2020-01-17 23:02:01 +00:00
|
|
|
/*
|
|
|
|
xdrv_23_zigbee.ino - zigbee support for Tasmota
|
|
|
|
|
|
|
|
Copyright (C) 2020 Theo Arends and Stephan Hadinger
|
|
|
|
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifdef USE_ZIGBEE
|
|
|
|
|
|
|
|
// Ensure persistence of devices into Flash
|
|
|
|
//
|
|
|
|
// Structure:
|
|
|
|
// (from file info):
|
|
|
|
// uint16 - start address in Flash (offset)
|
|
|
|
// uint16 - length in bytes (makes sure parsing stops)
|
|
|
|
//
|
|
|
|
// File structure:
|
|
|
|
// uint8 - number of devices, 0=none, 0xFF=invalid entry (probably Flash was erased)
|
|
|
|
//
|
|
|
|
// [Array of devices]
|
|
|
|
// [Offset = 2]
|
|
|
|
// uint8 - length of revice record
|
|
|
|
// uint16 - short address
|
|
|
|
// uint64 - long IEEE address
|
|
|
|
// uint8 - number of endpoints
|
|
|
|
// [Array of endpoints]
|
|
|
|
// uint8 - endpoint number
|
|
|
|
// uint16 - profileID of the endpoint
|
|
|
|
// Array of uint8 - clusters In codes, 0xFF end marker
|
|
|
|
// Array of uint8 - clusters Out codes, 0xFF end marker
|
|
|
|
//
|
|
|
|
// str - ModelID (null terminated C string, 32 chars max)
|
|
|
|
// str - Manuf (null terminated C string, 32 chars max)
|
|
|
|
// reserved for extensions
|
|
|
|
|
|
|
|
// Memory footprint
|
|
|
|
const static uint16_t z_spi_start_sector = 0xFF; // Force last bank of first MB
|
|
|
|
const static uint8_t* z_spi_start = (uint8_t*) 0x402FF000; // 0x402FF000
|
|
|
|
const static uint8_t* z_dev_start = z_spi_start + 0x0800; // 0x402FF800 - 2KB
|
|
|
|
const static size_t z_spi_len = 0x1000; // 4kb blocs
|
|
|
|
const static size_t z_block_offset = 0x0800;
|
|
|
|
const static size_t z_block_len = 0x0800; // 2kb
|
|
|
|
|
|
|
|
class z_flashdata_t {
|
|
|
|
public:
|
|
|
|
uint32_t name; // simple 4 letters name. Currently 'skey', 'crt ', 'crt1', 'crt2'
|
|
|
|
uint16_t len; // len of object
|
|
|
|
uint16_t reserved; // align on 4 bytes boundary
|
|
|
|
};
|
|
|
|
|
|
|
|
const static uint32_t ZIGB_NAME = 0x3167697A; // 'zig1' little endian
|
|
|
|
const static size_t Z_MAX_FLASH = z_block_len - sizeof(z_flashdata_t); // 2040
|
|
|
|
|
|
|
|
// encoding for the most commonly 32 clusters, used for binary encoding
|
|
|
|
const uint16_t Z_ClusterNumber[] PROGMEM = {
|
|
|
|
0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
|
|
|
|
0x0008, 0x0009, 0x000A, 0x000B, 0x000C, 0x000D, 0x000E, 0x000F,
|
|
|
|
0x0010, 0x0011, 0x0012, 0x0013, 0x0014, 0x0015, 0x0016, 0x0017,
|
|
|
|
0x0018, 0x0019, 0x001A, 0x001B, 0x001C, 0x001D, 0x001E, 0x001F,
|
|
|
|
0x0020, 0x0021, 0x0022, 0x0023, 0x0024, 0x0025, 0x0026, 0x0027,
|
|
|
|
0x0100, 0x0101, 0x0102,
|
|
|
|
0x0201, 0x0202, 0x0203, 0x0204,
|
|
|
|
0x0300, 0x0301,
|
|
|
|
0x0400, 0x0401, 0x0402, 0x0403, 0x0404, 0x0405, 0x0406,
|
|
|
|
0x0500, 0x0501, 0x0502,
|
|
|
|
0x0700, 0x0701, 0x0702,
|
|
|
|
0x0B00, 0x0B01, 0x0B02, 0x0B03, 0x0B04, 0x0B05,
|
|
|
|
0x1000,
|
|
|
|
0xFC0F,
|
|
|
|
};
|
|
|
|
|
|
|
|
// convert a 1 byte cluster code to the actual cluster number
|
|
|
|
uint16_t fromClusterCode(uint8_t c) {
|
|
|
|
if (c >= sizeof(Z_ClusterNumber)/sizeof(Z_ClusterNumber[0])) {
|
|
|
|
return 0xFFFF; // invalid
|
|
|
|
}
|
|
|
|
return pgm_read_word(&Z_ClusterNumber[c]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// convert a cluster number to 1 byte, or 0xFF if not in table
|
|
|
|
uint8_t toClusterCode(uint16_t c) {
|
|
|
|
for (uint32_t i = 0; i < sizeof(Z_ClusterNumber)/sizeof(Z_ClusterNumber[0]); i++) {
|
|
|
|
if (c == pgm_read_word(&Z_ClusterNumber[i])) {
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0xFF; // not found
|
|
|
|
}
|
|
|
|
|
|
|
|
class SBuffer hibernateDevice(const struct Z_Device &device) {
|
|
|
|
SBuffer buf(128);
|
|
|
|
|
|
|
|
buf.add8(0x00); // overall length, will be updated later
|
|
|
|
buf.add16(device.shortaddr);
|
|
|
|
buf.add64(device.longaddr);
|
|
|
|
uint32_t endpoints = device.endpoints.size();
|
|
|
|
if (endpoints > 254) { endpoints = 254; }
|
|
|
|
buf.add8(endpoints);
|
|
|
|
// iterate on endpoints
|
|
|
|
for (std::vector<uint32_t>::const_iterator ite = device.endpoints.begin() ; ite != device.endpoints.end(); ++ite) {
|
|
|
|
uint32_t ep_profile = *ite;
|
|
|
|
uint8_t endpoint = (ep_profile >> 16) & 0xFF;
|
|
|
|
uint16_t profileId = ep_profile & 0xFFFF;
|
|
|
|
|
|
|
|
buf.add8(endpoint);
|
|
|
|
buf.add16(profileId);
|
|
|
|
for (std::vector<uint32_t>::const_iterator itc = device.clusters_in.begin() ; itc != device.clusters_in.end(); ++itc) {
|
|
|
|
uint16_t cluster = *itc & 0xFFFF;
|
|
|
|
uint8_t c_endpoint = (*itc >> 16) & 0xFF;
|
|
|
|
|
|
|
|
if (endpoint == c_endpoint) {
|
|
|
|
uint8_t clusterCode = toClusterCode(cluster);
|
|
|
|
if (0xFF != clusterCode) { buf.add8(clusterCode); }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
buf.add8(0xFF); // end of endpoint marker
|
|
|
|
|
|
|
|
for (std::vector<uint32_t>::const_iterator itc = device.clusters_out.begin() ; itc != device.clusters_out.end(); ++itc) {
|
|
|
|
uint16_t cluster = *itc & 0xFFFF;
|
|
|
|
uint8_t c_endpoint = (*itc >> 16) & 0xFF;
|
|
|
|
|
|
|
|
if (endpoint == c_endpoint) {
|
|
|
|
uint8_t clusterCode = toClusterCode(cluster);
|
|
|
|
if (0xFF != clusterCode) { buf.add8(clusterCode); }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
buf.add8(0xFF); // end of endpoint marker
|
|
|
|
}
|
|
|
|
|
|
|
|
// ModelID
|
|
|
|
size_t model_len = device.modelId.length();
|
|
|
|
if (model_len > 32) { model_len = 32; } // max 32 chars
|
|
|
|
buf.addBuffer(device.modelId.c_str(), model_len);
|
|
|
|
buf.add8(0x00); // end of string marker
|
|
|
|
|
|
|
|
// ManufID
|
|
|
|
size_t manuf_len = device.manufacturerId.length();
|
|
|
|
if (manuf_len > 32) {manuf_len = 32; } // max 32 chars
|
|
|
|
buf.addBuffer(device.manufacturerId.c_str(), manuf_len);
|
|
|
|
buf.add8(0x00); // end of string marker
|
|
|
|
|
|
|
|
// FriendlyName
|
|
|
|
size_t frname_len = device.friendlyName.length();
|
|
|
|
if (frname_len > 32) {frname_len = 32; } // max 32 chars
|
|
|
|
buf.addBuffer(device.friendlyName.c_str(), frname_len);
|
|
|
|
buf.add8(0x00); // end of string marker
|
|
|
|
|
|
|
|
// update overall length
|
|
|
|
buf.set8(0, buf.len());
|
|
|
|
|
|
|
|
return buf;
|
|
|
|
}
|
|
|
|
|
|
|
|
class SBuffer hibernateDevices(void) {
|
|
|
|
SBuffer buf(2048);
|
|
|
|
|
|
|
|
size_t devices_size = zigbee_devices.devicesSize();
|
|
|
|
if (devices_size > 32) { devices_size = 32; } // arbitrarily limit to 32 devices, for now
|
|
|
|
buf.add8(devices_size); // number of devices
|
|
|
|
|
|
|
|
for (uint32_t i = 0; i < devices_size; i++) {
|
|
|
|
const Z_Device & device = zigbee_devices.devicesAt(i);
|
|
|
|
const SBuffer buf_device = hibernateDevice(device);
|
|
|
|
buf.addBuffer(buf_device);
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t buf_len = buf.len();
|
|
|
|
if (buf_len > 2040) {
|
|
|
|
AddLog_P2(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Devices list too big to fit in Flash (%d)"), buf_len);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Log
|
|
|
|
char *hex_char = (char*) malloc((buf_len * 2) + 2);
|
|
|
|
if (hex_char) {
|
2020-01-25 16:42:53 +00:00
|
|
|
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "ZbFlashStore %s"),
|
2020-01-17 23:02:01 +00:00
|
|
|
ToHex_P(buf.getBuffer(), buf_len, hex_char, (buf_len * 2) + 2));
|
|
|
|
free(hex_char);
|
|
|
|
}
|
|
|
|
|
|
|
|
return buf;
|
|
|
|
}
|
|
|
|
|
|
|
|
void hidrateDevices(const SBuffer &buf) {
|
|
|
|
uint32_t buf_len = buf.len();
|
|
|
|
if (buf_len <= 10) { return; }
|
|
|
|
|
|
|
|
uint32_t k = 0;
|
|
|
|
uint32_t num_devices = buf.get8(k++);
|
|
|
|
|
|
|
|
for (uint32_t i = 0; (i < num_devices) && (k < buf_len); i++) {
|
|
|
|
uint32_t dev_record_len = buf.get8(k);
|
|
|
|
|
|
|
|
SBuffer buf_d = buf.subBuffer(k, dev_record_len);
|
|
|
|
|
|
|
|
uint32_t d = 1; // index in device buffer
|
|
|
|
uint16_t shortaddr = buf_d.get16(d); d += 2;
|
|
|
|
uint64_t longaddr = buf_d.get64(d); d += 8;
|
|
|
|
zigbee_devices.updateDevice(shortaddr, longaddr); // update device's addresses
|
|
|
|
|
|
|
|
uint32_t endpoints = buf_d.get8(d++);
|
|
|
|
for (uint32_t j = 0; j < endpoints; j++) {
|
|
|
|
uint8_t ep = buf_d.get8(d++);
|
|
|
|
uint16_t ep_profile = buf_d.get16(d); d += 2;
|
|
|
|
zigbee_devices.addEndointProfile(shortaddr, ep, ep_profile);
|
|
|
|
|
|
|
|
// in clusters
|
|
|
|
while (d < dev_record_len) { // safe guard against overflow
|
|
|
|
uint8_t ep_cluster = buf_d.get8(d++);
|
|
|
|
if (0xFF == ep_cluster) { break; } // end of block
|
|
|
|
zigbee_devices.addCluster(shortaddr, ep, fromClusterCode(ep_cluster), false);
|
|
|
|
}
|
|
|
|
// out clusters
|
|
|
|
while (d < dev_record_len) { // safe guard against overflow
|
|
|
|
uint8_t ep_cluster = buf_d.get8(d++);
|
|
|
|
if (0xFF == ep_cluster) { break; } // end of block
|
|
|
|
zigbee_devices.addCluster(shortaddr, ep, fromClusterCode(ep_cluster), true);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// parse 3 strings
|
|
|
|
char empty[] = "";
|
|
|
|
|
|
|
|
// ManufID
|
|
|
|
uint32_t s_len = buf_d.strlen_s(d);
|
|
|
|
char *ptr = s_len ? buf_d.charptr(d) : empty;
|
|
|
|
zigbee_devices.setModelId(shortaddr, ptr);
|
|
|
|
d += s_len + 1;
|
|
|
|
|
|
|
|
// ManufID
|
|
|
|
s_len = buf_d.strlen_s(d);
|
|
|
|
ptr = s_len ? buf_d.charptr(d) : empty;
|
|
|
|
zigbee_devices.setManufId(shortaddr, ptr);
|
|
|
|
d += s_len + 1;
|
|
|
|
|
|
|
|
// FriendlyName
|
|
|
|
s_len = buf_d.strlen_s(d);
|
|
|
|
ptr = s_len ? buf_d.charptr(d) : empty;
|
|
|
|
zigbee_devices.setFriendlyName(shortaddr, ptr);
|
|
|
|
d += s_len + 1;
|
|
|
|
|
|
|
|
// next iteration
|
|
|
|
k += dev_record_len;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void loadZigbeeDevices(void) {
|
|
|
|
z_flashdata_t flashdata;
|
|
|
|
memcpy_P(&flashdata, z_dev_start, sizeof(z_flashdata_t));
|
|
|
|
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "Zigbee signature in Flash: %08X - %d"), flashdata.name, flashdata.len);
|
|
|
|
|
|
|
|
// Check the signature
|
|
|
|
if ((flashdata.name == ZIGB_NAME) && (flashdata.len > 0)) {
|
|
|
|
uint16_t buf_len = flashdata.len;
|
|
|
|
// parse what seems to be a valid entry
|
|
|
|
SBuffer buf(buf_len);
|
|
|
|
buf.addBuffer(z_dev_start + sizeof(z_flashdata_t), buf_len);
|
|
|
|
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee devices data in Flash (%d bytes)"), buf_len);
|
|
|
|
hidrateDevices(buf);
|
2020-01-22 21:40:28 +00:00
|
|
|
zigbee_devices.clean(); // don't write back to Flash what we just loaded
|
2020-01-17 23:02:01 +00:00
|
|
|
} else {
|
|
|
|
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "No zigbee devices data in Flash"));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void saveZigbeeDevices(void) {
|
|
|
|
SBuffer buf = hibernateDevices();
|
|
|
|
size_t buf_len = buf.len();
|
|
|
|
if (buf_len > Z_MAX_FLASH) {
|
|
|
|
AddLog_P2(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Buffer too big to fit in Flash (%d bytes)"), buf_len);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// first copy SPI buffer into ram
|
|
|
|
uint8_t *spi_buffer = (uint8_t*) malloc(z_spi_len);
|
|
|
|
if (!spi_buffer) {
|
|
|
|
AddLog_P2(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Cannot allocate 4KB buffer"));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// copy the flash into RAM to make local change, and write back the whole buffer
|
|
|
|
ESP.flashRead(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
|
|
|
|
|
|
|
|
z_flashdata_t *flashdata = (z_flashdata_t*)(spi_buffer + z_block_offset);
|
|
|
|
flashdata->name = ZIGB_NAME;
|
|
|
|
flashdata->len = buf_len;
|
|
|
|
flashdata->reserved = 0;
|
|
|
|
|
|
|
|
memcpy(spi_buffer + z_block_offset + sizeof(z_flashdata_t), buf.getBuffer(), buf_len);
|
|
|
|
|
|
|
|
// buffer is now ready, write it back
|
|
|
|
if (ESP.flashEraseSector(z_spi_start_sector)) {
|
|
|
|
ESP.flashWrite(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
|
|
|
|
}
|
|
|
|
|
|
|
|
free(spi_buffer);
|
|
|
|
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data store in Flash (0x%08X - %d bytes)"), z_dev_start, buf_len);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Erase the flash area containing the ZigbeeData
|
|
|
|
void eraseZigbeeDevices(void) {
|
2020-01-22 21:40:28 +00:00
|
|
|
zigbee_devices.clean(); // avoid writing data to flash after erase
|
2020-01-17 23:02:01 +00:00
|
|
|
// first copy SPI buffer into ram
|
|
|
|
uint8_t *spi_buffer = (uint8_t*) malloc(z_spi_len);
|
|
|
|
if (!spi_buffer) {
|
|
|
|
AddLog_P2(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Cannot allocate 4KB buffer"));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// copy the flash into RAM to make local change, and write back the whole buffer
|
|
|
|
ESP.flashRead(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
|
|
|
|
|
|
|
|
// Fill the Zigbee area with 0xFF
|
|
|
|
memset(spi_buffer + z_block_offset, 0xFF, z_block_len);
|
|
|
|
|
|
|
|
// buffer is now ready, write it back
|
|
|
|
if (ESP.flashEraseSector(z_spi_start_sector)) {
|
|
|
|
ESP.flashWrite(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
|
|
|
|
}
|
|
|
|
|
|
|
|
free(spi_buffer);
|
|
|
|
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data erased (0x%08X - %d bytes)"), z_dev_start, z_block_len);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // USE_ZIGBEE
|