Tasmota/tasmota/xsns_13_ina219.ino

351 lines
14 KiB
Arduino
Raw Normal View History

/*
xsns_13_ina219.ino - INA219 Current Sensor support for Tasmota
2019-12-31 13:23:34 +00:00
Copyright (C) 2020 Stefan Bode and Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_I2C
#ifdef USE_INA219
/*********************************************************************************************\
* INA219 - Low voltage (max 32V!) Current sensor
*
* Source: Adafruit Industries
*
* I2C Address: 0x40, 0x41 0x44 or 0x45
\*********************************************************************************************/
#define XSNS_13 13
#define XI2C_14 14 // See I2CDEVICES.md
#define INA219_ADDRESS1 (0x40) // 1000000 (A0+A1=GND)
#define INA219_ADDRESS2 (0x41) // 1000000 (A0=Vcc, A1=GND)
#define INA219_ADDRESS3 (0x44) // 1000000 (A0=GND, A1=Vcc)
#define INA219_ADDRESS4 (0x45) // 1000000 (A0+A1=Vcc)
#define INA219_READ (0x01)
#define INA219_REG_CONFIG (0x00)
#define INA219_CONFIG_RESET (0x8000) // Reset Bit
#define INA219_CONFIG_BVOLTAGERANGE_MASK (0x2000) // Bus Voltage Range Mask
#define INA219_CONFIG_BVOLTAGERANGE_16V (0x0000) // 0-16V Range
#define INA219_CONFIG_BVOLTAGERANGE_32V (0x2000) // 0-32V Range
#define INA219_CONFIG_GAIN_MASK (0x1800) // Gain Mask
#define INA219_CONFIG_GAIN_1_40MV (0x0000) // Gain 1, 40mV Range
#define INA219_CONFIG_GAIN_2_80MV (0x0800) // Gain 2, 80mV Range
#define INA219_CONFIG_GAIN_4_160MV (0x1000) // Gain 4, 160mV Range
#define INA219_CONFIG_GAIN_8_320MV (0x1800) // Gain 8, 320mV Range
#define INA219_CONFIG_BADCRES_MASK (0x0780) // Bus ADC Resolution Mask
#define INA219_CONFIG_BADCRES_9BIT_1S_84US (0x0<<7) // 9-bit bus res = 0..511
#define INA219_CONFIG_BADCRES_10BIT_1S_148US (0x1<<7) // 10-bit bus res = 0..1023
#define INA219_CONFIG_BADCRES_11BIT_1S_276US (0x2<<7) // 11-bit bus res = 0..2047
#define INA219_CONFIG_BADCRES_12BIT_1S_532US (0x3<<7) // 12-bit bus res = 0..4097
#define INA219_CONFIG_BADCRES_12BIT_2S_1060US (0x9<<7) // 2 x 12-bit bus samples averaged together
#define INA219_CONFIG_BADCRES_12BIT_4S_2130US (0xA<<7) // 4 x 12-bit bus samples averaged together
#define INA219_CONFIG_BADCRES_12BIT_8S_4260US (0xB<<7) // 8 x 12-bit bus samples averaged together
#define INA219_CONFIG_BADCRES_12BIT_16S_8510US (0xC<<7) // 16 x 12-bit bus samples averaged together
#define INA219_CONFIG_BADCRES_12BIT_32S_17MS (0xD<<7) // 32 x 12-bit bus samples averaged together
#define INA219_CONFIG_BADCRES_12BIT_64S_34MS (0xE<<7) // 64 x 12-bit bus samples averaged together
#define INA219_CONFIG_BADCRES_12BIT_128S_69MS (0xF<<7) // 128 x 12-bit bus samples averaged together
#define INA219_CONFIG_SADCRES_MASK (0x0078) // Shunt ADC Resolution and Averaging Mask
#define INA219_CONFIG_SADCRES_9BIT_1S_84US (0x0<<3) // 1 x 9-bit shunt sample
#define INA219_CONFIG_SADCRES_10BIT_1S_148US (0x1<<3) // 1 x 10-bit shunt sample
#define INA219_CONFIG_SADCRES_11BIT_1S_276US (0x2<<3) // 1 x 11-bit shunt sample
#define INA219_CONFIG_SADCRES_12BIT_1S_532US (0x3<<3) // 1 x 12-bit shunt sample
#define INA219_CONFIG_SADCRES_12BIT_2S_1060US (0x9<<3) // 2 x 12-bit shunt samples averaged together
#define INA219_CONFIG_SADCRES_12BIT_4S_2130US (0xA<<3) // 4 x 12-bit shunt samples averaged together
#define INA219_CONFIG_SADCRES_12BIT_8S_4260US (0xB<<3) // 8 x 12-bit shunt samples averaged together
#define INA219_CONFIG_SADCRES_12BIT_16S_8510US (0xC<<3) // 16 x 12-bit shunt samples averaged together
#define INA219_CONFIG_SADCRES_12BIT_32S_17MS (0xD<<3) // 32 x 12-bit shunt samples averaged together
#define INA219_CONFIG_SADCRES_12BIT_64S_34MS (0xE<<3) // 64 x 12-bit shunt samples averaged together
#define INA219_CONFIG_SADCRES_12BIT_128S_69MS (0xF<<3) // 128 x 12-bit shunt samples averaged together
#define INA219_CONFIG_MODE_MASK (0x0007) // Operating Mode Mask
#define INA219_CONFIG_MODE_POWERDOWN (0x0000)
#define INA219_CONFIG_MODE_SVOLT_TRIGGERED (0x0001)
#define INA219_CONFIG_MODE_BVOLT_TRIGGERED (0x0002)
#define INA219_CONFIG_MODE_SANDBVOLT_TRIGGERED (0x0003)
#define INA219_CONFIG_MODE_ADCOFF (0x0004)
#define INA219_CONFIG_MODE_SVOLT_CONTINUOUS (0x0005)
#define INA219_CONFIG_MODE_BVOLT_CONTINUOUS (0x0006)
#define INA219_CONFIG_MODE_SANDBVOLT_CONTINUOUS (0x0007)
#define INA219_REG_SHUNTVOLTAGE (0x01)
2017-12-16 19:16:10 +00:00
#define INA219_REG_BUSVOLTAGE (0x02)
#define INA219_REG_POWER (0x03)
#define INA219_REG_CURRENT (0x04)
#define INA219_REG_CALIBRATION (0x05)
#define INA219_DEFAULT_SHUNT_RESISTOR_MILLIOHMS (100.0) // 0.1 Ohm
uint8_t ina219_type[4] = {0,0,0,0};
uint8_t ina219_addresses[] = { INA219_ADDRESS1, INA219_ADDRESS2, INA219_ADDRESS3, INA219_ADDRESS4 };
#ifdef DEBUG_TASMOTA_SENSOR
// temporary strings for floating point in debug messages
char __ina219_dbg1[10];
char __ina219_dbg2[10];
#endif
// The following multiplier is used to convert shunt voltage (in mV) to current (in A)
// Current_A = ShuntVoltage_mV / ShuntResistor_milliOhms = ShuntVoltage_mV * ina219_current_multiplier
// ina219_current_multiplier = 1 / ShuntResistor_milliOhms
float ina219_current_multiplier;
uint8_t ina219_valid[4] = {0,0,0,0};
float ina219_voltage[4] = {0,0,0,0};
float ina219_current[4] = {0,0,0,0};
char ina219_types[] = "INA219";
2019-11-11 16:32:44 +00:00
uint8_t ina219_count = 0;
/*********************************************************************************************\
* Calculate current multiplier depending on the selected mode
* For mode = 0, 1, 2 : legacy modes simplified as Vmax: 32V, Imax: 3.2A range
* For mode = 10..255 : specify Rshunt encoded as RRM where resistor value is RR * 10^M milliOhms
* Vmax: 32V, Imax: 0.320 / Rshunt
* Exemple:
* 10: Rshunt = 1 * 10^0 = 1 millOhms => Max current = 320A !
* 11: Rshunt = 1 * 10^1 = 10 milliOhms => Max current = 32A
* 21: Rshunt = 2 * 10^1 = 20 milliOhms => Max current = 16A
* 12: Rshunt = 1 * 10^2 = 100 milliOhms => Max current = 3.2A == mode 0,1,2
* 13: Rshunt = 1 * 10^3 = 1 Ohms => Max current = 320mA
* Note that some shunt values can be represented by 2 different encoded values such as
* 11 or 100 both present 10 milliOhms
* Because it is difficult to make a range check on such encoded value, none is performed
\*********************************************************************************************/
bool Ina219SetCalibration(uint8_t mode, uint16_t addr)
{
uint16_t config = 0;
DEBUG_SENSOR_LOG("Ina219SetCalibration: mode=%d",mode);
if (mode < 5)
{
// All legacy modes 0..2 are handled the same and consider default 0.1 shunt resistor
ina219_current_multiplier = 1.0 / INA219_DEFAULT_SHUNT_RESISTOR_MILLIOHMS;
#ifdef DEBUG_TASMOTA_SENSOR
dtostrfd(ina219_current_multiplier,5,__ina219_dbg1);
DEBUG_SENSOR_LOG("Ina219SetCalibration: cur_mul=%s",__ina219_dbg1);
#endif
}
else if (mode >= 10)
{
int mult = mode % 10;
int shunt_milliOhms = mode / 10;
for ( ; mult > 0 ; mult-- )
shunt_milliOhms *= 10;
ina219_current_multiplier = 1.0 / shunt_milliOhms;
#ifdef DEBUG_TASMOTA_SENSOR
dtostrfd(ina219_current_multiplier,5,__ina219_dbg1);
DEBUG_SENSOR_LOG("Ina219SetCalibration: shunt=%dmO => cur_mul=%s",shunt_milliOhms,__ina219_dbg1);
#endif
}
config = INA219_CONFIG_BVOLTAGERANGE_32V
| INA219_CONFIG_GAIN_8_320MV // Use max scale
| INA219_CONFIG_BADCRES_12BIT_16S_8510US // use averaging to improve accuracy
| INA219_CONFIG_SADCRES_12BIT_16S_8510US // use averaging to improve accuracy
| INA219_CONFIG_MODE_SANDBVOLT_CONTINUOUS;
// Set Config register to take into account the settings above
return I2cWrite16(addr, INA219_REG_CONFIG, config);
}
float Ina219GetShuntVoltage_mV(uint16_t addr)
{
// raw shunt voltage (16-bit signed integer, so +-32767)
int16_t value = I2cReadS16(addr, INA219_REG_SHUNTVOLTAGE);
DEBUG_SENSOR_LOG("Ina219GetShuntVoltage_mV: ShReg = 0x%04X",value);
// convert to shunt voltage in mV (so +-327mV) (LSB=10µV=0.01mV)
return value * 0.01;
}
float Ina219GetBusVoltage_V(uint16_t addr)
{
// Shift 3 to the right to drop CNVR and OVF as unsigned
uint16_t value = I2cRead16(addr, INA219_REG_BUSVOLTAGE) >> 3;
DEBUG_SENSOR_LOG("Ina219GetBusVoltage_V: BusReg = 0x%04X",value);
// and multiply by LSB raw bus voltage to return bus voltage in volts (LSB=4mV=0.004V)
return value * 0.004;
}
/* Not used any more
float Ina219GetCurrent_mA(uint16_t addr)
{
// Sometimes a sharp load will reset the INA219, which will reset the cal register,
// meaning CURRENT and POWER will not be available ... avoid this by always setting
// a cal value even if it's an unfortunate extra step
I2cWrite16(addr, INA219_REG_CALIBRATION, ina219_cal_value);
// Now we can safely read the CURRENT register!
// raw current value (16-bit signed integer, so +-32767)
float value = I2cReadS16(addr, INA219_REG_CURRENT);
value /= ina219_current_divider_ma;
// current value in mA, taking into account the config settings and current LSB
return value;
}
*/
2018-11-14 13:32:09 +00:00
bool Ina219Read(void)
{
for (int i=0; i<sizeof(ina219_type); i++) {
2019-11-11 16:32:44 +00:00
if (!ina219_type[i]) { continue; }
uint16_t addr = ina219_addresses[i];
float bus_voltage_V = Ina219GetBusVoltage_V(addr);
float shunt_voltage_mV = Ina219GetShuntVoltage_mV(addr);
#ifdef DEBUG_TASMOTA_SENSOR
dtostrfd(bus_voltage_V,5,__ina219_dbg1);
dtostrfd(shunt_voltage_mV,5,__ina219_dbg2);
DEBUG_SENSOR_LOG("Ina219Read: bV=%sV, sV=%smV",__ina219_dbg1,__ina219_dbg2);
#endif
// we return the power-supply-side voltage (as bus_voltage register provides the load-side voltage)
ina219_voltage[i] = bus_voltage_V + (shunt_voltage_mV / 1000);
// current is simply calculted from shunt voltage using pre-calculated multiplier
ina219_current[i] = shunt_voltage_mV * ina219_current_multiplier;
#ifdef DEBUG_TASMOTA_SENSOR
dtostrfd(ina219_voltage[i],5,__ina219_dbg1);
dtostrfd(ina219_current[i],5,__ina219_dbg2);
DEBUG_SENSOR_LOG("Ina219Read: V=%sV, I=%smA",__ina219_dbg1,__ina219_dbg2);
#endif
ina219_valid[i] = SENSOR_MAX_MISS;
// AddLogMissed(ina219_types, ina219_valid);
}
return true;
}
/*********************************************************************************************\
* Command Sensor13
\*********************************************************************************************/
2018-11-14 13:32:09 +00:00
bool Ina219CommandSensor(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 255)) {
Settings.ina219_mode = XdrvMailbox.payload;
restart_flag = 2;
}
Response_P(S_JSON_SENSOR_INDEX_NVALUE, XSNS_13, Settings.ina219_mode);
2019-11-11 16:32:44 +00:00
return true;
}
/********************************************************************************************/
2018-11-14 13:32:09 +00:00
void Ina219Detect(void)
{
2019-11-07 15:56:05 +00:00
for (uint32_t i = 0; i < sizeof(ina219_type); i++) {
uint16_t addr = ina219_addresses[i];
2019-11-07 15:56:05 +00:00
if (I2cActive(addr)) { continue; }
if (Ina219SetCalibration(Settings.ina219_mode, addr)) {
2019-11-09 17:34:22 +00:00
I2cSetActiveFound(addr, ina219_types);
2019-11-11 16:32:44 +00:00
ina219_type[i] = 1;
ina219_count++;
}
}
}
2018-11-14 13:32:09 +00:00
void Ina219EverySecond(void)
{
2019-11-11 16:32:44 +00:00
// 4 x 3mS
Ina219Read();
}
#ifdef USE_WEBSERVER
const char HTTP_SNS_INA219_DATA[] PROGMEM =
"{s}%s " D_VOLTAGE "{m}%s " D_UNIT_VOLT "{e}"
"{s}%s " D_CURRENT "{m}%s " D_UNIT_AMPERE "{e}"
"{s}%s " D_POWERUSAGE "{m}%s " D_UNIT_WATT "{e}";
#endif // USE_WEBSERVER
void Ina219Show(bool json)
{
int num_found=0;
for (int i=0; i<sizeof(ina219_type); i++)
if (ina219_type[i] && ina219_valid[i])
num_found++;
int sensor_num = 0;
for (int i=0; i<sizeof(ina219_type); i++) {
if (!ina219_type[i] || !ina219_valid[i])
continue;
sensor_num++;
char voltage[16];
dtostrfd(ina219_voltage[i], Settings.flag2.voltage_resolution, voltage);
char current[16];
dtostrfd(ina219_current[i], Settings.flag2.current_resolution, current);
char power[16];
dtostrfd(ina219_voltage[i] * ina219_current[i], Settings.flag2.wattage_resolution, power);
char name[16];
if (num_found>1)
snprintf_P(name, sizeof(name), PSTR("%s%c%d"), ina219_types, IndexSeparator(), sensor_num);
else
snprintf_P(name, sizeof(name), PSTR("%s"), ina219_types);
if (json) {
ResponseAppend_P(PSTR(",\"%s\":{\"Id\":%02x,\"" D_JSON_VOLTAGE "\":%s,\"" D_JSON_CURRENT "\":%s,\"" D_JSON_POWERUSAGE "\":%s}"),
name, ina219_addresses[i], voltage, current, power);
#ifdef USE_DOMOTICZ
if (0 == tele_period) {
DomoticzSensor(DZ_VOLTAGE, voltage);
DomoticzSensor(DZ_CURRENT, current);
}
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_INA219_DATA, name, voltage, name, current, name, power);
#endif // USE_WEBSERVER
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns13(uint8_t function)
{
2019-11-04 09:38:05 +00:00
if (!I2cEnabled(XI2C_14)) { return false; }
bool result = false;
2019-11-11 16:32:44 +00:00
if (FUNC_INIT == function) {
Ina219Detect();
}
else if (ina219_count) {
switch (function) {
case FUNC_COMMAND_SENSOR:
if (XSNS_13 == XdrvMailbox.index) {
result = Ina219CommandSensor();
}
break;
case FUNC_EVERY_SECOND:
Ina219EverySecond();
break;
case FUNC_JSON_APPEND:
Ina219Show(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
Ina219Show(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_INA219
#endif // USE_I2C