2020-04-17 09:35:26 +01:00
/*
2020-04-17 19:24:12 +01:00
xdrv_39_heating . ino - Heating controller for Tasmota
2020-04-17 09:35:26 +01:00
Copyright ( C ) 2020 Javier Arigita
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
# ifdef USE_HEATING
# define XDRV_39 39
enum HeatingModes { HEAT_OFF , HEAT_AUTOMATIC_OP , HEAT_MANUAL_OP , HEAT_TIME_PLAN } ;
enum ControllerModes { CTR_HYBRID , CTR_PI , CTR_RAMP_UP } ;
enum ControllerHybridPhases { CTR_HYBRID_RAMP_UP , CTR_HYBRID_PI } ;
enum InterfaceStates { IFACE_OFF , IFACE_ON } ;
enum HeatingSupportedInputSwitches {
HEATING_INPUT_NONE ,
HEATING_INPUT_SWT1 = 1 , // Buttons
HEATING_INPUT_SWT2 ,
HEATING_INPUT_SWT3 ,
HEATING_INPUT_SWT4
} ;
enum HeatingSupportedOutputRelays {
HEATING_OUTPUT_NONE ,
HEATING_OUTPUT_REL1 = 1 , // Relays
HEATING_OUTPUT_REL2 ,
HEATING_OUTPUT_REL3 ,
HEATING_OUTPUT_REL4 ,
HEATING_OUTPUT_REL5 ,
HEATING_OUTPUT_REL6 ,
HEATING_OUTPUT_REL7 ,
HEATING_OUTPUT_REL8
} ;
const char kHeatingCommands [ ] PROGMEM = " | " D_CMND_HEATINGMODESET " | " D_CMND_TEMPFROSTPROTECTSET " | "
D_CMND_CONTROLLERMODESET " | " D_CMND_INPUTSWITCHSET " | " D_CMND_OUTPUTRELAYSET " | " D_CMND_TIMEALLOWRAMPUPSET " | "
D_CMND_TEMPMEASUREDSET " | " D_CMND_TEMPTARGETSET " | " D_CMND_TIMEPLANSET " | " D_CMND_TEMPTARGETREAD " | "
D_CMND_TEMPMEASUREDREAD " | " D_CMND_TEMPMEASUREDGRDREAD " | " D_CMND_TEMPSENSNUMBERSET " | "
D_CMND_STATEEMERGENCYSET " | " D_CMND_POWERMAXSET " | " D_CMND_TIMEMANUALTOAUTOSET " | " D_CMND_TIMEONLIMITSET " | "
D_CMND_PROPBANDSET " | " D_CMND_TIMERESETSET " | " D_CMND_TIMEPICYCLESET " | " D_CMND_TEMPANTIWINDUPRESETSET " | "
D_CMND_TEMPHYSTSET " | " D_CMND_TIMEMAXACTIONSET " | " D_CMND_TIMEMINACTIONSET " | " D_CMND_TIMEMINTURNOFFACTIONSET " | "
D_CMND_TEMPRUPDELTINSET " | " D_CMND_TEMPRUPDELTOUTSET " | " D_CMND_TIMERAMPUPMAXSET " | " D_CMND_TIMERAMPUPCYCLESET " | "
D_CMND_TEMPRAMPUPPIACCERRSET " | " D_CMND_TIMEPIPROPORTREAD " | " D_CMND_TIMEPIINTEGRREAD ;
void ( * const HeatingCommand [ ] ) ( void ) PROGMEM = {
& CmndHeatingModeSet , & CmndTempFrostProtectSet , & CmndControllerModeSet , & CmndInputSwitchSet , & CmndOutputRelaySet ,
& CmndTimeAllowRampupSet , & CmndTempMeasuredSet , & CmndTempTargetSet , & CmndTimePlanSet , & CmndTempTargetRead ,
& CmndTempMeasuredRead , & CmndTempMeasuredGrdRead , & CmndTempSensNumberSet , & CmndStateEmergencySet ,
& CmndPowerMaxSet , & CmndTimeManualToAutoSet , & CmndTimeOnLimitSet , & CmndPropBandSet , & CmndTimeResetSet ,
& CmndTimePiCycleSet , & CmndTempAntiWindupResetSet , & CmndTempHystSet , & CmndTimeMaxActionSet ,
& CmndTimeMinActionSet , & CmndTimeMinTurnoffActionSet , & CmndTempRupDeltInSet , & CmndTempRupDeltOutSet ,
& CmndTimeRampupMaxSet , & CmndTimeRampupCycleSet , & CmndTempRampupPiAccErrSet , & CmndTimePiProportRead ,
& CmndTimePiIntegrRead } ;
const char DOMOTICZ_MES [ ] PROGMEM = " { \" idx \" :%d, \" nvalue \" :%d, \" svalue \" : \" %s \" } " ;
struct HEATING {
2020-04-17 19:24:12 +01:00
uint32_t counter_seconds = 0 ; // Counter incremented every second
uint8_t heating_mode = HEAT_OFF ; // Operation mode of the heating system
uint8_t controller_mode = CTR_HYBRID ; // Operation mode of the heating controller
bool sensor_alive = false ; // Bool stating if temperature sensor is alive
bool command_output = false ; // Bool stating state to save the command to the output (true = active, false = inactive)
uint8_t phase_hybrid_ctr = CTR_HYBRID_PI ; // Phase of the hybrid controller (Ramp-up or PI)
uint8_t status_output = IFACE_OFF ; // Status of the output switch
uint16_t temp_target_level = 180 ; // Target level of the heating in tenths of degrees
uint16_t temp_target_level_ctr = 180 ; // Target level set for the controller
int16_t temp_measured = 0 ; // Temperature measurement received from sensor in tenths of degrees
uint32_t timestamp_temp_target_update = 0 ; // Timestamp of latest target value update
uint32_t timestamp_temp_measured_update = 0 ; // Timestamp of latest measurement value update
uint32_t timestamp_temp_meas_change_update = 0 ; // Timestamp of latest measurement value change (> or < to previous)
uint32_t timestamp_output_on = 0 ; // Timestamp of latest heating output On state
uint32_t timestamp_output_off = 0 ; // Timestamp of latest heating output Off state
uint32_t timestamp_input_on = 0 ; // Timestamp of latest input On state
uint32_t time_heating_total = 0 ; // Time heating on within a specific timeframe
uint32_t time_pi_checkpoint = 0 ; // Time to finalize the pi control cycle
uint32_t time_pi_changepoint = 0 ; // Time until switching off output within a pi control cycle
uint32_t time_rampup_checkpoint = 0 ; // Time to switch from ramp-up controller mode to PI
uint32_t time_rampup_output_off = 0 ; // Time to switch off relay output within the ramp-up controller
uint32_t timestamp_rampup_start = 0 ; // Timestamp where the ramp-up controller mode has been started
uint32_t time_rampup_deadtime = 0 ; // Time constant of the heating system (step response time)
uint32_t time_rampup_nextcycle = 0 ; // Time where the ramp-up controller shall start the next cycle
uint32_t counter_rampup_cycles = 0 ; // Counter of ramp-up cycles
int32_t temp_measured_gradient = 0 ; // Temperature measured gradient from sensor in thousandths of degrees per hour
int32_t temp_rampup_meas_gradient = 0 ; // Temperature measured gradient from sensor in thousandths of degrees per hour calculated during ramp-up
int16_t temp_rampup_output_off = 0 ; // Temperature to swith off relay output within the ramp-up controller in tenths of degrees
int16_t temp_rampup_start = 0 ; // Temperature at start of ramp-up controller in tenths of degrees celsius
int16_t temp_rampup_cycle = 0 ; // Temperature set at the beginning of each ramp-up cycle in tenths of degrees
int16_t temp_pi_accum_error = 0 ; // Temperature accumulated error for the PI controller in tenths of degrees
int16_t temp_pi_error = 0 ; // Temperature error for the PI controller in tenths of degrees
int32_t time_proportional_pi ; // Time proportional part of the PI controller
int32_t time_integral_pi ; // Time integral part of the PI controller
int32_t time_total_pi ; // Time total (proportional + integral) of the PI controller
uint16_t kP_pi = 0 ; // kP value for the PI controller
uint16_t kI_pi = 0 ; // kP value for the PI controller multiplied by 100
uint16_t heating_plan [ 7 ] [ 6 ] = { // Heating plan for the week (3 times/temperatures per day in tenths of degrees)
{ 0 , 0 , 0 , 0 , 0 , 0 } , // Monday, format {time/temp, time/temp, time/temp}
{ 0 , 0 , 0 , 0 , 0 , 0 } , // Tuesday, format {time/temp, time/temp, time/temp}
{ 0 , 0 , 0 , 0 , 0 , 0 } , // Wednesday, format {time/temp, time/temp, time/temp}
{ 0 , 0 , 0 , 0 , 0 , 0 } , // Thursday, format {time/temp, time/temp, time/temp}
{ 0 , 0 , 0 , 0 , 0 , 0 } , // Friday, format {time/temp, time/temp, time/temp}
{ 0 , 0 , 0 , 0 , 0 , 0 } , // Saturday, format {time/temp, time/temp, time/temp}
{ 0 , 0 , 0 , 0 , 0 , 0 } // Sunday, format {time/temp, time/temp, time/temp}
2020-04-17 09:35:26 +01:00
} ;
2020-04-17 19:24:12 +01:00
bool status_cycle_active = false ; // Status showing if cycle is active (Output ON) or not (Output OFF)
uint8_t time_output_delay = HEATING_TIME_OUTPUT_DELAY ; // Output delay between state change and real actuation event (f.i. valve open/closed)
uint8_t temp_rampup_pi_acc_error = HEATING_TEMP_PI_RAMPUP_ACC_E ; // Accumulated error when switching from ramp-up controller to PI
uint8_t temp_rampup_delta_out = HEATING_TEMP_RAMPUP_DELTA_OUT ; // Minimum delta temperature to target to get out of the rampup mode, in tenths of degrees celsius
uint8_t temp_rampup_delta_in = HEATING_TEMP_RAMPUP_DELTA_IN ; // Minimum delta temperature to target to get into rampup mode, in tenths of degrees celsius
uint32_t time_rampup_max = HEATING_TIME_RAMPUP_MAX ; // Time maximum ramp-up controller duration
uint32_t time_rampup_cycle = HEATING_TIME_RAMPUP_CYCLE ; // Time ramp-up cycle
uint32_t time_allow_rampup = HEATING_TIME_ALLOW_RAMPUP ; // Time in seconds after last target update to allow ramp-up controller phase
uint32_t time_sens_lost = HEAT_TIME_SENS_LOST ; // Maximum time w/o sensor update to set it as lost
uint8_t temp_sens_number = HEAT_TEMP_SENS_NUMBER ; // Temperature sensor number
bool state_emergency = HEAT_STATE_EMERGENCY ; // State for heating emergency
uint8_t output_relay_number = HEATING_RELAY_NUMBER ; // Output relay number
uint8_t input_switch_number = HEATING_SWITCH_NUMBER ; // Input switch number
uint32_t time_manual_to_auto = HEAT_TIME_MANUAL_TO_AUTO ; // Time without input switch active to change from manual to automatic in seconds
uint32_t time_on_limit = HEAT_TIME_ON_LIMIT ; // Maximum time with output active in seconds
uint32_t time_reset = HEAT_TIME_RESET ; // Reset time of the PI controller in seconds
uint32_t time_pi_cycle = HEAT_TIME_PI_CYCLE ; // Cycle time for the heating controller in seconds
uint32_t time_max_action = HEAT_TIME_MAX_ACTION ; // Maximum heating time per cycle in seconds
uint32_t time_min_action = HEAT_TIME_MIN_ACTION ; // Minimum heating time per cycle in seconds
uint32_t time_min_turnoff_action = HEAT_TIME_MIN_TURNOFF_ACTION ; // Minimum turnoff time in seconds, below it the heating will be held on
uint8_t val_prop_band = HEAT_PROP_BAND ; // Proportional band of the PI controller in degrees celsius
uint8_t temp_reset_anti_windup = HEAT_TEMP_RESET_ANTI_WINDUP ; // Range where reset antiwindup is disabled, in tenths of degrees celsius
int8_t temp_hysteresis = HEAT_TEMP_HYSTERESIS ; // Range hysteresis for temperature PI controller, in tenths of degrees celsius
uint8_t temp_frost_protect = HEAT_TEMP_FROST_PROTECT ; // Minimum temperature for frost protection, in tenths of degrees celsius
uint16_t power_max = HEAT_POWER_MAX ; // Maximum output power in Watt
uint16_t energy_heating_output_max = HEATING_ENERGY_OUTPUT_MAX ; // Maximum allowed energy output for heating valve in Watts
2020-04-17 09:35:26 +01:00
} Heating ;
/*********************************************************************************************/
void HeatingInit ( )
{
2020-04-17 19:24:12 +01:00
ExecuteCommandPower ( Heating . output_relay_number , POWER_OFF , SRC_HEATING ) ; // Make sure the Output is OFF
2020-04-17 09:35:26 +01:00
}
bool HeatingMinuteCounter ( )
{
bool result = false ;
Heating . counter_seconds + + ; // increment time
if ( ( Heating . counter_seconds % 60 ) = = 0 ) {
result = true ;
}
return ( result ) ;
}
inline bool HeatingSwitchIdValid ( uint8_t switchId )
{
return ( switchId > = HEATING_INPUT_SWT1 & & switchId < = HEATING_INPUT_SWT4 ) ;
}
inline bool HeatingRelayIdValid ( uint8_t relayId )
{
return ( relayId > = HEATING_OUTPUT_REL1 & & relayId < = HEATING_OUTPUT_REL8 ) ;
}
uint8_t HeatingSwitchStatus ( uint8_t input_switch )
{
bool ifId = HeatingSwitchIdValid ( input_switch ) ;
if ( ifId ) {
return ( SwitchGetVirtual ( ifId - HEATING_INPUT_SWT1 ) ) ;
}
else return 255 ;
}
void HeatingSignalProcessingSlow ( )
{
2020-04-17 19:24:12 +01:00
if ( ( uptime - Heating . timestamp_temp_measured_update ) > Heating . time_sens_lost ) { // Check if sensor alive
2020-04-17 09:35:26 +01:00
Heating . sensor_alive = false ;
Heating . temp_measured_gradient = 0 ;
Heating . temp_measured = 0 ;
}
}
void HeatingSignalProcessingFast ( )
{
2020-04-17 19:24:12 +01:00
if ( HeatingSwitchStatus ( Heating . input_switch_number ) ) { // Check if input switch active and register last update
2020-04-17 09:35:26 +01:00
Heating . timestamp_input_on = uptime ;
}
}
void HeatingCtrState ( )
{
switch ( Heating . controller_mode ) {
case CTR_HYBRID : // Ramp-up phase with gradient control
HeatingHybridCtrPhase ( ) ;
break ;
case CTR_PI :
break ;
case CTR_RAMP_UP :
break ;
}
}
void HeatingHybridCtrPhase ( )
{
if ( Heating . controller_mode = = CTR_HYBRID ) {
switch ( Heating . phase_hybrid_ctr ) {
case CTR_HYBRID_RAMP_UP : // Ramp-up phase with gradient control
// If ramp-up offtime counter has been initalized
// AND ramp-up offtime counter value reached
if ( ( Heating . time_rampup_checkpoint ! = 0 )
& & ( uptime > = Heating . time_rampup_checkpoint ) ) {
// Reset pause period
Heating . time_rampup_checkpoint = 0 ;
// Set PI controller
Heating . phase_hybrid_ctr = CTR_HYBRID_PI ;
}
break ;
case CTR_HYBRID_PI : // PI controller phase
// If no output action for a pre-defined time
// AND temp target has changed
// AND temp target - target actual bigger than threshold
// then go to ramp-up
2020-04-17 19:24:12 +01:00
if ( ( ( uptime - Heating . timestamp_output_off ) > Heating . time_allow_rampup )
2020-04-17 09:35:26 +01:00
& & ( Heating . temp_target_level ! = Heating . temp_target_level_ctr )
2020-04-17 19:24:12 +01:00
& & ( ( Heating . temp_target_level - Heating . temp_measured ) > Heating . temp_rampup_delta_in ) ) {
2020-04-17 09:35:26 +01:00
Heating . phase_hybrid_ctr = CTR_HYBRID_RAMP_UP ;
Heating . timestamp_rampup_start = uptime ;
Heating . temp_rampup_start = Heating . temp_measured ;
Heating . temp_rampup_meas_gradient = 0 ;
Heating . time_rampup_checkpoint = 0 ;
Heating . time_rampup_deadtime = 0 ;
Heating . counter_rampup_cycles = 1 ;
}
break ;
}
}
}
bool HeatStateAutoOrPlanToManual ( )
{
bool change_state = false ;
// If switch input is active
// OR temperature sensor is not alive
// then go to manual
2020-04-17 19:24:12 +01:00
if ( ( HeatingSwitchStatus ( Heating . input_switch_number ) = = 1 )
2020-04-17 09:35:26 +01:00
| | ( Heating . sensor_alive = = false ) ) {
change_state = true ;
}
return change_state ;
}
bool HeatStateManualToAuto ( )
{
bool change_state ;
// If switch input inactive
// AND no switch input action (time in current state) bigger than a pre-defined time
// then go to automatic
2020-04-17 19:24:12 +01:00
if ( ( HeatingSwitchStatus ( Heating . input_switch_number ) = = 0 )
& & ( ( uptime - Heating . timestamp_input_on ) > Heating . time_manual_to_auto ) ) {
2020-04-17 09:35:26 +01:00
change_state = true ;
}
return change_state ;
}
bool HeatStateAllToOff ( )
{
bool change_state ;
// If emergency mode then switch OFF the output inmediately
2020-04-17 19:24:12 +01:00
if ( Heating . state_emergency ) {
2020-04-17 09:35:26 +01:00
Heating . heating_mode = HEAT_OFF ; // Emergency switch to HEAT_OFF
}
return change_state ;
}
void HeatingState ( )
{
switch ( Heating . heating_mode ) {
case HEAT_OFF : // State if Off or Emergency
// No change of state possible without external command
break ;
case HEAT_AUTOMATIC_OP : // State automatic heating active following to command target temp.
if ( HeatStateAllToOff ( ) ) {
Heating . heating_mode = HEAT_OFF ; // Emergency switch to HEAT_OFF
}
if ( HeatStateAutoOrPlanToManual ( ) ) {
Heating . heating_mode = HEAT_MANUAL_OP ; // If sensor not alive change to HEAT_MANUAL_OP
}
HeatingCtrState ( ) ;
break ;
case HEAT_MANUAL_OP : // State manual operation following input switch
if ( HeatStateAllToOff ( ) ) {
Heating . heating_mode = HEAT_OFF ; // Emergency switch to HEAT_OFF
}
if ( HeatStateManualToAuto ( ) ) {
Heating . heating_mode = HEAT_AUTOMATIC_OP ; // Input switch inactive and timeout reached change to HEAT_AUTOMATIC_OP
}
break ;
case HEAT_TIME_PLAN : // State automatic heating active following set heating plan
if ( HeatStateAllToOff ( ) ) {
Heating . heating_mode = HEAT_OFF ; // Emergency switch to HEAT_OFF
}
if ( HeatStateAutoOrPlanToManual ( ) ) {
Heating . heating_mode = HEAT_MANUAL_OP ; // If sensor not alive change to HEAT_MANUAL_OP
}
HeatingCtrState ( ) ;
break ;
}
}
void HeatingOutputRelay ( bool active )
{
2020-04-17 19:24:12 +01:00
// TODO: See if the real output state can be read by f.i. bitRead(power, Heating.output_relay_number))
2020-04-17 09:35:26 +01:00
// If command received to enable output
// AND current output status is OFF
// then switch output to ON
if ( ( active = = true )
& & ( Heating . status_output = = IFACE_OFF ) ) {
2020-04-17 19:24:12 +01:00
ExecuteCommandPower ( Heating . output_relay_number , POWER_ON , SRC_HEATING ) ;
2020-04-17 09:35:26 +01:00
Heating . timestamp_output_on = uptime ;
Heating . status_output = IFACE_ON ;
}
// If command received to disable output
// AND current output status is ON
// then switch output to OFF
else if ( ( active = = false ) & & ( Heating . status_output = = IFACE_ON ) ) {
2020-04-17 19:24:12 +01:00
ExecuteCommandPower ( Heating . output_relay_number , POWER_OFF , SRC_HEATING ) ;
2020-04-17 09:35:26 +01:00
Heating . timestamp_output_off = uptime ;
Heating . status_output = IFACE_OFF ;
}
}
void HeatingCalculatePI ( )
{
// Calculate error
Heating . temp_pi_error = Heating . temp_target_level_ctr - Heating . temp_measured ;
// Kp = 100/PI.propBand. PI.propBand(Xp) = Proportional range (4K in 4K/200 controller)
2020-04-17 19:24:12 +01:00
Heating . kP_pi = 100 / ( uint16_t ) ( Heating . val_prop_band ) ;
2020-04-17 09:35:26 +01:00
// Calculate proportional
2020-04-17 19:24:12 +01:00
Heating . time_proportional_pi = ( ( int32_t ) ( Heating . temp_pi_error * ( int16_t ) Heating . kP_pi ) * Heating . time_pi_cycle ) / 1000 ;
2020-04-17 09:35:26 +01:00
// Minimum proportional action limiter
// If proportional action is less than the minimum action time
// AND proportional > 0
// then adjust to minimum value
2020-04-17 19:24:12 +01:00
if ( ( Heating . time_proportional_pi < abs ( Heating . time_min_action ) )
2020-04-17 09:35:26 +01:00
& & ( Heating . time_proportional_pi > 0 ) ) {
2020-04-17 19:24:12 +01:00
Heating . time_proportional_pi = Heating . time_min_action ;
2020-04-17 09:35:26 +01:00
}
if ( Heating . time_proportional_pi < 0 ) {
Heating . time_proportional_pi = 0 ;
}
2020-04-17 19:24:12 +01:00
else if ( Heating . time_proportional_pi > Heating . time_pi_cycle ) {
Heating . time_proportional_pi = Heating . time_pi_cycle ;
2020-04-17 09:35:26 +01:00
}
// Calculate integral
2020-04-17 19:24:12 +01:00
Heating . kI_pi = ( uint16_t ) ( ( ( float ) Heating . kP_pi * ( ( float ) Heating . time_pi_cycle / ( float ) Heating . time_reset ) ) * 100 ) ;
2020-04-17 09:35:26 +01:00
// Reset of antiwindup
// If error does not lay within the integrator scope range, do not use the integral
// and accumulate error = 0
2020-04-17 19:24:12 +01:00
if ( abs ( Heating . temp_pi_error ) > Heating . temp_reset_anti_windup ) {
2020-04-17 09:35:26 +01:00
Heating . time_integral_pi = 0 ;
Heating . temp_pi_accum_error = 0 ;
}
// Normal use of integrator
// result will be calculated with the cummulated previous error anterior
// and current error will be cummulated to the previous one
else {
// Hysteresis limiter
// If error is less than or equal than hysteresis, limit output to 0, when temperature
// is rising, never when falling. Limit cummulated error. If this is not done,
// there will be very strong control actions from the integral part due to a
// very high cummulated error when beingin hysteresis. This triggers high
// integral actions
// If we are under setpoint
// AND we are within the hysteresis
// AND we are rising
if ( ( Heating . temp_pi_error > = 0 )
2020-04-17 19:24:12 +01:00
& & ( abs ( Heating . temp_pi_error ) < = ( int16_t ) Heating . temp_hysteresis )
2020-04-17 09:35:26 +01:00
& & ( Heating . temp_measured_gradient > 0 ) ) {
Heating . temp_pi_accum_error + = Heating . temp_pi_error ;
// Reduce accumulator error 20% in each cycle
Heating . temp_pi_accum_error * = 0.8 ;
}
// If we are over setpoint
// AND temperature is rising
else if ( ( Heating . temp_pi_error < 0 )
& & ( Heating . temp_measured_gradient > 0 ) ) {
Heating . temp_pi_accum_error + = Heating . temp_pi_error ;
// Reduce accumulator error 20% in each cycle
Heating . temp_pi_accum_error * = 0.8 ;
}
else {
Heating . temp_pi_accum_error + = Heating . temp_pi_error ;
}
// Limit lower limit of acumErr to 0
if ( Heating . temp_pi_accum_error < 0 ) {
Heating . temp_pi_accum_error = 0 ;
}
// Integral calculation
2020-04-17 19:24:12 +01:00
Heating . time_integral_pi = ( ( ( ( int32_t ) Heating . temp_pi_accum_error * ( int32_t ) Heating . kI_pi ) / 100 ) * ( int32_t ) ( Heating . time_pi_cycle ) ) / 1000 ;
2020-04-17 09:35:26 +01:00
// Antiwindup of the integrator
// If integral calculation is bigger than cycle time, adjust result
// to the cycle time and error will not be cummulated]]
2020-04-17 19:24:12 +01:00
if ( Heating . time_integral_pi > Heating . time_pi_cycle ) {
Heating . time_integral_pi = Heating . time_pi_cycle ;
2020-04-17 09:35:26 +01:00
}
}
// Calculate output
Heating . time_total_pi = Heating . time_proportional_pi + Heating . time_integral_pi ;
// Antiwindup of the output
// If result is bigger than cycle time, the result will be adjusted
// to the cylce time minus safety time and error will not be cummulated]]
2020-04-17 19:24:12 +01:00
if ( Heating . time_total_pi > Heating . time_pi_cycle ) {
2020-04-17 09:35:26 +01:00
// Limit to cycle time //at least switch down a minimum time
2020-04-17 19:24:12 +01:00
Heating . time_total_pi = Heating . time_pi_cycle ;
2020-04-17 09:35:26 +01:00
}
else if ( Heating . time_total_pi < 0 ) {
Heating . time_total_pi = 0 ;
}
// Target value limiter
// If target value has been reached or we are over it]]
if ( Heating . temp_pi_error < = 0 ) {
// If we are over the hysteresis or the gradient is positive
2020-04-17 19:24:12 +01:00
if ( ( abs ( Heating . temp_pi_error ) > Heating . temp_hysteresis )
2020-04-17 09:35:26 +01:00
| | ( Heating . temp_measured_gradient > = 0 ) ) {
Heating . time_total_pi = 0 ;
}
}
// If target value has not been reached
// AND we are withing the histeresis
// AND gradient is positive
// then set value to 0
else if ( ( Heating . temp_pi_error > 0 )
2020-04-17 19:24:12 +01:00
& & ( abs ( Heating . temp_pi_error ) < = Heating . temp_hysteresis )
2020-04-17 09:35:26 +01:00
& & ( Heating . temp_measured_gradient > 0 ) ) {
Heating . time_total_pi = 0 ;
}
// Minimum action limiter
// If result is less than the minimum action time, adjust to minimum value]]
2020-04-17 19:24:12 +01:00
if ( ( Heating . time_total_pi < = abs ( Heating . time_min_action ) )
2020-04-17 09:35:26 +01:00
& & ( Heating . time_total_pi ! = 0 ) ) {
2020-04-17 19:24:12 +01:00
Heating . time_total_pi = Heating . time_min_action ;
2020-04-17 09:35:26 +01:00
}
// Maximum action limiter
// If result is more than the maximum action time, adjust to maximum value]]
2020-04-17 19:24:12 +01:00
else if ( Heating . time_total_pi > abs ( Heating . time_max_action ) ) {
Heating . time_total_pi = Heating . time_max_action ;
2020-04-17 09:35:26 +01:00
}
// If switched off less time than safety time, do not switch off
2020-04-17 19:24:12 +01:00
else if ( Heating . time_total_pi > ( Heating . time_pi_cycle - Heating . time_min_turnoff_action ) ) {
Heating . time_total_pi = Heating . time_pi_cycle ;
2020-04-17 09:35:26 +01:00
}
// Adjust output switch point
Heating . time_pi_changepoint = uptime + Heating . time_total_pi ;
// Adjust next cycle point
2020-04-17 19:24:12 +01:00
Heating . time_pi_checkpoint = uptime + Heating . time_pi_cycle ;
2020-04-17 09:35:26 +01:00
}
void HeatingWorkAutomaticPI ( )
{
char result_chr [ FLOATSZ ] ; // Remove!
if ( ( uptime > = Heating . time_pi_checkpoint )
| | ( Heating . temp_target_level ! = Heating . temp_target_level_ctr )
| | ( ( Heating . temp_measured < Heating . temp_target_level )
& & ( Heating . temp_measured_gradient < 0 )
& & ( Heating . status_cycle_active = = false ) ) ) {
Heating . temp_target_level_ctr = Heating . temp_target_level ;
HeatingCalculatePI ( ) ;
// Reset cycle active
Heating . status_cycle_active = false ;
}
if ( uptime < Heating . time_pi_changepoint ) {
Heating . status_cycle_active = true ;
Heating . command_output = true ;
}
else {
Heating . command_output = false ;
}
}
void HeatingWorkAutomaticRampUp ( )
{
uint32_t time_in_rampup ;
int16_t temp_delta_rampup ;
// Update timestamp for temperature at start of ramp-up if temperature still dropping
if ( Heating . temp_measured < Heating . temp_rampup_start ) {
Heating . temp_rampup_start = Heating . temp_measured ;
}
// Update time in ramp-up as well as delta temp
time_in_rampup = uptime - Heating . timestamp_rampup_start ;
temp_delta_rampup = Heating . temp_measured - Heating . temp_rampup_start ;
// Init command output status to true
Heating . command_output = true ;
// Update temperature target level for controller
Heating . temp_target_level_ctr = Heating . temp_target_level ;
// If time in ramp-up < max time
// AND temperature measured < target
2020-04-17 19:24:12 +01:00
if ( ( time_in_rampup < = Heating . time_rampup_max )
2020-04-17 09:35:26 +01:00
& & ( Heating . temp_measured < Heating . temp_target_level ) ) {
// DEADTIME point reached
// If temperature measured minus temperature at start of ramp-up >= threshold
// AND deadtime still 0
2020-04-17 19:24:12 +01:00
if ( ( temp_delta_rampup > = Heating . temp_rampup_delta_out )
2020-04-17 09:35:26 +01:00
& & ( Heating . time_rampup_deadtime = = 0 ) ) {
// Set deadtime, assuming it is half of the time until slope, since thermal inertia of the temp. fall needs to be considered
// minus open time of the valve (arround 3 minutes). If rise very fast limit it to delay of output valve
int32_t time_aux ;
2020-04-17 19:24:12 +01:00
time_aux = ( ( time_in_rampup / 2 ) - Heating . time_output_delay ) ;
if ( time_aux > = Heating . time_output_delay ) {
2020-04-17 09:35:26 +01:00
Heating . time_rampup_deadtime = ( uint32_t ) time_aux ;
}
else {
2020-04-17 19:24:12 +01:00
Heating . time_rampup_deadtime = Heating . time_output_delay ;
2020-04-17 09:35:26 +01:00
}
// Calculate gradient since start of ramp-up (considering deadtime) in thousandths of º/hour
Heating . temp_rampup_meas_gradient = ( int32_t ) ( ( 360000 * ( int32_t ) temp_delta_rampup ) / ( int32_t ) time_in_rampup ) ;
2020-04-17 19:24:12 +01:00
Heating . time_rampup_nextcycle = uptime + Heating . time_rampup_cycle ;
2020-04-17 09:35:26 +01:00
// Set auxiliary variables
Heating . temp_rampup_cycle = Heating . temp_measured ;
2020-04-17 19:24:12 +01:00
Heating . time_rampup_output_off = uptime + Heating . time_rampup_max ;
2020-04-17 09:35:26 +01:00
Heating . temp_rampup_output_off = Heating . temp_target_level_ctr ;
}
// Gradient calculation every time_rampup_cycle
else if ( ( Heating . time_rampup_deadtime > 0 ) & & ( uptime > = Heating . time_rampup_nextcycle ) ) {
// Calculate temp. gradient in º/hour and set again time_rampup_nextcycle and temp_rampup_cycle
// temp_rampup_meas_gradient = ((3600 * temp_delta_rampup) / (os.time() - time_rampup_nextcycle))
temp_delta_rampup = Heating . temp_measured - Heating . temp_rampup_cycle ;
2020-04-17 19:24:12 +01:00
uint32_t time_total_rampup = Heating . time_rampup_cycle * Heating . counter_rampup_cycles ;
2020-04-17 09:35:26 +01:00
// Translate into gradient per hour (thousandths of ° per hour)
Heating . temp_rampup_meas_gradient = int32_t ( ( 360000 * ( int32_t ) temp_delta_rampup ) / ( int32_t ) time_total_rampup ) ;
if ( Heating . temp_rampup_meas_gradient > 0 ) {
// Calculate time to switch Off and come out of ramp-up
// y-y1 = m(x-x1) -> x = ((y-y1) / m) + x1 -> y1 = temp_rampup_cycle, x1 = (time_rampup_nextcycle - time_rampup_cycle), m = gradient in º/sec
// Better Alternative -> (y-y1)/(x-x1) = ((y2-y1)/(x2-x1)) -> where y = temp (target) and x = time (to switch off, what its needed)
// x = ((y-y1)/(y2-y1))*(x2-x1) + x1 - deadtime
// Heating.time_rampup_output_off = (uint32_t)(((float)(Heating.temp_target_level_ctr - Heating.temp_rampup_cycle) / (float)temp_delta_rampup) * (float)(time_total_rampup)) + (uint32_t)(Heating.time_rampup_nextcycle - (time_total_rampup)) - Heating.time_rampup_deadtime;
Heating . time_rampup_output_off = ( uint32_t ) ( ( ( float ) ( Heating . temp_target_level_ctr - Heating . temp_rampup_cycle ) * ( float ) ( time_total_rampup ) ) / ( float ) temp_delta_rampup ) + ( uint32_t ) ( Heating . time_rampup_nextcycle - ( time_total_rampup ) ) - Heating . time_rampup_deadtime ;
// Calculate temperature for switching off the output
// y = (((y2-y1)/(x2-x1))*(x-x1)) + y1
// Heating.temp_rampup_output_off = (int16_t)(((float)(temp_delta_rampup) / (float)(time_total_rampup * Heating.counter_rampup_cycles)) * (float)(Heating.time_rampup_output_off - (uptime - (time_total_rampup)))) + Heating.temp_rampup_cycle;
Heating . temp_rampup_output_off = ( int16_t ) ( ( ( float ) temp_delta_rampup * ( float ) ( Heating . time_rampup_output_off - ( uptime - ( time_total_rampup ) ) ) ) / ( float ) ( time_total_rampup * Heating . counter_rampup_cycles ) ) + Heating . temp_rampup_cycle ;
// Set auxiliary variables
2020-04-17 19:24:12 +01:00
Heating . time_rampup_nextcycle = uptime + Heating . time_rampup_cycle ;
2020-04-17 09:35:26 +01:00
Heating . temp_rampup_cycle = Heating . temp_measured ;
// Reset period counter
Heating . counter_rampup_cycles = 1 ;
}
else {
// Increase the period counter
Heating . counter_rampup_cycles + + ;
// Set another period
2020-04-17 19:24:12 +01:00
Heating . time_rampup_nextcycle = uptime + Heating . time_rampup_cycle ;
2020-04-17 09:35:26 +01:00
// Reset time_rampup_output_off and temp_rampup_output_off
2020-04-17 19:24:12 +01:00
Heating . time_rampup_output_off = uptime + Heating . time_rampup_max - time_in_rampup ;
2020-04-17 09:35:26 +01:00
Heating . temp_rampup_output_off = Heating . temp_target_level_ctr ;
}
// Set time to get out of calibration
Heating . time_rampup_checkpoint = Heating . time_rampup_output_off + Heating . time_rampup_deadtime ;
}
// Set output switch ON or OFF
// If deadtime has not been calculated
// or checkpoint has not been calculated
// or it is not yet time and temperature to switch it off acc. to calculations
// or gradient is <= 0
if ( ( Heating . time_rampup_deadtime = = 0 )
| | ( Heating . time_rampup_checkpoint = = 0 )
| | ( uptime < Heating . time_rampup_output_off )
| | ( Heating . temp_measured < Heating . temp_rampup_output_off )
| | ( Heating . temp_rampup_meas_gradient < = 0 ) ) {
Heating . command_output = true ;
}
else {
Heating . command_output = false ;
}
}
else {
// If we have not reached the temperature, start with an initial value for accumulated error for the PI controller
if ( Heating . temp_measured < Heating . temp_target_level_ctr ) {
2020-04-17 19:24:12 +01:00
Heating . temp_pi_accum_error = Heating . temp_rampup_pi_acc_error ;
2020-04-17 09:35:26 +01:00
}
// Set to now time to get out of calibration
Heating . time_rampup_checkpoint = uptime ;
// Switch Off output
Heating . command_output = false ;
}
}
void HeatingCtrWork ( )
{
switch ( Heating . controller_mode ) {
case CTR_HYBRID : // Ramp-up phase with gradient control
switch ( Heating . phase_hybrid_ctr ) {
case CTR_HYBRID_RAMP_UP :
HeatingWorkAutomaticRampUp ( ) ;
break ;
case CTR_HYBRID_PI :
HeatingWorkAutomaticPI ( ) ;
break ;
}
break ;
case CTR_PI :
HeatingWorkAutomaticPI ( ) ;
break ;
case CTR_RAMP_UP :
HeatingWorkAutomaticRampUp ( ) ;
break ;
}
}
void HeatingPlanTempTarget ( )
{
int16_t tmp_minute_delta [ 3 ] ; // Array of deltas in minute for 3 different time minutes of a day to the current utc time minute of the day
uint8_t time_selected = 0 ; // Index of time selected
int16_t time_lowest_delta = 1440 ; // lowest time delta in minutes from the array values to UTC, initiated to 1 day (1440 minutes)
uint8_t day_of_week = RtcTime . day_of_week ; // Current day of week (1 = Sun)
// For each of the three times within the current day of week
for ( uint8_t i = 0 ; i < 3 ; i + + ) {
// Store time difference between current minute of the day and the minute of the day of each planned time wihtin array
tmp_minute_delta [ i ] = ( ( ( ( int16_t ) RtcTime . hour * 60 ) + ( int16_t ) RtcTime . minute ) - ( int16_t ) Heating . heating_plan [ day_of_week - 1 ] [ ( i * 2 ) ] ) ;
if ( ( tmp_minute_delta [ i ] > = 0 ) & &
( tmp_minute_delta [ i ] < time_lowest_delta ) ) {
time_lowest_delta = tmp_minute_delta [ i ] ;
time_selected = i ;
}
}
// Update target value if time delta to selected time is 0 or positive
if ( ( tmp_minute_delta [ time_selected ] > = 0 )
2020-04-17 19:24:12 +01:00
& & ( Heating . heating_plan [ day_of_week - 1 ] [ ( 2 * time_selected ) + 1 ] > = Heating . temp_frost_protect ) ) {
2020-04-17 09:35:26 +01:00
Heating . temp_target_level = Heating . heating_plan [ day_of_week - 1 ] [ ( 2 * time_selected ) + 1 ] ;
}
}
void HeatingWork ( )
{
switch ( Heating . heating_mode ) {
case HEAT_OFF : // State if Off or Emergency
Heating . command_output = false ;
break ;
case HEAT_AUTOMATIC_OP : // State automatic heating active following to command target temp.
HeatingCtrWork ( ) ;
break ;
case HEAT_MANUAL_OP : // State manual operation following input switch
Heating . time_rampup_checkpoint = 0 ;
break ;
case HEAT_TIME_PLAN : // State automatic heating active following set heating plan
// Set target temperature based on plan
HeatingPlanTempTarget ( ) ;
HeatingCtrWork ( ) ;
break ;
}
HeatingOutputRelay ( Heating . command_output ) ;
}
void HeatingDiagnostics ( )
{
// TODOs:
// 1. Check time max for output switch on not exceeded
// 2. Check state of output corresponds to command
// 3. Check maximum power at output switch not exceeded
}
void HeatingController ( )
{
HeatingState ( ) ;
HeatingWork ( ) ;
}
/*********************************************************************************************\
* Commands
\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
void CmndHeatingModeSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( CharToFloat ( XdrvMailbox . data ) ) ;
if ( ( value > = HEAT_OFF ) & & ( value < = HEAT_TIME_PLAN ) ) {
Heating . heating_mode = value ;
Heating . timestamp_input_on = 0 ; // Reset last manual switch timer if command set externally
}
}
ResponseCmndNumber ( ( int ) Heating . heating_mode ) ;
}
void CmndTempFrostProtectSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( CharToFloat ( XdrvMailbox . data ) * 10 ) ;
if ( ( value > = 0 ) & & ( value < = 255 ) ) {
2020-04-17 19:24:12 +01:00
Heating . temp_frost_protect = value ;
2020-04-17 09:35:26 +01:00
}
}
2020-04-17 19:24:12 +01:00
ResponseCmndFloat ( ( float ) ( Heating . temp_frost_protect ) / 10 , 1 ) ;
2020-04-17 09:35:26 +01:00
}
void CmndControllerModeSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = CTR_RAMP_UP ) ) {
Heating . controller_mode = value ;
}
}
ResponseCmndNumber ( ( int ) Heating . controller_mode ) ;
}
void CmndInputSwitchSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( XdrvMailbox . payload ) ;
if ( HeatingSwitchIdValid ( value ) ) {
2020-04-17 19:24:12 +01:00
Heating . input_switch_number = value ;
2020-04-17 09:35:26 +01:00
Heating . timestamp_input_on = uptime ;
}
}
2020-04-17 19:24:12 +01:00
ResponseCmndNumber ( ( int ) Heating . input_switch_number ) ;
2020-04-17 09:35:26 +01:00
}
void CmndOutputRelaySet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( XdrvMailbox . payload ) ;
if ( HeatingRelayIdValid ( value ) ) {
2020-04-17 19:24:12 +01:00
Heating . output_relay_number = value ;
2020-04-17 09:35:26 +01:00
}
}
2020-04-17 19:24:12 +01:00
ResponseCmndNumber ( ( int ) Heating . output_relay_number ) ;
2020-04-17 09:35:26 +01:00
}
void CmndTimeAllowRampupSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint32_t value = ( uint32_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < 86400 ) ) {
2020-04-17 19:24:12 +01:00
Heating . time_allow_rampup = value ;
2020-04-17 09:35:26 +01:00
}
}
2020-04-17 19:24:12 +01:00
ResponseCmndNumber ( ( int ) Heating . time_allow_rampup ) ;
2020-04-17 09:35:26 +01:00
}
void CmndTempMeasuredSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
int16_t value = ( int16_t ) ( CharToFloat ( XdrvMailbox . data ) * 10 ) ;
if ( ( value > = - 1000 ) & & ( value < = 1000 ) ) {
uint32_t timestamp = uptime ;
// Calculate temperature gradient if temperature value has changed
if ( value ! = Heating . temp_measured ) {
int16_t temp_delta = ( value - Heating . temp_measured ) ; // in tenths of degrees
uint32_t time_delta = ( timestamp - Heating . timestamp_temp_meas_change_update ) ; // in seconds
Heating . temp_measured_gradient = ( int32_t ) ( ( 360000 * ( int32_t ) temp_delta ) / ( int32_t ) time_delta ) ; // hundreths of degrees per hour
Heating . temp_measured = value ;
Heating . timestamp_temp_meas_change_update = timestamp ;
}
Heating . timestamp_temp_measured_update = timestamp ;
Heating . sensor_alive = true ;
}
}
ResponseCmndFloat ( ( ( float ) Heating . temp_measured ) / 10 , 1 ) ;
}
void CmndTempTargetSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint16_t value = ( uint16_t ) ( CharToFloat ( XdrvMailbox . data ) * 10 ) ;
if ( ( value > = - 1000 )
& & ( value < = 1000 )
2020-04-17 19:24:12 +01:00
& & ( value > = Heating . temp_frost_protect ) ) {
2020-04-17 09:35:26 +01:00
Heating . temp_target_level = value ;
Heating . timestamp_temp_target_update = uptime ;
}
}
ResponseCmndFloat ( ( ( float ) Heating . temp_target_level ) / 10 , 1 ) ;
}
void CmndTimePlanSet ( void )
{
// TimePlanSet1 05:00/21.0, 15:30/22.5, 23:00/18.0 - TimePlanSet1 3 sets of hour and related target temperature for Monday´ s
// TimePlanSet2 05:00/21.0, 15:30/22.5, 23:00/18.0 - TimePlanSet2 3 sets of hour and related target temperature for Tuesday´ s
// TimePlanSet3 05:00/21.0, 15:30/22.5, 23:00/18.0 - TimePlanSet3 3 sets of hour and related target temperature for Wednesday´ s
// TimePlanSet4 05:00/21.0, 15:30/22.5, 23:00/18.0 - TimePlanSet4 3 sets of hour and related target temperature for Thursday´ s
// TimePlanSet5 05:00/21.0, 15:30/22.5, 23:00/18.0 - TimePlanSet5 3 sets of hour and related target temperature for Friday´ s
// TimePlanSet6 05:00/21.0, 15:30/22.5, 23:00/18.0 - TimePlanSet6 3 sets of hour and related target temperature for Saturday´ s
// TimePlanSet7 05:00/21.0, 15:30/22.5, 23:00/18.0 - TimePlanSet7 3 sets of hour and related target temperature for Sunday´ s
if ( ( XdrvMailbox . index > 0 ) & & ( XdrvMailbox . index < = 7 ) ) {
if ( XdrvMailbox . data_len > 0 ) {
uint8_t aux_index = 0 ;
char * p ;
char * str = strtok_r ( XdrvMailbox . data , " , " , & p ) ; // Extract first pair time/temp -> 05:00/21.0
while ( ( str ! = nullptr ) & & ( aux_index < 6 ) ) {
char * q ;
char * minutes ;
char * temp ;
char * temp_decimal ;
float temp_f ;
uint8_t str_len = strlen ( str ) ;
// Check basic structure of the data, length matching, position of ":" and "/" matching
if ( ( str_len > 0 ) & & ( str_len < 11 ) & & ( str [ 2 ] = = ' : ' ) & & ( str [ 5 ] = = ' / ' ) ) {
// Extract the time
uint16_t value = strtol ( str , & q , 10 ) ; // extract 5
char value_c [ 33 ] ;
dtostrfd ( ( double ) value , 0 , value_c ) ;
if ( ( value > = 0 ) & & ( value < 24 ) ) { // Below 24 is hours
uint8_t day_of_week = XdrvMailbox . index - 1 ;
minutes = strtok_r ( nullptr , " :/. " , & q ) ;
Heating . heating_plan [ day_of_week ] [ aux_index ] = ( value * 60 ) ; // Multiply hours by 60 minutes
if ( minutes ) {
value = strtol ( minutes , nullptr , 10 ) ; // extract 00
if ( value < = 59 ) {
Heating . heating_plan [ day_of_week ] [ aux_index ] + = value ;
}
}
aux_index + + ;
// Extract the whole-number part of the temperature
temp = strtok_r ( nullptr , " :/. " , & q ) ;
if ( temp ) {
value = strtol ( temp , nullptr , 10 ) ; // extract 00
temp_f = CharToFloat ( ( char * ) temp ) ;
temp_decimal = strtok_r ( nullptr , " :/. " , & q ) ;
if ( temp_decimal ) {
value = strtol ( temp_decimal , nullptr , 10 ) ; // extract decimal part
if ( value < = 9 ) {
temp_f + = ( CharToFloat ( ( char * ) temp_decimal ) / 10 ) ;
}
}
if ( ( temp_f > - 100 ) & & ( temp_f < 100 ) ) {
Heating . heating_plan [ day_of_week ] [ aux_index ] = ( uint16_t ) ( temp_f * 10 ) ; // Multiply degrees by 10 to convert to decidegrees
}
}
aux_index + + ;
}
else {
aux_index + = 2 ;
}
}
else {
aux_index + = 2 ;
}
str = strtok_r ( nullptr , " , " , & p ) ;
}
}
uint8_t index_d = XdrvMailbox . index ;
char day [ 7 ] [ 4 ] = { " Sun " , " Mon " , " Tue " , " Wed " , " Thu " , " Fri " , " Sat " } ;
char * day_p = & day [ index_d - 1 ] [ 0 ] ;
char index_s [ strlen ( day_p ) + 1 ] ;
strcpy ( index_s , day_p ) ;
char temp1 [ 5 ] ;
char temp2 [ 5 ] ;
char temp3 [ 5 ] ;
dtostrfd ( ( double ) ( ( float ) Heating . heating_plan [ index_d - 1 ] [ 1 ] / 10 ) , 1 , temp1 ) ;
dtostrfd ( ( double ) ( ( float ) Heating . heating_plan [ index_d - 1 ] [ 3 ] / 10 ) , 1 , temp2 ) ;
dtostrfd ( ( double ) ( ( float ) Heating . heating_plan [ index_d - 1 ] [ 5 ] / 10 ) , 1 , temp3 ) ;
Response_P ( PSTR ( " { \" %s \" :{ \" 1stTime \" :{ \" Time \" : \" %s \" , \" Temperature \" : \" %s \" }, \" 2ndTime \" :{ \" Time \" : \" %s \" , \" Temperature \" : \" %s \" }, \" 3rdTime \" :{ \" Time \" : \" %s \" , \" Temperature \" : \" %s \" }} " ) ,
index_s ,
GetMinuteTime ( Heating . heating_plan [ index_d - 1 ] [ 0 ] ) . c_str ( ) , temp1 ,
GetMinuteTime ( Heating . heating_plan [ index_d - 1 ] [ 2 ] ) . c_str ( ) , temp2 ,
GetMinuteTime ( Heating . heating_plan [ index_d - 1 ] [ 4 ] ) . c_str ( ) , temp3 ) ;
}
}
void CmndTempTargetRead ( void )
{
ResponseCmndFloat ( ( ( float ) Heating . temp_target_level ) / 10 , 1 ) ;
}
void CmndTempMeasuredRead ( void )
{
ResponseCmndFloat ( ( float ) ( Heating . temp_measured ) / 10 , 1 ) ;
}
void CmndTempMeasuredGrdRead ( void )
{
ResponseCmndFloat ( ( float ) ( Heating . temp_measured_gradient ) / 1000 , 1 ) ;
}
void CmndTempSensNumberSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 255 ) ) {
2020-04-17 19:24:12 +01:00
Heating . temp_sens_number = value ;
2020-04-17 09:35:26 +01:00
}
}
2020-04-17 19:24:12 +01:00
ResponseCmndNumber ( ( int ) Heating . temp_sens_number ) ;
2020-04-17 09:35:26 +01:00
}
void CmndStateEmergencySet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 1 ) ) {
2020-04-17 19:24:12 +01:00
Heating . state_emergency = ( bool ) value ;
2020-04-17 09:35:26 +01:00
}
}
2020-04-17 19:24:12 +01:00
ResponseCmndNumber ( ( int ) Heating . state_emergency ) ;
2020-04-17 09:35:26 +01:00
}
void CmndPowerMaxSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint16_t value = ( uint16_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 1300 ) ) {
2020-04-17 19:24:12 +01:00
Heating . power_max = value ;
2020-04-17 09:35:26 +01:00
}
}
2020-04-17 19:24:12 +01:00
ResponseCmndNumber ( ( int ) Heating . power_max ) ;
2020-04-17 09:35:26 +01:00
}
void CmndTimeManualToAutoSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint32_t value = ( uint32_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 86400 ) ) {
2020-04-17 19:24:12 +01:00
Heating . time_manual_to_auto = value ;
2020-04-17 09:35:26 +01:00
}
}
2020-04-17 19:24:12 +01:00
ResponseCmndNumber ( ( int ) Heating . time_manual_to_auto ) ;
2020-04-17 09:35:26 +01:00
}
void CmndTimeOnLimitSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint32_t value = ( uint32_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 86400 ) ) {
2020-04-17 19:24:12 +01:00
Heating . time_on_limit = value ;
2020-04-17 09:35:26 +01:00
}
}
2020-04-17 19:24:12 +01:00
ResponseCmndNumber ( ( int ) Heating . time_on_limit ) ;
2020-04-17 09:35:26 +01:00
}
void CmndPropBandSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 20 ) ) {
2020-04-17 19:24:12 +01:00
Heating . val_prop_band = value ;
2020-04-17 09:35:26 +01:00
}
}
2020-04-17 19:24:12 +01:00
ResponseCmndNumber ( ( int ) Heating . val_prop_band ) ;
2020-04-17 09:35:26 +01:00
}
void CmndTimeResetSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint32_t value = ( uint32_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 86400 ) ) {
2020-04-17 19:24:12 +01:00
Heating . time_reset = value ;
2020-04-17 09:35:26 +01:00
}
}
2020-04-17 19:24:12 +01:00
ResponseCmndNumber ( ( int ) Heating . time_reset ) ;
2020-04-17 09:35:26 +01:00
}
void CmndTimePiCycleSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint32_t value = ( uint32_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 86400 ) ) {
2020-04-17 19:24:12 +01:00
Heating . time_pi_cycle = value ;
2020-04-17 09:35:26 +01:00
}
}
2020-04-17 19:24:12 +01:00
ResponseCmndNumber ( ( int ) Heating . time_pi_cycle ) ;
2020-04-17 09:35:26 +01:00
}
void CmndTempAntiWindupResetSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( CharToFloat ( XdrvMailbox . data ) * 10 ) ;
if ( ( value > = ( float ) ( 0 ) ) & & ( value < = ( float ) ( 100.0 ) ) ) {
2020-04-17 19:24:12 +01:00
Heating . temp_reset_anti_windup = value ;
2020-04-17 09:35:26 +01:00
}
}
2020-04-17 19:24:12 +01:00
ResponseCmndFloat ( ( float ) ( Heating . temp_reset_anti_windup ) / 10 , 1 ) ;
2020-04-17 09:35:26 +01:00
}
void CmndTempHystSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
int8_t value = ( int8_t ) ( CharToFloat ( XdrvMailbox . data ) * 10 ) ;
if ( ( value > = - 100 ) & & ( value < = 100 ) ) {
2020-04-17 19:24:12 +01:00
Heating . temp_hysteresis = value ;
2020-04-17 09:35:26 +01:00
}
}
2020-04-17 19:24:12 +01:00
ResponseCmndFloat ( ( float ) ( Heating . temp_hysteresis ) / 10 , 1 ) ;
2020-04-17 09:35:26 +01:00
}
void CmndTimeMaxActionSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint32_t value = ( uint32_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 86400 ) ) {
2020-04-17 19:24:12 +01:00
Heating . time_max_action = value ;
2020-04-17 09:35:26 +01:00
}
}
2020-04-17 19:24:12 +01:00
ResponseCmndNumber ( ( int ) Heating . time_max_action ) ;
2020-04-17 09:35:26 +01:00
}
void CmndTimeMinActionSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint32_t value = ( uint32_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 86400 ) ) {
2020-04-17 19:24:12 +01:00
Heating . time_min_action = value ;
2020-04-17 09:35:26 +01:00
}
}
2020-04-17 19:24:12 +01:00
ResponseCmndNumber ( ( int ) Heating . time_min_action ) ;
2020-04-17 09:35:26 +01:00
}
void CmndTimeMinTurnoffActionSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint32_t value = ( uint32_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 86400 ) ) {
2020-04-17 19:24:12 +01:00
Heating . time_min_turnoff_action = value ;
2020-04-17 09:35:26 +01:00
}
}
2020-04-17 19:24:12 +01:00
ResponseCmndNumber ( ( int ) Heating . time_min_turnoff_action ) ;
2020-04-17 09:35:26 +01:00
}
void CmndTempRupDeltInSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( CharToFloat ( XdrvMailbox . data ) * 10 ) ;
if ( ( value > = 0 ) & & ( value < = 100 ) ) {
2020-04-17 19:24:12 +01:00
Heating . temp_rampup_delta_in = value ;
2020-04-17 09:35:26 +01:00
}
}
2020-04-17 19:24:12 +01:00
ResponseCmndFloat ( ( float ) ( Heating . temp_rampup_delta_in ) / 10 , 1 ) ;
2020-04-17 09:35:26 +01:00
}
void CmndTempRupDeltOutSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( CharToFloat ( XdrvMailbox . data ) * 10 ) ;
if ( ( value > = 0 ) & & ( value < = 100 ) ) {
2020-04-17 19:24:12 +01:00
Heating . temp_rampup_delta_out = value ;
2020-04-17 09:35:26 +01:00
}
}
2020-04-17 19:24:12 +01:00
ResponseCmndFloat ( ( float ) ( Heating . temp_rampup_delta_out ) / 10 , 1 ) ;
2020-04-17 09:35:26 +01:00
}
void CmndTimeRampupMaxSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint32_t value = ( uint32_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 86400 ) ) {
2020-04-17 19:24:12 +01:00
Heating . time_rampup_max = value ;
2020-04-17 09:35:26 +01:00
}
}
2020-04-17 19:24:12 +01:00
ResponseCmndNumber ( ( int ) Heating . time_rampup_max ) ;
2020-04-17 09:35:26 +01:00
}
void CmndTimeRampupCycleSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint32_t value = ( uint32_t ) ( XdrvMailbox . payload ) ;
if ( ( value > = 0 ) & & ( value < = 86400 ) ) {
2020-04-17 19:24:12 +01:00
Heating . time_rampup_cycle = value ;
2020-04-17 09:35:26 +01:00
}
}
2020-04-17 19:24:12 +01:00
ResponseCmndNumber ( ( int ) Heating . time_rampup_cycle ) ;
2020-04-17 09:35:26 +01:00
}
void CmndTempRampupPiAccErrSet ( void )
{
if ( XdrvMailbox . data_len > 0 ) {
uint8_t value = ( uint8_t ) ( CharToFloat ( XdrvMailbox . data ) * 10 ) ;
if ( ( value > = 0 ) & & ( value < = 250 ) ) {
2020-04-17 19:24:12 +01:00
Heating . temp_rampup_pi_acc_error = value ;
2020-04-17 09:35:26 +01:00
}
}
2020-04-17 19:24:12 +01:00
ResponseCmndFloat ( ( float ) ( Heating . temp_rampup_pi_acc_error ) / 10 , 1 ) ;
2020-04-17 09:35:26 +01:00
}
void CmndTimePiProportRead ( void )
{
ResponseCmndNumber ( ( int ) Heating . time_proportional_pi ) ;
}
void CmndTimePiIntegrRead ( void )
{
ResponseCmndNumber ( ( int ) Heating . time_integral_pi ) ;
}
/*********************************************************************************************\
* Interface
\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
bool Xdrv39 ( uint8_t function )
{
bool result = false ;
switch ( function ) {
case FUNC_INIT :
HeatingInit ( ) ;
break ;
case FUNC_LOOP :
HeatingSignalProcessingFast ( ) ;
HeatingDiagnostics ( ) ;
break ;
case FUNC_SERIAL :
break ;
case FUNC_EVERY_SECOND :
if ( HeatingMinuteCounter ( ) ) {
HeatingSignalProcessingSlow ( ) ;
HeatingController ( ) ;
}
break ;
case FUNC_COMMAND :
result = DecodeCommand ( kHeatingCommands , HeatingCommand ) ;
break ;
}
return result ;
}
# endif // USE_HEATING