Tasmota/sonoff/xsns_07_sht1x.ino

250 lines
6.3 KiB
Arduino
Raw Normal View History

/*
xsns_07_sht1x.ino - SHT1x temperature and sensor support for Sonoff-Tasmota
Copyright (C) 2018 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_I2C
#ifdef USE_SHT
/*********************************************************************************************\
* SHT1x - Temperature and Humidy
*
* Reading temperature and humidity takes about 320 milliseconds!
* Source: Marinus vd Broek https://github.com/ESP8266nu/ESPEasy
*
* I2C Address: None
\*********************************************************************************************/
enum {
SHT1X_CMD_MEASURE_TEMP = B00000011,
SHT1X_CMD_MEASURE_RH = B00000101,
SHT1X_CMD_SOFT_RESET = B00011110
};
uint8_t sht_sda_pin;
uint8_t sht_scl_pin;
uint8_t sht_type = 0;
boolean ShtReset()
{
pinMode(sht_sda_pin, INPUT_PULLUP);
pinMode(sht_scl_pin, OUTPUT);
delay(11);
for (byte i = 0; i < 9; i++) {
digitalWrite(sht_scl_pin, HIGH);
digitalWrite(sht_scl_pin, LOW);
}
boolean success = ShtSendCommand(SHT1X_CMD_SOFT_RESET);
delay(11);
return success;
}
boolean ShtSendCommand(const byte cmd)
{
pinMode(sht_sda_pin, OUTPUT);
// Transmission Start sequence
digitalWrite(sht_sda_pin, HIGH);
digitalWrite(sht_scl_pin, HIGH);
digitalWrite(sht_sda_pin, LOW);
digitalWrite(sht_scl_pin, LOW);
digitalWrite(sht_scl_pin, HIGH);
digitalWrite(sht_sda_pin, HIGH);
digitalWrite(sht_scl_pin, LOW);
// Send the command (address must be 000b)
shiftOut(sht_sda_pin, sht_scl_pin, MSBFIRST, cmd);
// Wait for ACK
boolean ackerror = false;
digitalWrite(sht_scl_pin, HIGH);
pinMode(sht_sda_pin, INPUT_PULLUP);
if (digitalRead(sht_sda_pin) != LOW) {
ackerror = true;
}
digitalWrite(sht_scl_pin, LOW);
delayMicroseconds(1); // Give the sensor time to release the data line
if (digitalRead(sht_sda_pin) != HIGH) {
ackerror = true;
}
if (ackerror) {
sht_type = 0;
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_SHT1 D_SENSOR_DID_NOT_ACK_COMMAND));
}
return (!ackerror);
}
boolean ShtAwaitResult()
{
// Maximum 320ms for 14 bit measurement
for (byte i = 0; i < 16; i++) {
if (LOW == digitalRead(sht_sda_pin)) {
return true;
}
delay(20);
}
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_SHT1 D_SENSOR_BUSY));
sht_type = 0;
return false;
}
int ShtReadData()
{
int val = 0;
// Read most significant byte
val = shiftIn(sht_sda_pin, sht_scl_pin, 8);
val <<= 8;
// Send ACK
pinMode(sht_sda_pin, OUTPUT);
digitalWrite(sht_sda_pin, LOW);
digitalWrite(sht_scl_pin, HIGH);
digitalWrite(sht_scl_pin, LOW);
pinMode(sht_sda_pin, INPUT_PULLUP);
// Read least significant byte
val |= shiftIn(sht_sda_pin, sht_scl_pin, 8);
// Keep DATA pin high to skip CRC
digitalWrite(sht_scl_pin, HIGH);
digitalWrite(sht_scl_pin, LOW);
return val;
}
boolean ShtReadTempHum(float &t, float &h)
{
float tempRaw;
float humRaw;
float rhLinear;
t = NAN;
h = NAN;
if (!ShtReset()) {
return false;
}
if (!ShtSendCommand(SHT1X_CMD_MEASURE_TEMP)) {
return false;
}
if (!ShtAwaitResult()) {
return false;
}
tempRaw = ShtReadData();
// Temperature conversion coefficients from SHT1X datasheet for version 4
const float d1 = -39.7; // 3.5V
const float d2 = 0.01; // 14-bit
t = d1 + (tempRaw * d2);
if (!ShtSendCommand(SHT1X_CMD_MEASURE_RH)) {
return false;
}
if (!ShtAwaitResult()) {
return false;
}
humRaw = ShtReadData();
// Temperature conversion coefficients from SHT1X datasheet for version 4
const float c1 = -2.0468;
const float c2 = 0.0367;
const float c3 = -1.5955E-6;
const float t1 = 0.01;
const float t2 = 0.00008;
rhLinear = c1 + c2 * humRaw + c3 * humRaw * humRaw;
h = (t - 25) * (t1 + t2 * humRaw) + rhLinear;
t = ConvertTemp(t);
return (!isnan(t) && !isnan(h));
}
/********************************************************************************************/
void ShtDetect()
{
if (sht_type) {
return;
}
float t;
float h;
sht_sda_pin = pin[GPIO_I2C_SDA];
sht_scl_pin = pin[GPIO_I2C_SCL];
if (ShtReadTempHum(t, h)) {
sht_type = 1;
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_I2C D_SHT1X_FOUND));
} else {
Wire.begin(sht_sda_pin, sht_scl_pin);
sht_type = 0;
}
}
void ShtShow(boolean json)
{
if (sht_type) {
float t;
float h;
if (ShtReadTempHum(t, h)) {
char temperature[10];
char humidity[10];
dtostrfd(t, Settings.flag2.temperature_resolution, temperature);
dtostrfd(h, Settings.flag2.humidity_resolution, humidity);
if (json) {
snprintf_P(mqtt_data, sizeof(mqtt_data), JSON_SNS_TEMPHUM, mqtt_data, "SHT1X", temperature, humidity);
#ifdef USE_DOMOTICZ
if (0 == tele_period) DomoticzTempHumSensor(temperature, humidity);
#endif // USE_DOMOTICZ
2018-04-08 02:54:26 +01:00
#ifdef USE_KNX
KNX_Sensor(KNX_temperature, t);
KNX_Sensor(KNX_humidity, h);
#endif // USE_KNX
#ifdef USE_WEBSERVER
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_TEMP, mqtt_data, "SHT1X", temperature, TempUnit());
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_HUM, mqtt_data, "SHT1X", humidity);
#endif // USE_WEBSERVER
}
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
#define XSNS_07
boolean Xsns07(byte function)
{
boolean result = false;
if (i2c_flg) {
switch (function) {
case FUNC_PREP_BEFORE_TELEPERIOD:
ShtDetect();
break;
case FUNC_JSON_APPEND:
ShtShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_APPEND:
ShtShow(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_SHT
#endif // USE_I2C