtol(stemp, &p, 16);
Serial.write(code);
size -= 2;
codes += 2;
}
}
// values is a comma-delimited string: e.g. "72,101,108,108,111,32,87,111,114,108,100,33,10"
void SerialSendDecimal(char *values)
{
2020-07-20 01:14:01 +01:00
char *p;
uint8_t code;
2020-07-20 01:14:01 +01:00
for (char* str = strtok_r(values, ",", &p); str; str = strtok_r(nullptr, ",", &p)) {
code = (uint8_t)atoi(str);
Serial.write(code);
}
}
uint32_t GetHash(const char *buffer, size_t size)
{
uint32_t hash = 0;
for (uint32_t i = 0; i <= size; i++) {
hash += (uint8_t)*buffer++ * (i +1);
}
return hash;
}
void ShowSource(uint32_t source)
{
if ((source > 0) && (source < SRC_MAX)) {
char stemp1[20];
AddLog_P(LOG_LEVEL_DEBUG, PSTR("SRC: %s"), GetTextIndexed(stemp1, sizeof(stemp1), source, kCommandSource));
}
}
2019-07-28 12:54:52 +01:00
void WebHexCode(uint32_t i, const char* code)
{
char scolor[10];
strlcpy(scolor, code, sizeof(scolor));
char* p = scolor;
if ('#' == p[0]) { p++; } // Skip
if (3 == strlen(p)) { // Convert 3 character to 6 character color code
p[6] = p[3]; // \0
p[5] = p[2]; // 3
p[4] = p[2]; // 3
p[3] = p[1]; // 2
p[2] = p[1]; // 2
p[1] = p[0]; // 1
}
uint32_t color = strtol(p, nullptr, 16);
/*
if (3 == strlen(p)) { // Convert 3 character to 6 character color code
uint32_t w = ((color & 0xF00) << 8) | ((color & 0x0F0) << 4) | (color & 0x00F); // 00010203
color = w | (w << 4); // 00112233
}
*/
uint32_t j = sizeof(Settings.web_color) / 3; // First area contains j = 18 colors
/*
if (i < j) {
2019-11-02 04:33:40 +00:00
Settings.web_color[i][0] = (color >> 16) & 0xFF; // Red
Settings.web_color[i][1] = (color >> 8) & 0xFF; // Green
Settings.web_color[i][2] = color & 0xFF; // Blue
} else {
Settings.web_color2[i-j][0] = (color >> 16) & 0xFF; // Red
Settings.web_color2[i-j][1] = (color >> 8) & 0xFF; // Green
Settings.web_color2[i-j][2] = color & 0xFF; // Blue
}
*/
if (i >= j) {
// Calculate i to index in Settings.web_color2 - Dirty(!) but saves 128 bytes code
i += ((((uint8_t*)&Settings.web_color2 - (uint8_t*)&Settings.web_color) / 3) - j);
}
Settings.web_color[i][0] = (color >> 16) & 0xFF; // Red
Settings.web_color[i][1] = (color >> 8) & 0xFF; // Green
Settings.web_color[i][2] = color & 0xFF; // Blue
}
2019-07-28 12:54:52 +01:00
uint32_t WebColor(uint32_t i)
{
uint32_t j = sizeof(Settings.web_color) / 3; // First area contains j = 18 colors
/*
2019-11-02 04:33:40 +00:00
uint32_t tcolor = (i<j)? (Settings.web_color[i][0] << 16) | (Settings.web_color[i][1] << 8) | Settings.web_color[i][2] :
(Settings.web_color2[i-j][0] << 16) | (Settings.web_color2[i-j][1] << 8) | Settings.web_color2[i-j][2];
*/
if (i >= j) {
// Calculate i to index in Settings.web_color2 - Dirty(!) but saves 128 bytes code
i += ((((uint8_t*)&Settings.web_color2 - (uint8_t*)&Settings.web_color) / 3) - j);
}
uint32_t tcolor = (Settings.web_color[i][0] << 16) | (Settings.web_color[i][1] << 8) | Settings.web_color[i][2];
return tcolor;
}
/*********************************************************************************************\
* Response data handling
\*********************************************************************************************/
const uint16_t TIMESZ = 100; // Max number of characters in time string
char* ResponseGetTime(uint32_t format, char* time_str)
{
switch (format) {
case 1:
snprintf_P(time_str, TIMESZ, PSTR("{\"" D_JSON_TIME "\":\"%s\",\"Epoch\":%u"), GetDateAndTime(DT_LOCAL).c_str(), UtcTime());
break;
case 2:
snprintf_P(time_str, TIMESZ, PSTR("{\"" D_JSON_TIME "\":%u"), UtcTime());
break;
case 3:
2020-06-11 18:13:08 +01:00
snprintf_P(time_str, TIMESZ, PSTR("{\"" D_JSON_TIME "\":\"%s\""), GetDateAndTime(DT_LOCAL_MILLIS).c_str());
break;
default:
snprintf_P(time_str, TIMESZ, PSTR("{\"" D_JSON_TIME "\":\"%s\""), GetDateAndTime(DT_LOCAL).c_str());
}
return time_str;
}
2020-10-30 11:29:48 +00:00
void ResponseClear(void) {
TasmotaGlobal.mqtt_data[0] = '\0';
}
int Response_P(const char* format, ...) // Content send snprintf_P char data
{
// This uses char strings. Be aware of sending %% if % is needed
va_list args;
va_start(args, format);
2020-10-30 11:29:48 +00:00
int len = vsnprintf_P(TasmotaGlobal.mqtt_data, sizeof(TasmotaGlobal.mqtt_data), format, args);
va_end(args);
return len;
}
int ResponseTime_P(const char* format, ...) // Content send snprintf_P char data
{
// This uses char strings. Be aware of sending %% if % is needed
va_list args;
va_start(args, format);
2020-10-30 11:29:48 +00:00
ResponseGetTime(Settings.flag2.time_format, TasmotaGlobal.mqtt_data);
2020-10-30 11:29:48 +00:00
int mlen = strlen(TasmotaGlobal.mqtt_data);
int len = vsnprintf_P(TasmotaGlobal.mqtt_data + mlen, sizeof(TasmotaGlobal.mqtt_data) - mlen, format, args);
va_end(args);
return len + mlen;
}
int ResponseAppend_P(const char* format, ...) // Content send snprintf_P char data
{
// This uses char strings. Be aware of sending %% if % is needed
va_list args;
va_start(args, format);
2020-10-30 11:29:48 +00:00
int mlen = strlen(TasmotaGlobal.mqtt_data);
int len = vsnprintf_P(TasmotaGlobal.mqtt_data + mlen, sizeof(TasmotaGlobal.mqtt_data) - mlen, format, args);
va_end(args);
return len + mlen;
}
int ResponseAppendTimeFormat(uint32_t format)
{
char time_str[TIMESZ];
return ResponseAppend_P(ResponseGetTime(format, time_str));
}
int ResponseAppendTime(void)
{
return ResponseAppendTimeFormat(Settings.flag2.time_format);
}
int ResponseAppendTHD(float f_temperature, float f_humidity)
{
char temperature[FLOATSZ];
dtostrfd(f_temperature, Settings.flag2.temperature_resolution, temperature);
char humidity[FLOATSZ];
dtostrfd(f_humidity, Settings.flag2.humidity_resolution, humidity);
char dewpoint[FLOATSZ];
dtostrfd(CalcTempHumToDew(f_temperature, f_humidity), Settings.flag2.temperature_resolution, dewpoint);
return ResponseAppend_P(PSTR("\"" D_JSON_TEMPERATURE "\":%s,\"" D_JSON_HUMIDITY "\":%s,\"" D_JSON_DEWPOINT "\":%s"), temperature, humidity, dewpoint);
}
int ResponseJsonEnd(void)
{
return ResponseAppend_P(PSTR("}"));
}
int ResponseJsonEndEnd(void)
{
return ResponseAppend_P(PSTR("}}"));
}
/*********************************************************************************************\
* GPIO Module and Template management
\*********************************************************************************************/
2020-09-25 17:34:14 +01:00
#ifdef ESP8266
2020-09-25 17:15:31 +01:00
uint16_t GpioConvert(uint8_t gpio) {
2020-11-19 23:01:48 +00:00
if (gpio >= ARRAY_SIZE(kGpioConvert)) {
2020-09-25 17:15:31 +01:00
return AGPIO(GPIO_USER);
}
return pgm_read_word(kGpioConvert + gpio);
}
uint16_t Adc0Convert(uint8_t adc0) {
if (adc0 > 7) {
return AGPIO(GPIO_USER);
}
else if (0 == adc0) {
return GPIO_NONE;
}
return AGPIO(GPIO_ADC_INPUT + adc0 -1);
}
void TemplateConvert(uint8_t template8[], uint16_t template16[]) {
for (uint32_t i = 0; i < (sizeof(mytmplt) / 2) -2; i++) {
template16[i] = GpioConvert(template8[i]);
}
template16[(sizeof(mytmplt) / 2) -2] = Adc0Convert(template8[sizeof(mytmplt8285) -1]);
2020-09-29 13:08:48 +01:00
// AddLog_P(LOG_LEVEL_DEBUG, PSTR("FNC: TemplateConvert"));
2020-09-29 17:10:21 +01:00
// AddLogBuffer(LOG_LEVEL_DEBUG, template8, sizeof(mytmplt8285));
// AddLogBufferSize(LOG_LEVEL_DEBUG, (uint8_t*)template16, sizeof(mytmplt) / 2, 2);
2020-09-29 13:08:48 +01:00
}
void ConvertGpios(void) {
2020-09-29 17:10:21 +01:00
if (Settings.gpio16_converted != 0xF5A0) {
2020-09-29 13:08:48 +01:00
// Convert 8-bit user template
2020-09-29 17:10:21 +01:00
TemplateConvert((uint8_t*)&Settings.ex_user_template8, (uint16_t*)&Settings.user_template);
2020-09-29 13:08:48 +01:00
2020-09-29 17:10:21 +01:00
for (uint32_t i = 0; i < sizeof(Settings.ex_my_gp8.io); i++) {
Settings.my_gp.io[i] = GpioConvert(Settings.ex_my_gp8.io[i]);
2020-09-29 13:08:48 +01:00
}
2020-09-29 17:10:21 +01:00
Settings.my_gp.io[(sizeof(myio) / 2) -1] = Adc0Convert(Settings.ex_my_adc0);
Settings.gpio16_converted = 0xF5A0;
2020-09-29 13:08:48 +01:00
// AddLog_P(LOG_LEVEL_DEBUG, PSTR("FNC: ConvertGpios"));
2020-09-29 17:10:21 +01:00
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)&Settings.ex_my_gp8.io, sizeof(myio8));
// AddLogBufferSize(LOG_LEVEL_DEBUG, (uint8_t *)&Settings.my_gp.io, sizeof(myio) / 2, 2);
2020-09-29 13:08:48 +01:00
}
2020-09-25 17:15:31 +01:00
}
/*
void DumpConvertTable(void) {
bool jsflg = false;
uint32_t lines = 1;
for (uint32_t i = 0; i < ARRAY_SIZE(kGpioConvert); i++) {
uint32_t data = pgm_read_word(kGpioConvert + i);
if (!jsflg) {
Response_P(PSTR("{\"GPIOConversion%d\":{"), lines);
} else {
ResponseAppend_P(PSTR(","));
}
jsflg = true;
if ((ResponseAppend_P(PSTR("\"%d\":\"%d\""), i, data) > (LOGSZ - TOPSZ)) || (i == ARRAY_SIZE(kGpioConvert) -1)) {
ResponseJsonEndEnd();
MqttPublishPrefixTopic_P(RESULT_OR_STAT, XdrvMailbox.command);
jsflg = false;
lines++;
}
}
for (uint32_t i = 0; i < ARRAY_SIZE(kAdcNiceList); i++) {
uint32_t data = pgm_read_word(kAdcNiceList + i);
if (!jsflg) {
Response_P(PSTR("{\"ADC0Conversion%d\":{"), lines);
} else {
ResponseAppend_P(PSTR(","));
}
jsflg = true;
if ((ResponseAppend_P(PSTR("\"%d\":\"%d\""), i, data) > (LOGSZ - TOPSZ)) || (i == ARRAY_SIZE(kAdcNiceList) -1)) {
ResponseJsonEndEnd();
MqttPublishPrefixTopic_P(RESULT_OR_STAT, XdrvMailbox.command);
jsflg = false;
lines++;
}
}
2020-10-30 11:29:48 +00:00
ResponseClear();
}
*/
2020-09-25 17:34:14 +01:00
#endif // ESP8266
2020-09-25 17:15:31 +01:00
uint32_t ICACHE_RAM_ATTR Pin(uint32_t gpio, uint32_t index = 0);
uint32_t ICACHE_RAM_ATTR Pin(uint32_t gpio, uint32_t index) {
2020-10-03 14:06:52 +01:00
uint16_t real_gpio = gpio << 5;
uint16_t mask = 0xFFE0;
if (index < GPIO_ANY) {
real_gpio += index;
mask = 0xFFFF;
}
2020-10-29 12:58:50 +00:00
for (uint32_t i = 0; i < ARRAY_SIZE(TasmotaGlobal.gpio_pin); i++) {
if ((TasmotaGlobal.gpio_pin[i] & mask) == real_gpio) {
2020-04-26 16:33:27 +01:00
return i; // Pin number configured for gpio
}
}
return 99; // No pin used for gpio
}
2020-06-20 16:58:21 +01:00
bool PinUsed(uint32_t gpio, uint32_t index = 0);
bool PinUsed(uint32_t gpio, uint32_t index) {
2020-04-27 11:54:07 +01:00
return (Pin(gpio, index) < 99);
}
2020-06-20 16:58:21 +01:00
uint32_t GetPin(uint32_t lpin) {
2020-10-29 12:58:50 +00:00
if (lpin < ARRAY_SIZE(TasmotaGlobal.gpio_pin)) {
return TasmotaGlobal.gpio_pin[lpin];
2020-06-20 16:58:21 +01:00
} else {
return GPIO_NONE;
}
}
2020-04-26 16:33:27 +01:00
void SetPin(uint32_t lpin, uint32_t gpio) {
2020-10-29 12:58:50 +00:00
TasmotaGlobal.gpio_pin[lpin] = gpio;
2020-04-27 16:28:05 +01:00
}
2020-04-27 09:35:38 +01:00
void DigitalWrite(uint32_t gpio_pin, uint32_t index, uint32_t state)
2019-12-18 17:21:10 +00:00
{
2020-04-27 11:54:07 +01:00
if (PinUsed(gpio_pin, index)) {
2020-04-27 09:35:38 +01:00
digitalWrite(Pin(gpio_pin, index), state &1);
2019-12-18 17:21:10 +00:00
}
}
2019-11-20 19:53:12 +00:00
uint8_t ModuleNr(void)
2019-02-22 11:11:15 +00:00
{
// 0 = User module (255)
// 1 up = Template module 0 up
return (USER_MODULE == Settings.module) ? 0 : Settings.module +1;
}
uint32_t ModuleTemplate(uint32_t module) {
uint32_t i = 0;
for (i = 0; i < sizeof(kModuleNiceList); i++) {
if (module == pgm_read_byte(kModuleNiceList + i)) {
break;
}
}
if (i == sizeof(kModuleNiceList)) { i = 0; }
return i;
}
2019-07-28 12:54:52 +01:00
bool ValidTemplateModule(uint32_t index)
{
for (uint32_t i = 0; i < sizeof(kModuleNiceList); i++) {
if (index == pgm_read_byte(kModuleNiceList + i)) {
return true;
}
}
return false;
}
2019-07-28 12:54:52 +01:00
bool ValidModule(uint32_t index)
{
if (index == USER_MODULE) { return true; }
return ValidTemplateModule(index);
}
2020-05-18 16:02:24 +01:00
bool ValidTemplate(const char *search) {
char template_name[strlen(SettingsText(SET_TEMPLATE_NAME)) +1];
char search_name[strlen(search) +1];
LowerCase(template_name, SettingsText(SET_TEMPLATE_NAME));
LowerCase(search_name, search);
return (strstr(template_name, search_name) != nullptr);
}
2019-07-28 12:54:52 +01:00
String AnyModuleName(uint32_t index)
{
if (USER_MODULE == index) {
return String(SettingsText(SET_TEMPLATE_NAME));
} else {
#ifdef ESP32
index = ModuleTemplate(index);
#endif
char name[TOPSZ];
2020-03-28 17:08:43 +00:00
return String(GetTextIndexed(name, sizeof(name), index, kModuleNames));
}
}
2019-11-20 19:53:12 +00:00
String ModuleName(void)
{
return AnyModuleName(Settings.module);
}
2020-08-23 08:08:47 +01:00
#ifdef ESP8266
void GetInternalTemplate(void* ptr, uint32_t module, uint32_t option) {
uint8_t module_template = pgm_read_byte(kModuleTemplateList + module);
// AddLog_P(LOG_LEVEL_DEBUG, PSTR("DBG: Template %d, Option %d"), module_template, option);
2020-09-25 17:15:31 +01:00
// template8 = GPIO 0,1,2,3,4,5,9,10,12,13,14,15,16,Adc
uint8_t template8[sizeof(mytmplt8285)] = { GPIO_NONE };
if (module_template < TMP_WEMOS) {
2020-09-25 17:15:31 +01:00
memcpy_P(&template8, &kModules8266[module_template], 6);
memcpy_P(&template8[8], &kModules8266[module_template].gp.io[6], 6);
} else {
2020-09-25 17:15:31 +01:00
memcpy_P(&template8, &kModules8285[module_template - TMP_WEMOS], sizeof(template8));
}
2020-09-29 13:08:48 +01:00
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)&template8, sizeof(mytmplt8285));
2020-09-25 17:15:31 +01:00
// template16 = GPIO 0,1,2,3,4,5,9,10,12,13,14,15,16,Adc,Flg
uint16_t template16[(sizeof(mytmplt) / 2)] = { GPIO_NONE };
TemplateConvert(template8, template16);
uint32_t index = 0;
2020-09-29 13:08:48 +01:00
uint32_t size = sizeof(mycfgio); // template16[module_template].gp
switch (option) {
case 2: {
2020-09-29 13:08:48 +01:00
index = (sizeof(mytmplt) / 2) -1; // template16[module_template].flag
2020-09-25 17:15:31 +01:00
size = 2;
break;
}
case 3: {
2020-09-29 13:08:48 +01:00
size = sizeof(mytmplt); // template16[module_template]
break;
}
}
2020-09-25 17:15:31 +01:00
memcpy(ptr, &template16[index], size);
// AddLog_P(LOG_LEVEL_DEBUG, PSTR("FNC: GetInternalTemplate option %d"), option);
2020-09-29 17:10:21 +01:00
// AddLogBufferSize(LOG_LEVEL_DEBUG, (uint8_t *)ptr, size / 2, 2);
}
2020-08-23 08:08:47 +01:00
#endif // ESP8266
void TemplateGpios(myio *gp)
{
2020-04-28 17:27:07 +01:00
uint16_t *dest = (uint16_t *)gp;
uint16_t src[ARRAY_SIZE(Settings.user_template.gp.io)];
2020-04-24 16:39:26 +01:00
memset(dest, GPIO_NONE, sizeof(myio));
if (USER_MODULE == Settings.module) {
memcpy(&src, &Settings.user_template.gp, sizeof(mycfgio));
} else {
2020-04-17 15:17:01 +01:00
#ifdef ESP8266
GetInternalTemplate(&src, Settings.module, 1);
2020-11-28 15:39:15 +00:00
#endif // ESP8266
#ifdef ESP32
memcpy_P(&src, &kModules[ModuleTemplate(Settings.module)].gp, sizeof(mycfgio));
2020-11-28 15:39:15 +00:00
#endif // ESP32
}
// 11 85 00 85 85 00 00 00 15 38 85 00 00 81
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)&src, sizeof(mycfgio));
2019-07-28 12:54:52 +01:00
uint32_t j = 0;
2020-04-25 10:37:36 +01:00
for (uint32_t i = 0; i < ARRAY_SIZE(Settings.user_template.gp.io); i++) {
if (6 == i) { j = 9; }
if (8 == i) { j = 12; }
dest[j] = src[i];
j++;
}
// 11 85 00 85 85 00 00 00 00 00 00 00 15 38 85 00 00 81
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)gp, sizeof(myio));
}
2019-11-20 19:53:12 +00:00
gpio_flag ModuleFlag(void)
{
gpio_flag flag;
if (USER_MODULE == Settings.module) {
flag = Settings.user_template.flag;
} else {
2020-05-01 15:47:41 +01:00
#ifdef ESP8266
GetInternalTemplate(&flag, Settings.module, 2);
2020-11-28 15:39:15 +00:00
#endif // ESP8266
#ifdef ESP32
memcpy_P(&flag, &kModules[ModuleTemplate(Settings.module)].flag, sizeof(gpio_flag));
2020-11-28 15:39:15 +00:00
#endif // ESP32
2020-05-01 15:47:41 +01:00
}
return flag;
}
2019-07-28 12:54:52 +01:00
void ModuleDefault(uint32_t module)
{
if (USER_MODULE == module) { module = WEMOS; } // Generic
Settings.user_template_base = module;
#ifdef ESP32
module = ModuleTemplate(module);
#endif
char name[TOPSZ];
SettingsUpdateText(SET_TEMPLATE_NAME, GetTextIndexed(name, sizeof(name), module, kModuleNames));
2020-04-17 15:17:01 +01:00
#ifdef ESP8266
GetInternalTemplate(&Settings.user_template, module, 3);
2020-11-28 15:39:15 +00:00
#endif // ESP8266
#ifdef ESP32
memcpy_P(&Settings.user_template, &kModules[module], sizeof(mytmplt));
2020-11-28 15:39:15 +00:00
#endif // ESP32
}
2019-11-20 19:53:12 +00:00
void SetModuleType(void)
{
2020-10-30 11:29:48 +00:00
TasmotaGlobal.module_type = (USER_MODULE == Settings.module) ? Settings.user_template_base : Settings.module;
}
bool FlashPin(uint32_t pin)
{
return (((pin > 5) && (pin < 9)) || (11 == pin));
}
uint32_t ValidPin(uint32_t pin, uint32_t gpio) {
if (FlashPin(pin)) {
2019-12-02 09:31:33 +00:00
return GPIO_NONE; // Disable flash pins GPIO6, GPIO7, GPIO8 and GPIO11
}
2019-12-02 09:31:33 +00:00
2020-10-30 11:29:48 +00:00
// if (!TasmotaGlobal.is_8285 && !Settings.flag3.user_esp8285_enable) { // SetOption51 - Enable ESP8285 user GPIO's
if ((WEMOS == Settings.module) && !Settings.flag3.user_esp8285_enable) { // SetOption51 - Enable ESP8285 user GPIO's
2020-09-29 13:08:48 +01:00
if ((9 == pin) || (10 == pin)) {
2019-12-02 09:31:33 +00:00
return GPIO_NONE; // Disable possible flash GPIO9 and GPIO10
}
}
2019-12-02 09:31:33 +00:00
return gpio;
}
bool ValidGPIO(uint32_t pin, uint32_t gpio) {
2020-09-29 13:08:48 +01:00
#ifdef ESP8266
#ifdef USE_ADC_VCC
2020-09-29 13:41:45 +01:00
if (ADC0_PIN == pin) { return false; } // ADC0 = GPIO17
2020-09-29 13:08:48 +01:00
#endif
#endif
2020-06-24 14:58:56 +01:00
return (GPIO_USER == ValidPin(pin, BGPIO(gpio))); // Only allow GPIO_USER pins
}
bool ValidSpiGPIO(uint32_t gpio) {
// ESP8266: If SPI pin selected chk if it's not one of the three Hardware SPI pins (12..14)
bool result = true; // Not used and therefore valid
uint32_t pin;
if (PinUsed(gpio)) {
pin = Pin(gpio);
result = ((pin < 12) || (pin > 14));
}
return result;
}
bool JsonTemplate(char* dataBuf)
{
2020-09-29 17:10:21 +01:00
// Old: {"NAME":"Shelly 2.5","GPIO":[56,0,17,0,21,83,0,0,6,82,5,22,156],"FLAG":2,"BASE":18}
// New: {"NAME":"Shelly 2.5","GPIO":[320,0,32,0,224,193,0,0,640,192,608,225,3456,4736],"FLAG":0,"BASE":18}
// AddLog_P(LOG_LEVEL_DEBUG, PSTR("TPL: |%s|"), dataBuf);
if (strlen(dataBuf) < 9) { return false; } // Workaround exception if empty JSON like {} - Needs checks
2020-09-23 18:38:24 +01:00
JsonParser parser((char*) dataBuf);
JsonParserObject root = parser.getRootObject();
if (!root) { return false; }
// All parameters are optional allowing for partial changes
JsonParserToken val = root[PSTR(D_JSON_NAME)];
if (val) {
SettingsUpdateText(SET_TEMPLATE_NAME, val.getStr());
}
JsonParserArray arr = root[PSTR(D_JSON_GPIO)];
if (arr) {
#ifdef ESP8266
bool old_template = false;
uint8_t template8[sizeof(mytmplt8285)] = { GPIO_NONE };
if (13 == arr.size()) { // Possible old template
uint32_t gpio = 0;
for (uint32_t i = 0; i < ARRAY_SIZE(template8) -1; i++) {
gpio = arr[i].getUInt();
if (gpio > 255) { // New templates might have values above 255
break;
}
template8[i] = gpio;
}
old_template = (gpio < 256);
}
if (old_template) {
2020-09-30 14:26:46 +01:00
AddLog_P(LOG_LEVEL_DEBUG, PSTR("TPL: Converting template ..."));
val = root[PSTR(D_JSON_FLAG)];
if (val) {
template8[ARRAY_SIZE(template8) -1] = val.getUInt() & 0x0F;
}
TemplateConvert(template8, Settings.user_template.gp.io);
Settings.user_template.flag.data = 0;
} else {
#endif
2020-09-30 14:26:46 +01:00
for (uint32_t i = 0; i < ARRAY_SIZE(Settings.user_template.gp.io); i++) {
JsonParserToken val = arr[i];
if (!val) { break; }
uint16_t gpio = val.getUInt();
2020-09-30 14:26:46 +01:00
if (gpio == (AGPIO(GPIO_NONE) +1)) {
gpio = AGPIO(GPIO_USER);
}
Settings.user_template.gp.io[i] = gpio;
}
val = root[PSTR(D_JSON_FLAG)];
if (val) {
Settings.user_template.flag.data = val.getUInt();
}
}
2020-09-30 14:26:46 +01:00
#ifdef ESP8266
}
2020-09-30 14:26:46 +01:00
#endif
val = root[PSTR(D_JSON_BASE)];
if (val) {
uint32_t base = val.getUInt();
if ((0 == base) || !ValidTemplateModule(base -1)) { base = 18; }
Settings.user_template_base = base -1; // Default WEMOS
}
// AddLog_P(LOG_LEVEL_DEBUG, PSTR("TPL: Converted"));
// AddLogBufferSize(LOG_LEVEL_DEBUG, (uint8_t*)&Settings.user_template, sizeof(Settings.user_template) / 2, 2);
return true;
}
2019-11-20 19:53:12 +00:00
void TemplateJson(void)
{
// AddLog_P(LOG_LEVEL_DEBUG, PSTR("TPL: Show"));
// AddLogBufferSize(LOG_LEVEL_DEBUG, (uint8_t*)&Settings.user_template, sizeof(Settings.user_template) / 2, 2);
Response_P(PSTR("{\"" D_JSON_NAME "\":\"%s\",\"" D_JSON_GPIO "\":["), SettingsText(SET_TEMPLATE_NAME));
2020-04-25 10:37:36 +01:00
for (uint32_t i = 0; i < ARRAY_SIZE(Settings.user_template.gp.io); i++) {
uint16_t gpio = Settings.user_template.gp.io[i];
if (gpio == AGPIO(GPIO_USER)) {
gpio = AGPIO(GPIO_NONE) +1;
}
ResponseAppend_P(PSTR("%s%d"), (i>0)?",":"", gpio);
}
ResponseAppend_P(PSTR("],\"" D_JSON_FLAG "\":%d,\"" D_JSON_BASE "\":%d}"), Settings.user_template.flag, Settings.user_template_base +1);
}
/*********************************************************************************************\
* Sleep aware time scheduler functions borrowed from ESPEasy
\*********************************************************************************************/
inline int32_t TimeDifference(uint32_t prev, uint32_t next)
{
return ((int32_t) (next - prev));
}
int32_t TimePassedSince(uint32_t timestamp)
{
// Compute the number of milliSeconds passed since timestamp given.
// Note: value can be negative if the timestamp has not yet been reached.
return TimeDifference(timestamp, millis());
}
bool TimeReached(uint32_t timer)
{
// Check if a certain timeout has been reached.
const long passed = TimePassedSince(timer);
return (passed >= 0);
}
2020-10-28 10:48:57 +00:00
void SetNextTimeInterval(uint32_t& timer, const uint32_t step)
{
timer += step;
const long passed = TimePassedSince(timer);
if (passed < 0) { return; } // Event has not yet happened, which is fine.
if (static_cast<unsigned long>(passed) > step) {
// No need to keep running behind, start again.
timer = millis() + step;
return;
}
// Try to get in sync again.
timer = millis() + (step - passed);
}
int32_t TimePassedSinceUsec(uint32_t timestamp)
{
return TimeDifference(timestamp, micros());
}
bool TimeReachedUsec(uint32_t timer)
{
// Check if a certain timeout has been reached.
const long passed = TimePassedSinceUsec(timer);
return (passed >= 0);
}
2017-01-28 13:41:01 +00:00
/*********************************************************************************************\
* Basic I2C routines
\*********************************************************************************************/
#ifdef USE_I2C
const uint8_t I2C_RETRY_COUNTER = 3;
2017-01-28 13:41:01 +00:00
uint32_t i2c_active[4] = { 0 };
uint32_t i2c_buffer = 0;
bool I2cValidRead(uint8_t addr, uint8_t reg, uint8_t size)
2017-01-28 13:41:01 +00:00
{
uint8_t retry = I2C_RETRY_COUNTER;
bool status = false;
2017-01-28 13:41:01 +00:00
i2c_buffer = 0;
while (!status && retry) {
Wire.beginTransmission(addr); // start transmission to device
Wire.write(reg); // sends register address to read from
if (0 == Wire.endTransmission(false)) { // Try to become I2C Master, send data and collect bytes, keep master status for next request...
Wire.requestFrom((int)addr, (int)size); // send data n-bytes read
if (Wire.available() == size) {
for (uint32_t i = 0; i < size; i++) {
i2c_buffer = i2c_buffer << 8 | Wire.read(); // receive DATA
2017-01-28 13:41:01 +00:00
}
status = true;
}
2017-01-28 13:41:01 +00:00
}
retry--;
}
2020-06-01 10:51:57 +01:00
if (!retry) Wire.endTransmission();
return status;
}
bool I2cValidRead8(uint8_t *data, uint8_t addr, uint8_t reg)
{
bool status = I2cValidRead(addr, reg, 1);
*data = (uint8_t)i2c_buffer;
return status;
}
bool I2cValidRead16(uint16_t *data, uint8_t addr, uint8_t reg)
{
bool status = I2cValidRead(addr, reg, 2);
*data = (uint16_t)i2c_buffer;
return status;
}
bool I2cValidReadS16(int16_t *data, uint8_t addr, uint8_t reg)
{
bool status = I2cValidRead(addr, reg, 2);
*data = (int16_t)i2c_buffer;
return status;
}
bool I2cValidRead16LE(uint16_t *data, uint8_t addr, uint8_t reg)
{
uint16_t ldata;
bool status = I2cValidRead16(&ldata, addr, reg);
*data = (ldata >> 8) | (ldata << 8);
return status;
}
bool I2cValidReadS16_LE(int16_t *data, uint8_t addr, uint8_t reg)
{
uint16_t ldata;
bool status = I2cValidRead16LE(&ldata, addr, reg);
*data = (int16_t)ldata;
return status;
}
bool I2cValidRead24(int32_t *data, uint8_t addr, uint8_t reg)
{
bool status = I2cValidRead(addr, reg, 3);
*data = i2c_buffer;
return status;
2017-01-28 13:41:01 +00:00
}
uint8_t I2cRead8(uint8_t addr, uint8_t reg)
2017-01-28 13:41:01 +00:00
{
I2cValidRead(addr, reg, 1);
return (uint8_t)i2c_buffer;
2017-01-28 13:41:01 +00:00
}
uint16_t I2cRead16(uint8_t addr, uint8_t reg)
2017-01-28 13:41:01 +00:00
{
I2cValidRead(addr, reg, 2);
return (uint16_t)i2c_buffer;
2017-01-28 13:41:01 +00:00
}
int16_t I2cReadS16(uint8_t addr, uint8_t reg)
2017-01-28 13:41:01 +00:00
{
I2cValidRead(addr, reg, 2);
return (int16_t)i2c_buffer;
2017-01-28 13:41:01 +00:00
}
uint16_t I2cRead16LE(uint8_t addr, uint8_t reg)
2017-01-28 13:41:01 +00:00
{
I2cValidRead(addr, reg, 2);
uint16_t temp = (uint16_t)i2c_buffer;
2017-01-28 13:41:01 +00:00
return (temp >> 8) | (temp << 8);
}
int16_t I2cReadS16_LE(uint8_t addr, uint8_t reg)
2017-01-28 13:41:01 +00:00
{
return (int16_t)I2cRead16LE(addr, reg);
2017-01-28 13:41:01 +00:00
}
int32_t I2cRead24(uint8_t addr, uint8_t reg)
2017-01-28 13:41:01 +00:00
{
I2cValidRead(addr, reg, 3);
return i2c_buffer;
2017-01-28 13:41:01 +00:00
}
bool I2cWrite(uint8_t addr, uint8_t reg, uint32_t val, uint8_t size)
{
uint8_t x = I2C_RETRY_COUNTER;
do {
Wire.beginTransmission((uint8_t)addr); // start transmission to device
Wire.write(reg); // sends register address to write to
uint8_t bytes = size;
while (bytes--) {
Wire.write((val >> (8 * bytes)) & 0xFF); // write data
}
x--;
} while (Wire.endTransmission(true) != 0 && x != 0); // end transmission
return (x);
}
bool I2cWrite8(uint8_t addr, uint8_t reg, uint16_t val)
2017-01-28 13:41:01 +00:00
{
return I2cWrite(addr, reg, val, 1);
}
bool I2cWrite16(uint8_t addr, uint8_t reg, uint16_t val)
{
return I2cWrite(addr, reg, val, 2);
2017-01-28 13:41:01 +00:00
}
int8_t I2cReadBuffer(uint8_t addr, uint8_t reg, uint8_t *reg_data, uint16_t len)
{
Wire.beginTransmission((uint8_t)addr);
Wire.write((uint8_t)reg);
Wire.endTransmission();
if (len != Wire.requestFrom((uint8_t)addr, (uint8_t)len)) {
return 1;
}
while (len--) {
*reg_data = (uint8_t)Wire.read();
reg_data++;
}
return 0;
}
int8_t I2cWriteBuffer(uint8_t addr, uint8_t reg, uint8_t *reg_data, uint16_t len)
{
Wire.beginTransmission((uint8_t)addr);
Wire.write((uint8_t)reg);
while (len--) {
Wire.write(*reg_data);
reg_data++;
}
Wire.endTransmission();
return 0;
}
void I2cScan(char *devs, unsigned int devs_len)
2017-01-28 13:41:01 +00:00
{
// Return error codes defined in twi.h and core_esp8266_si2c.c
// I2C_OK 0
// I2C_SCL_HELD_LOW 1 = SCL held low by another device, no procedure available to recover
// I2C_SCL_HELD_LOW_AFTER_READ 2 = I2C bus error. SCL held low beyond client clock stretch time
// I2C_SDA_HELD_LOW 3 = I2C bus error. SDA line held low by client/another_master after n bits
// I2C_SDA_HELD_LOW_AFTER_INIT 4 = line busy. SDA again held low by another device. 2nd master?
uint8_t error = 0;
uint8_t address = 0;
uint8_t any = 0;
2017-01-28 13:41:01 +00:00
snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"" D_JSON_I2CSCAN_DEVICES_FOUND_AT));
2017-01-28 13:41:01 +00:00
for (address = 1; address <= 127; address++) {
Wire.beginTransmission(address);
error = Wire.endTransmission();
if (0 == error) {
2017-01-28 13:41:01 +00:00
any = 1;
snprintf_P(devs, devs_len, PSTR("%s 0x%02x"), devs, address);
2017-01-28 13:41:01 +00:00
}
else if (error != 2) { // Seems to happen anyway using this scan
any = 2;
snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"Error %d at 0x%02x"), error, address);
break;
}
2017-01-28 13:41:01 +00:00
}
if (any) {
strncat(devs, "\"}", devs_len - strlen(devs) -1);
}
else {
snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"" D_JSON_I2CSCAN_NO_DEVICES_FOUND "\"}"));
2017-01-28 13:41:01 +00:00
}
}
2019-11-07 15:56:05 +00:00
void I2cResetActive(uint32_t addr, uint32_t count = 1)
{
addr &= 0x7F; // Max I2C address is 127
count &= 0x7F; // Max 4 x 32 bits available
while (count-- && (addr < 128)) {
i2c_active[addr / 32] &= ~(1 << (addr % 32));
addr++;
}
// AddLog_P(LOG_LEVEL_DEBUG, PSTR("I2C: Active %08X,%08X,%08X,%08X"), i2c_active[0], i2c_active[1], i2c_active[2], i2c_active[3]);
2019-11-07 15:56:05 +00:00
}
void I2cSetActive(uint32_t addr, uint32_t count = 1)
{
addr &= 0x7F; // Max I2C address is 127
count &= 0x7F; // Max 4 x 32 bits available
while (count-- && (addr < 128)) {
i2c_active[addr / 32] |= (1 << (addr % 32));
addr++;
}
// AddLog_P(LOG_LEVEL_DEBUG, PSTR("I2C: Active %08X,%08X,%08X,%08X"), i2c_active[0], i2c_active[1], i2c_active[2], i2c_active[3]);
}
2019-11-09 17:34:22 +00:00
void I2cSetActiveFound(uint32_t addr, const char *types)
{
I2cSetActive(addr);
AddLog_P(LOG_LEVEL_INFO, S_LOG_I2C_FOUND_AT, types, addr);
2019-11-09 17:34:22 +00:00
}
bool I2cActive(uint32_t addr)
{
addr &= 0x7F; // Max I2C address is 127
if (i2c_active[addr / 32] & (1 << (addr % 32))) {
return true;
}
return false;
}
2019-11-07 15:56:05 +00:00
bool I2cSetDevice(uint32_t addr)
{
addr &= 0x7F; // Max I2C address is 127
if (I2cActive(addr)) {
return false; // If already active report as not present;
}
2019-11-06 16:48:38 +00:00
Wire.beginTransmission((uint8_t)addr);
return (0 == Wire.endTransmission());
2019-11-06 16:48:38 +00:00
}
2017-01-28 13:41:01 +00:00
#endif // USE_I2C
/*********************************************************************************************\
* Syslog
*
* Example:
* AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_LOG "Any value %d"), value);
*
2017-01-28 13:41:01 +00:00
\*********************************************************************************************/
2019-07-28 12:54:52 +01:00
void SetSeriallog(uint32_t loglevel)
{
Settings.seriallog_level = loglevel;
2020-10-30 11:29:48 +00:00
TasmotaGlobal.seriallog_level = loglevel;
2020-10-29 12:37:09 +00:00
TasmotaGlobal.seriallog_timer = 0;
}
2019-07-28 12:54:52 +01:00
void SetSyslog(uint32_t loglevel)
{
Settings.syslog_level = loglevel;
2020-10-30 11:29:48 +00:00
TasmotaGlobal.syslog_level = loglevel;
2020-10-29 12:37:09 +00:00
TasmotaGlobal.syslog_timer = 0;
}
2020-12-23 15:35:46 +00:00
void SyslogAsync(bool refresh) {
2020-12-19 16:29:14 +00:00
static IPAddress syslog_host_addr; // Syslog host IP address
static uint32_t syslog_host_hash = 0; // Syslog host name hash
static uint32_t index = 1;
2020-12-23 09:56:21 +00:00
if (!TasmotaGlobal.syslog_level) { return; }
2020-12-22 14:26:07 +00:00
if (refresh && !NeedLogRefresh(TasmotaGlobal.syslog_level, index)) { return; }
2020-12-19 16:29:14 +00:00
char* line;
size_t len;
while (GetLog(TasmotaGlobal.syslog_level, &index, &line, &len)) {
2020-12-23 15:35:46 +00:00
// 00:00:02.096 HTP: Web server active on wemos5 with IP address 192.168.2.172
// HTP: Web server active on wemos5 with IP address 192.168.2.172
2020-12-20 16:15:22 +00:00
uint32_t mxtime = strchr(line, ' ') - line +1; // Remove mxtime
if (mxtime > 0) {
2020-12-23 15:35:46 +00:00
uint32_t current_hash = GetHash(SettingsText(SET_SYSLOG_HOST), strlen(SettingsText(SET_SYSLOG_HOST)));
if (syslog_host_hash != current_hash) {
syslog_host_hash = current_hash;
WiFi.hostByName(SettingsText(SET_SYSLOG_HOST), syslog_host_addr); // If sleep enabled this might result in exception so try to do it once using hash
}
2020-12-24 10:42:59 +00:00
if (!PortUdp.beginPacket(syslog_host_addr, Settings.syslog_port)) {
2020-12-23 15:35:46 +00:00
TasmotaGlobal.syslog_level = 0;
TasmotaGlobal.syslog_timer = SYSLOG_TIMER;
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_SYSLOG_HOST_NOT_FOUND ". " D_RETRY_IN " %d " D_UNIT_SECOND), SYSLOG_TIMER);
2020-12-24 10:42:59 +00:00
return;
2020-12-23 15:35:46 +00:00
}
2020-12-24 10:42:59 +00:00
char log_data[len +72]; // Hostname + Id + log data
snprintf_P(log_data, sizeof(log_data), PSTR("%s ESP-"), NetworkHostname());
uint32_t preamble_len = strlen(log_data);
len -= mxtime;
strlcpy(log_data +preamble_len, line +mxtime, len);
// wemos5 ESP-HTP: Web server active on wemos5 with IP address 192.168.2.172
PortUdp_write(log_data, preamble_len + len);
PortUdp.endPacket();
delay(1); // Add time for UDP handling (#5512)
}
2020-12-19 16:29:14 +00:00
}
}
2020-12-22 14:26:07 +00:00
bool NeedLogRefresh(uint32_t req_loglevel, uint32_t index) {
// Skip initial buffer fill
if (strlen(TasmotaGlobal.log_buffer) < LOG_BUFFER_SIZE - LOGSZ) { return false; }
char* line;
size_t len;
if (!GetLog(req_loglevel, &index, &line, &len)) { return false; }
return ((line - TasmotaGlobal.log_buffer) < LOG_BUFFER_SIZE / 4);
}
2020-12-19 16:29:14 +00:00
bool GetLog(uint32_t req_loglevel, uint32_t* index_p, char** entry_pp, size_t* len_p) {
uint32_t index = *index_p;
2020-12-24 10:42:59 +00:00
if (TasmotaGlobal.uptime < 3) { return false; } // Allow time to setup correct log level
2020-12-19 16:29:14 +00:00
if (!req_loglevel || (index == TasmotaGlobal.log_buffer_pointer)) { return false; }
if (!index) { // Dump all
index = TasmotaGlobal.log_buffer_pointer +1;
if (index > 255) { index = 1; }
}
do {
size_t len = 0;
uint32_t loglevel = 0;
char* entry_p = TasmotaGlobal.log_buffer;
do {
2020-12-19 16:29:14 +00:00
uint32_t cur_idx = *entry_p;
entry_p++;
size_t tmp = strchrspn(entry_p, '\1');
2020-12-18 15:30:37 +00:00
tmp++; // Skip terminating '\1'
2020-12-19 16:29:14 +00:00
if (cur_idx == index) { // Found the requested entry
loglevel = *entry_p - '0';
entry_p++; // Skip loglevel
len = tmp -1;
break;
}
2020-12-19 16:29:14 +00:00
entry_p += tmp;
} while (entry_p < TasmotaGlobal.log_buffer + LOG_BUFFER_SIZE && *entry_p != '\0');
index++;
if (index > 255) { index = 1; } // Skip 0 as it is not allowed
*index_p = index;
if ((len > 0) &&
(loglevel <= req_loglevel) &&
(TasmotaGlobal.masterlog_level <= req_loglevel)) {
*entry_pp = entry_p;
*len_p = len;
return true;
}
delay(0);
} while (index != TasmotaGlobal.log_buffer_pointer);
return false;
}
void AddLogData(uint32_t loglevel, const char* log_data) {
char mxtime[14]; // "13:45:21.999 "
snprintf_P(mxtime, sizeof(mxtime), PSTR("%02d" D_HOUR_MINUTE_SEPARATOR "%02d" D_MINUTE_SECOND_SEPARATOR "%02d.%03d "), RtcTime.hour, RtcTime.minute, RtcTime.second, RtcMillis());
2017-01-28 13:41:01 +00:00
2020-10-30 11:29:48 +00:00
if ((loglevel <= TasmotaGlobal.seriallog_level) &&
(TasmotaGlobal.masterlog_level <= TasmotaGlobal.seriallog_level)) {
Serial.printf("%s%s\r\n", mxtime, log_data);
}
uint32_t highest_loglevel = Settings.weblog_level;
if (Settings.mqttlog_level > highest_loglevel) { highest_loglevel = Settings.mqttlog_level; }
if (TasmotaGlobal.syslog_level > highest_loglevel) { highest_loglevel = TasmotaGlobal.syslog_level; }
2020-12-22 14:26:07 +00:00
if (TasmotaGlobal.templog_level > highest_loglevel) { highest_loglevel = TasmotaGlobal.templog_level; }
2020-12-24 10:42:59 +00:00
if (TasmotaGlobal.uptime < 3) { highest_loglevel = LOG_LEVEL_DEBUG_MORE; } // Log all before setup correct log level
2020-12-22 14:26:07 +00:00
2020-12-18 15:30:37 +00:00
if ((loglevel <= highest_loglevel) && // Log only when needed
(TasmotaGlobal.masterlog_level <= highest_loglevel)) {
// Delimited, zero-terminated buffer of log lines.
// Each entry has this format: [index][loglevel][log data]['\1']
2020-12-18 15:30:37 +00:00
TasmotaGlobal.log_buffer_pointer &= 0xFF;
if (!TasmotaGlobal.log_buffer_pointer) {
TasmotaGlobal.log_buffer_pointer++; // Index 0 is not allowed as it is the end of char string
2020-10-28 16:32:07 +00:00
}
2020-12-18 15:30:37 +00:00
while (TasmotaGlobal.log_buffer_pointer == TasmotaGlobal.log_buffer[0] || // If log already holds the next index, remove it
strlen(TasmotaGlobal.log_buffer) + strlen(log_data) + strlen(mxtime) + 4 > LOG_BUFFER_SIZE) // 4 = log_buffer_pointer + '\1' + '\0'
{
2020-12-18 15:30:37 +00:00
char* it = TasmotaGlobal.log_buffer;
it++; // Skip log_buffer_pointer
it += strchrspn(it, '\1'); // Skip log line
it++; // Skip delimiting "\1"
memmove(TasmotaGlobal.log_buffer, it, LOG_BUFFER_SIZE -(it-TasmotaGlobal.log_buffer)); // Move buffer forward to remove oldest log line
}
2020-12-18 15:30:37 +00:00
snprintf_P(TasmotaGlobal.log_buffer, sizeof(TasmotaGlobal.log_buffer), PSTR("%s%c%c%s%s\1"),
TasmotaGlobal.log_buffer, TasmotaGlobal.log_buffer_pointer++, '0'+loglevel, mxtime, log_data);
2020-12-18 15:30:37 +00:00
TasmotaGlobal.log_buffer_pointer &= 0xFF;
if (!TasmotaGlobal.log_buffer_pointer) {
TasmotaGlobal.log_buffer_pointer++; // Index 0 is not allowed as it is the end of char string
2020-10-28 16:32:07 +00:00
}
2017-01-28 13:41:01 +00:00
}
}
void AddLog_P(uint32_t loglevel, PGM_P formatP, ...)
{
char log_data[LOGSZ];
va_list arg;
va_start(arg, formatP);
vsnprintf_P(log_data, sizeof(log_data), formatP, arg);
va_end(arg);
AddLogData(loglevel, log_data);
}
void AddLog_Debug(PGM_P formatP, ...)
{
char log_data[LOGSZ];
va_list arg;
va_start(arg, formatP);
vsnprintf_P(log_data, sizeof(log_data), formatP, arg);
va_end(arg);
AddLogData(LOG_LEVEL_DEBUG, log_data);
}
2019-07-28 12:54:52 +01:00
void AddLogBuffer(uint32_t loglevel, uint8_t *buffer, uint32_t count)
{
char hex_char[(count * 3) + 2];
AddLog_P(loglevel, PSTR("DMP: %s"), ToHex_P(buffer, count, hex_char, sizeof(hex_char), ' '));
}
2019-07-28 12:54:52 +01:00
void AddLogSerial(uint32_t loglevel)
{
2020-10-30 11:29:48 +00:00
AddLogBuffer(loglevel, (uint8_t*)TasmotaGlobal.serial_in_buffer, TasmotaGlobal.serial_in_byte_counter);
}
void AddLogMissed(const char *sensor, uint32_t misses)
{
AddLog_P(LOG_LEVEL_DEBUG, PSTR("SNS: %s missed %d"), sensor, SENSOR_MAX_MISS - misses);
}
2020-04-29 16:44:03 +01:00
void AddLogBufferSize(uint32_t loglevel, uint8_t *buffer, uint32_t count, uint32_t size) {
char log_data[LOGSZ];
snprintf_P(log_data, sizeof(log_data), PSTR("DMP:"));
2020-04-29 16:44:03 +01:00
for (uint32_t i = 0; i < count; i++) {
if (1 == size) { // uint8_t
snprintf_P(log_data, sizeof(log_data), PSTR("%s %02X"), log_data, *(buffer));
2020-04-29 16:44:03 +01:00
} else { // uint16_t
snprintf_P(log_data, sizeof(log_data), PSTR("%s %02X%02X"), log_data, *(buffer +1), *(buffer));
2020-04-29 16:44:03 +01:00
}
buffer += size;
}
AddLogData(loglevel, log_data);
2020-04-29 16:44:03 +01:00
}
2020-05-22 21:14:17 +01:00
/*********************************************************************************************\
* Uncompress static PROGMEM strings
\*********************************************************************************************/
#ifdef USE_UNISHOX_COMPRESSION
2020-05-22 21:14:17 +01:00
2020-05-22 22:05:55 +01:00
#include <unishox.h>
2020-05-22 21:14:17 +01:00
Unishox compressor;
2020-12-21 08:56:04 +00:00
// New variant where you provide the String object yourself
int32_t DecompressNoAlloc(const char * compressed, size_t uncompressed_size, String & content) {
2020-05-22 21:14:17 +01:00
uncompressed_size += 2; // take a security margin
// We use a nasty trick here. To avoid allocating twice the buffer,
// we first extend the buffer of the String object to the target size (maybe overshooting by 7 bytes)
// then we decompress in this buffer,
// and finally assign the raw string to the String, which happens to work: String uses memmove(), so overlapping works
content.reserve(uncompressed_size);
char * buffer = content.begin();
int32_t len = compressor.unishox_decompress(compressed, strlen_P(compressed), buffer, uncompressed_size);
if (len > 0) {
buffer[len] = 0; // terminate string with NULL
content = buffer; // copy in place
}
2020-12-21 08:56:04 +00:00
return len;
}
String Decompress(const char * compressed, size_t uncompressed_size) {
String content("");
DecompressNoAlloc(compressed, uncompressed_size, content);
2020-05-22 21:14:17 +01:00
return content;
}
2020-08-20 15:22:40 +01:00
#endif // USE_UNISHOX_COMPRESSION
2020-09-14 21:06:19 +01:00
/*********************************************************************************************\
* High entropy hardware random generator
* Thanks to DigitalAlchemist
\*********************************************************************************************/
// Based on code from https://raw.githubusercontent.com/espressif/esp-idf/master/components/esp32/hw_random.c
uint32_t HwRandom(void) {
#if ESP8266
// https://web.archive.org/web/20160922031242/http://esp8266-re.foogod.com/wiki/Random_Number_Generator
#define _RAND_ADDR 0x3FF20E44UL
2020-11-28 15:39:15 +00:00
#endif // ESP8266
#ifdef ESP32
2020-09-14 21:06:19 +01:00
#define _RAND_ADDR 0x3FF75144UL
2020-11-28 15:39:15 +00:00
#endif // ESP32
2020-09-14 21:06:19 +01:00
static uint32_t last_ccount = 0;
uint32_t ccount;
uint32_t result = 0;
do {
ccount = ESP.getCycleCount();
result ^= *(volatile uint32_t *)_RAND_ADDR;
} while (ccount - last_ccount < 64);
last_ccount = ccount;
return result ^ *(volatile uint32_t *)_RAND_ADDR;
#undef _RAND_ADDR
}