Tasmota/tasmota/support_rotary.ino

204 lines
7.7 KiB
Arduino
Raw Normal View History

2019-01-11 00:50:40 +00:00
/*
support_rotary.ino - rotary switch support for Tasmota
2019-01-11 00:50:40 +00:00
2019-12-31 13:23:34 +00:00
Copyright (C) 2020 Theo Arends
2019-01-11 00:50:40 +00:00
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef ROTARY_V1
2019-01-11 00:50:40 +00:00
/*********************************************************************************************\
* Rotary support
*
* Supports full range in 10 steps of the Rotary Encoder:
* - Light Dimmer
* - Light Color for RGB lights when Button1 pressed
* - Light Color Temperature for CW lights when Button1 pressed
*
* _______ _______
* GPIO_ROT1A ______| |_______| |______ GPIO_ROT1A
* negative <-- _______ _______ __ --> positive
* GPIO_ROT1B __| |_______| |_______| GPIO_ROT1B
*
2019-01-11 00:50:40 +00:00
\*********************************************************************************************/
#ifndef ROTARY_MAX_STEPS
#define ROTARY_MAX_STEPS 10 // Rotary step boundary
#endif
// 1 pulse per step
const uint8_t rotary_dimmer_increment = 100 / ROTARY_MAX_STEPS; // Dimmer 1..100 = 100
const uint8_t rotary_ct_increment = 350 / ROTARY_MAX_STEPS; // Ct 153..500 = 347
const uint8_t rotary_color_increment = 360 / ROTARY_MAX_STEPS; // Hue 0..359 = 360
const uint8_t ROTARY_TIMEOUT = 10; // 10 * RotaryHandler() call which is usually 10 * 0.05 seconds
2020-07-14 14:01:41 +01:00
const uint8_t ROTARY_DEBOUNCE = 10; // Debounce time in milliseconds
2020-07-01 09:22:20 +01:00
struct ROTARY {
bool present = false;
} Rotary;
2020-07-14 14:01:41 +01:00
struct tEncoder {
uint32_t debounce = 0;
2020-07-14 14:01:41 +01:00
int8_t abs_position[2] = { 0 };
int8_t direction = 0; // Control consistent direction
int8_t pin = -1;
uint8_t position = 128;
uint8_t last_position = 128;
uint8_t timeout = 0; // Disallow direction change within 0.5 second
bool changed = false;
bool busy = false;
2020-07-14 14:01:41 +01:00
};
tEncoder Encoder[MAX_ROTARIES];
2019-01-11 00:50:40 +00:00
/********************************************************************************************/
bool RotaryButtonPressed(uint32_t button_index) {
if (!Rotary.present) { return false; }
for (uint32_t index = 0; index < MAX_ROTARIES; index++) {
if (-1 == Encoder[index].pin) { continue; }
if (index != button_index) { continue; }
bool powered_on = (power);
#ifdef USE_LIGHT
if (!Settings.flag4.rotary_uses_rules) { // SetOption98 - Use rules instead of light control
powered_on = LightPower();
}
#endif // USE_LIGHT
if (Encoder[index].changed && powered_on) {
Encoder[index].changed = false; // Color (temp) changed, no need to turn of the light
return true;
}
return false;
}
return false;
}
2020-07-14 14:01:41 +01:00
void ICACHE_RAM_ATTR RotaryIsrArg(void *arg) {
tEncoder* encoder = static_cast<tEncoder*>(arg);
if (encoder->busy) { return; }
uint32_t time = millis();
if ((encoder->debounce < time) || (encoder->debounce > time + ROTARY_DEBOUNCE)) {
int direction = (digitalRead(encoder->pin)) ? -1 : 1;
if ((0 == encoder->direction) || (direction == encoder->direction)) {
encoder->position += direction;
encoder->direction = direction;
}
encoder->debounce = time + ROTARY_DEBOUNCE; // Experimental debounce
}
}
void RotaryInit(void) {
Rotary.present = false;
for (uint32_t index = 0; index < MAX_ROTARIES; index++) {
#ifdef ESP8266
uint32_t idx = index *2;
#else // ESP32
uint32_t idx = index;
#endif // ESP8266 or ESP32
if (PinUsed(GPIO_ROT1A, idx) && PinUsed(GPIO_ROT1B, idx)) {
Encoder[index].pin = Pin(GPIO_ROT1B, idx);
pinMode(Encoder[index].pin, INPUT_PULLUP);
pinMode(Pin(GPIO_ROT1A, idx), INPUT_PULLUP);
2020-07-14 14:01:41 +01:00
attachInterruptArg(Pin(GPIO_ROT1A, idx), RotaryIsrArg, &Encoder[index], FALLING);
}
Rotary.present |= (Encoder[index].pin > -1);
2019-01-11 00:50:40 +00:00
}
}
/*********************************************************************************************\
* Rotary handler
\*********************************************************************************************/
void RotaryHandler(void) {
if (!Rotary.present) { return; }
for (uint32_t index = 0; index < MAX_ROTARIES; index++) {
if (-1 == Encoder[index].pin) { continue; }
if (Encoder[index].timeout) {
Encoder[index].timeout--;
if (!Encoder[index].timeout) {
#ifdef USE_LIGHT
if (!Settings.flag4.rotary_uses_rules) { // SetOption98 - Use rules instead of light control
ResponseLightState(0);
2020-07-20 16:24:51 +01:00
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_CMND_STATE));
}
#endif // USE_LIGHT
Encoder[index].direction = 0;
}
}
if (Encoder[index].last_position == Encoder[index].position) { continue; }
Encoder[index].busy = true;
2020-07-01 09:27:04 +01:00
Encoder[index].timeout = ROTARY_TIMEOUT; // Prevent fast direction changes within 0.5 second
int rotary_position = Encoder[index].position - Encoder[index].last_position;
if (Settings.save_data && (save_data_counter < 2)) {
2020-07-14 14:01:41 +01:00
save_data_counter = 3; // Postpone flash writes while rotary is turned
}
2019-01-11 00:50:40 +00:00
bool button_pressed = (Button.hold_timer[index]); // Button is pressed: set color temperature
if (button_pressed) { Encoder[index].changed = true; }
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ROT: Button1 %d, Position %d"), button_pressed, rotary_position);
#ifdef USE_LIGHT
if (!Settings.flag4.rotary_uses_rules) { // SetOption98 - Use rules instead of light control
bool second_rotary = (Encoder[1].pin > -1);
if (0 == index) { // Rotary1
if (button_pressed) {
if (second_rotary) { // Color RGB
LightColorOffset(rotary_position * rotary_color_increment);
} else { // Color Temperature or Color RGB
if (!LightColorTempOffset(rotary_position * rotary_ct_increment)) {
LightColorOffset(rotary_position * rotary_color_increment);
}
}
} else { // Dimmer RGBCW or RGB only if second rotary
LightDimmerOffset(second_rotary ? 1 : 0, rotary_position * rotary_dimmer_increment);
}
} else { // Rotary2
if (button_pressed) { // Color Temperature
LightColorTempOffset(rotary_position * rotary_ct_increment);
} else { // Dimmer CW
LightDimmerOffset(2, rotary_position * rotary_dimmer_increment);
}
}
} else {
#endif // USE_LIGHT
2020-07-14 14:01:41 +01:00
Encoder[index].abs_position[button_pressed] += rotary_position;
if (Encoder[index].abs_position[button_pressed] < 0) {
Encoder[index].abs_position[button_pressed] = 0;
}
if (Encoder[index].abs_position[button_pressed] > ROTARY_MAX_STEPS) {
Encoder[index].abs_position[button_pressed] = ROTARY_MAX_STEPS;
}
2020-07-14 14:01:41 +01:00
Response_P(PSTR("{\"Rotary%d\":{\"Pos1\":%d,\"Pos2\":%d}}"), index +1, Encoder[index].abs_position[0], Encoder[index].abs_position[1]);
XdrvRulesProcess();
#ifdef USE_LIGHT
}
#endif // USE_LIGHT
2020-07-01 09:22:20 +01:00
Encoder[index].last_position = 128;
Encoder[index].position = 128;
Encoder[index].busy = false;
}
2019-01-11 00:50:40 +00:00
}
#endif // ROTARY_V1