Add support of optional file calib.dat

Add support of optional file calib.dat on ADE7953 based energy monitors like Shelly EM (#16486)
This commit is contained in:
Theo Arends 2022-09-13 15:35:09 +02:00
parent 912be0b4c7
commit 8b5a34b014
3 changed files with 284 additions and 46 deletions

View File

@ -7,6 +7,7 @@ All notable changes to this project will be documented in this file.
### Added ### Added
- Berry has persistent MQTT subscriptions: auto-subscribe at (re)connection - Berry has persistent MQTT subscriptions: auto-subscribe at (re)connection
- Berry automated solidification of code - Berry automated solidification of code
- Support of optional file calib.dat on ADE7953 based energy monitors like Shelly EM (#16486)
### Changed ### Changed

View File

@ -119,8 +119,11 @@ The latter links can be used for OTA upgrades too like ``OtaUrl http://ota.tasmo
- Zigbee device plugin mechanism with commands ``ZbLoad``, ``ZbUnload`` and ``ZbLoadDump`` [#16252](https://github.com/arendst/Tasmota/issues/16252) - Zigbee device plugin mechanism with commands ``ZbLoad``, ``ZbUnload`` and ``ZbLoadDump`` [#16252](https://github.com/arendst/Tasmota/issues/16252)
- Zigbee prepare for Green Power support [#16407](https://github.com/arendst/Tasmota/issues/16407) - Zigbee prepare for Green Power support [#16407](https://github.com/arendst/Tasmota/issues/16407)
- Flowrate meter flow amount/duration, show values in table format [#16385](https://github.com/arendst/Tasmota/issues/16385) - Flowrate meter flow amount/duration, show values in table format [#16385](https://github.com/arendst/Tasmota/issues/16385)
- Support of optional file calib.dat on ADE7953 based energy monitors like Shelly EM [#16486](https://github.com/arendst/Tasmota/issues/16486)
- Support for Ethernet in ESP32 safeboot firmware [#16388](https://github.com/arendst/Tasmota/issues/16388) - Support for Ethernet in ESP32 safeboot firmware [#16388](https://github.com/arendst/Tasmota/issues/16388)
- ESP32-S3 support for internal temperature sensor - ESP32-S3 support for internal temperature sensor
- Berry has persistent MQTT subscriptions: auto-subscribe at (re)connection
- Berry automated solidification of code
### Breaking Changed ### Breaking Changed

View File

@ -29,30 +29,130 @@
* Based on datasheet from https://www.analog.com/en/products/ade7953.html * Based on datasheet from https://www.analog.com/en/products/ade7953.html
* *
* I2C Address: 0x38 * I2C Address: 0x38
*********************************************************************************************
* Optionally allowing users to tweak calibration registers:
* - In addition to possible rules add a rule containing the calib.dat string like:
* - rule3 on file#calib.dat do {"angles":{"angle0":180,"angle1":176}} endon
* - rule3 on file#calib.dat do {"rms":{"current_a":3166385,"current_b":3125691,"voltage":767262},"angles":{"angle0":180,"angle1":176},"powers":{"totactive":{"a":1345820,"b":1347328},"apparent":{"a":1345820,"b":1347328},"reactive":{"a":1345820,"b":1347328}}} endon
* - Restart Tasmota and obeserve that the results seem calibrated as Tasmota now uses the information from calib.dat
* To restore standard calibration using commands like VoltSet remove above entry from rule3
\*********************************************************************************************/ \*********************************************************************************************/
#define XNRG_07 7 #define XNRG_07 7
#define XI2C_07 7 // See I2CDEVICES.md #define XI2C_07 7 // See I2CDEVICES.md
#define ADE7953_ADDR 0x38
/*********************************************************************************************/
//#define ADE7953_DEBUG
#define ADE7953_PREF 1540 #define ADE7953_PREF 1540
#define ADE7953_UREF 26000 #define ADE7953_UREF 26000
#define ADE7953_IREF 10000 #define ADE7953_IREF 10000
#define ADE7953_ADDR 0x38 // Default calibration parameters can be overridden by a rule as documented above.
#define ADE7953_AVGAIN_INIT 4194304 // rms, voltage
#define ADE7953_AIGAIN_INIT 4194304 // rms, current_a
#define ADE7953_BIGAIN_INIT 4194304 // rms, current_b
#define ADE7953_AWGAIN_INIT 4194304 // powers, totactive, a
#define ADE7953_BWGAIN_INIT 4194304 // powers, totactive, b
#define ADE7953_AVAGAIN_INIT 4194304 // powers, apparent, a
#define ADE7953_BVAGAIN_INIT 4194304 // powers, apparent, b
#define ADE7953_AVARGAIN_INIT 4194304 // powers, reactive, a
#define ADE7953_BVARGAIN_INIT 4194304 // powers, reactive, b
#define ADE7943_PHCALA_INIT 0 // angles, angle0
#define ADE7943_PHCALB_INIT 0 // angles, angle1
enum Ade7953_16BitRegisters {
// Register Name Addres R/W Bt Ty Default Description
// ---------------------------- ------ --- -- -- ---------- --------------------------------------------------------------------
ADE7953_ZXTOUT = 0x100, // 0x100 R/W 16 U 0xFFFF Zero-crossing timeout
ADE7953_LINECYC, // 0x101 R/W 16 U 0x0000 Number of half line cycles for line cycle energy accumulation mode
ADE7953_CONFIG, // 0x102 R/W 16 U 0x8004 Configuration register (see Table 18)
ADE7953_CF1DEN, // 0x103 R/W 16 U 0x003F CF1 frequency divider denominator. When modifying this register, two sequential write operations must be performed to ensure that the write is successful.
ADE7953_CF2DEN, // 0x104 R/W 16 U 0x003F CF2 frequency divider denominator. When modifying this register, two sequential write operations must be performed to ensure that the write is successful.
ADE7953_CFMODE = 0x107, // 0x107 R/W 16 U 0x0300 CF output selection (see Table 19)
ADE7943_PHCALA, // 0x108 R/W 16 S 0x0000 Phase calibration register (Current Channel A). This register is in sign magnitude format.
ADE7943_PHCALB, // 0x109 R/W 16 S 0x0000 Phase calibration register (Current Channel B). This register is in sign magnitude format.
ADE7943_PFA, // 0x10A R 16 S 0x0000 Power factor (Current Channel A)
ADE7943_PFB, // 0x10B R 16 S 0x0000 Power factor (Current Channel B)
ADE7943_ANGLE_A, // 0x10C R 16 S 0x0000 Angle between the voltage input and the Current Channel A input
ADE7943_ANGLE_B, // 0x10D R 16 S 0x0000 Angle between the voltage input and the Current Channel B input
ADE7943_Period // 0x10E R 16 U 0x0000 Period register
};
enum Ade7953_32BitRegisters {
ADE7953_ACCMODE = 0x301, // 0x301 R/W 24 U 0x000000 Accumulation mode (see Table 21)
ADE7953_AVA = 0x310, // 0x310 R 24 S 0x000000 Instantaneous apparent power (Current Channel A)
ADE7953_BVA, // 0x311 R 24 S 0x000000 Instantaneous apparent power (Current Channel B)
ADE7953_AWATT, // 0x312 R 24 S 0x000000 Instantaneous active power (Current Channel A)
ADE7953_BWATT, // 0x313 R 24 S 0x000000 Instantaneous active power (Current Channel B)
ADE7953_AVAR, // 0x314 R 24 S 0x000000 Instantaneous reactive power (Current Channel A)
ADE7953_BVAR, // 0x315 R 24 S 0x000000 Instantaneous reactive power (Current Channel B)
ADE7953_IA, // 0x316 R 24 S 0x000000 Instantaneous current (Current Channel A)
ADE7953_IB, // 0x317 R 24 S 0x000000 Instantaneous current (Current Channel B)
ADE7953_V, // 0x318 R 24 S 0x000000 Instantaneous voltage (voltage channel)
ADE7953_IRMSA = 0x31A, // 0x31A R 24 U 0x000000 IRMS register (Current Channel A)
ADE7953_IRMSB, // 0x31B R 24 U 0x000000 IRMS register (Current Channel B)
ADE7953_VRMS, // 0x31C R 24 U 0x000000 VRMS register
ADE7953_AENERGYA = 0x31E, // 0x31E R 24 S 0x000000 Active energy (Current Channel A)
ADE7953_AENERGYB, // 0x31F R 24 S 0x000000 Active energy (Current Channel B)
ADE7953_RENERGYA, // 0x320 R 24 S 0x000000 Reactive energy (Current Channel A)
ADE7953_RENERGYB, // 0x321 R 24 S 0x000000 Reactive energy (Current Channel B)
ADE7953_APENERGYA, // 0x322 R 24 S 0x000000 Apparent energy (Current Channel A)
ADE7953_APENERGYB, // 0x323 R 24 S 0x000000 Apparent energy (Current Channel B)
ADE7953_OVLVL, // 0x324 R/W 24 U 0xFFFFFF Overvoltage level
ADE7953_OILVL, // 0x325 R/W 24 U 0xFFFFFF Overcurrent level
ADE7953_VPEAK, // 0x326 R 24 U 0x000000 Voltage channel peak
ADE7953_RSTVPEAK, // 0x327 R 24 U 0x000000 Read voltage peak with reset
ADE7953_IAPEAK, // 0x328 R 24 U 0x000000 Current Channel A peak
ADE7953_RSTIAPEAK, // 0x329 R 24 U 0x000000 Read Current Channel A peak with reset
ADE7953_IBPEAK, // 0x32A R 24 U 0x000000 Current Channel B peak
ADE7953_RSTIBPEAK, // 0x32B R 24 U 0x000000 Read Current Channel B peak with reset
ADE7953_IRQENA, // 0x32C R/W 24 U 0x100000 Interrupt enable (Current Channel A, see Table 22)
ADE7953_IRQSTATA, // 0x32D R 24 U 0x000000 Interrupt status (Current Channel A, see Table 23)
ADE7953_RSTIRQSTATA, // 0x32E R 24 U 0x000000 Reset interrupt status (Current Channel A)
ADE7953_IRQENB, // 0x32F R/W 24 U 0x000000 Interrupt enable (Current Channel B, see Table 24)
ADE7953_IRQSTATB, // 0x330 R 24 U 0x000000 Interrupt status (Current Channel B, see Table 25)
ADE7953_RSTIRQSTATB, // 0x331 R 24 U 0x000000 Reset interrupt status (Current Channel B)
ADE7953_CRC = 0x37F, // 0x37F R 32 U 0xFFFFFFFF Checksum
ADE7953_AIGAIN, // 0x380 R/W 24 U 0x400000 Current channel gain (Current Channel A)
ADE7953_AVGAIN, // 0x381 R/W 24 U 0x400000 Voltage channel gain
ADE7953_AWGAIN, // 0x382 R/W 24 U 0x400000 Active power gain (Current Channel A)
ADE7953_AVARGAIN, // 0x383 R/W 24 U 0x400000 Reactive power gain (Current Channel A)
ADE7953_AVAGAIN, // 0x384 R/W 24 U 0x400000 Apparent power gain (Current Channel A)
ADE7953_AIRMSOS = 0x386, // 0x386 R/W 24 S 0x000000 IRMS offset (Current Channel A)
ADE7953_VRMSOS = 0x388, // 0x388 R/W 24 S 0x000000 VRMS offset
ADE7953_AWATTOS, // 0x389 R/W 24 S 0x000000 Active power offset correction (Current Channel A)
ADE7953_AVAROS, // 0x38A R/W 24 S 0x000000 Reactive power offset correction (Current Channel A)
ADE7953_AVAOS, // 0x38B R/W 24 S 0x000000 Apparent power offset correction (Current Channel A)
ADE7953_BIGAIN, // 0x38C R/W 24 U 0x400000 Current channel gain (Current Channel B)
ADE7953_BVGAIN, // 0x38D R/W 24 U 0x400000 This register should not be modified.
ADE7953_BWGAIN, // 0x38E R/W 24 U 0x400000 Active power gain (Current Channel B)
ADE7953_BVARGAIN, // 0x38F R/W 24 U 0x400000 Reactive power gain (Current Channel B)
ADE7953_BVAGAIN, // 0x390 R/W 24 U 0x400000 Apparent power gain (Current Channel B)
ADE7953_BIRMSOS = 0x392, // 0x392 R/W 24 S 0x000000 IRMS offset (Current Channel B)
ADE7953_BWATTOS = 0x395, // 0x395 R/W 24 S 0x000000 Active power offset correction (Current Channel B)
ADE7953_BVAROS, // 0x396 R/W 24 S 0x000000 Reactive power offset correction (Current Channel B)
ADE7953_BVAOS // 0x397 R/W 24 S 0x000000 Apparent power offset correction (Current Channel B)
};
enum Ade7953Models { ADE7953_SHELLY_25, ADE7953_SHELLY_EM };
// 24-bit data registers // 24-bit data registers
const uint16_t Ade7953Registers[] { const uint16_t Ade7953Registers[] {
0x31B, // IRMSB - RMS current channel B (Relay 1) ADE7953_IRMSB, // IRMSB - RMS current channel B (Relay 1)
0x313, // BWATT - Active power channel B ADE7953_BWATT, // BWATT - Active power channel B
0x311, // BVA - Apparent power channel B ADE7953_BVA, // BVA - Apparent power channel B
0x315, // BVAR - Reactive power channel B ADE7953_BVAR, // BVAR - Reactive power channel B
0x31A, // IRMSA - RMS current channel A (Relay 2) ADE7953_IRMSA, // IRMSA - RMS current channel A (Relay 2)
0x312, // AWATT - Active power channel A ADE7953_AWATT, // AWATT - Active power channel A
0x310, // AVA - Apparent power channel A ADE7953_AVA, // AVA - Apparent power channel A
0x314, // AVAR - Reactive power channel A ADE7953_AVAR, // AVAR - Reactive power channel A
0x31C, // VRMS - RMS voltage (Both relays) ADE7953_VRMS, // VRMS - RMS voltage (Both relays)
0x10E, // Period - 16-bit unsigned period register ADE7943_Period, // Period - 16-bit unsigned period register
0x301 // ACCMODE - Accumulation mode ADE7953_ACCMODE // ACCMODE - Accumulation mode
}; };
// Active power // Active power
@ -71,21 +171,26 @@ struct Ade7953 {
uint32_t period = 0; uint32_t period = 0;
uint32_t current_rms[2] = { 0, 0 }; uint32_t current_rms[2] = { 0, 0 };
uint32_t active_power[2] = { 0, 0 }; uint32_t active_power[2] = { 0, 0 };
uint32_t calib_igain[2];
uint32_t calib_wgain[2];
uint32_t calib_vagain[2];
uint32_t calib_vargain[2];
uint32_t calib_vgain;
int16_t calib_phcal[2];
uint8_t init_step = 0; uint8_t init_step = 0;
uint8_t model = 0; // 0 = Shelly 2.5, 1 = Shelly EM uint8_t model = 0; // 0 = Shelly 2.5, 1 = Shelly EM
} Ade7953; } Ade7953;
int Ade7953RegSize(uint16_t reg) int Ade7953RegSize(uint16_t reg) {
{
int size = 0; int size = 0;
switch ((reg >> 8) & 0x0F) { switch ((reg >> 8) & 0x0F) {
case 0x03: case 0x03: // 32-bit
size++; size++;
case 0x02: case 0x02: // 24-bit
size++; size++;
case 0x01: case 0x01: // 16-bit
size++; size++;
case 0x00: case 0x00: // 8-bit
case 0x07: case 0x07:
case 0x08: case 0x08:
size++; size++;
@ -93,8 +198,7 @@ int Ade7953RegSize(uint16_t reg)
return size; return size;
} }
void Ade7953Write(uint16_t reg, uint32_t val) void Ade7953Write(uint16_t reg, uint32_t val) {
{
int size = Ade7953RegSize(reg); int size = Ade7953RegSize(reg);
if (size) { if (size) {
Wire.beginTransmission(ADE7953_ADDR); Wire.beginTransmission(ADE7953_ADDR);
@ -108,8 +212,7 @@ void Ade7953Write(uint16_t reg, uint32_t val)
} }
} }
int32_t Ade7953Read(uint16_t reg) int32_t Ade7953Read(uint16_t reg) {
{
uint32_t response = 0; uint32_t response = 0;
int size = Ade7953RegSize(reg); int size = Ade7953RegSize(reg);
@ -128,15 +231,57 @@ int32_t Ade7953Read(uint16_t reg)
return response; return response;
} }
void Ade7953Init(void) void Ade7953Init(void) {
{ Ade7953Write(ADE7953_CONFIG, 0x0004); // Locking the communication interface (Clear bit COMM_LOCK), Enable HPF
Ade7953Write(0x102, 0x0004); // Locking the communication interface (Clear bit COMM_LOCK), Enable HPF
Ade7953Write(0x0FE, 0x00AD); // Unlock register 0x120 Ade7953Write(0x0FE, 0x00AD); // Unlock register 0x120
Ade7953Write(0x120, 0x0030); // Configure optimum setting Ade7953Write(0x120, 0x0030); // Configure optimum setting
#ifdef ADE7953_DEBUG
uint32_t aigain = Ade7953Read(ADE7953_AIGAIN);
uint32_t avgain = Ade7953Read(ADE7953_AVGAIN);
uint32_t bigain = Ade7953Read(ADE7953_BIGAIN);
uint32_t awgain = Ade7953Read(ADE7953_AWGAIN);
uint32_t bwgain = Ade7953Read(ADE7953_BWGAIN);
uint32_t avagain = Ade7953Read(ADE7953_AVAGAIN);
uint32_t bvagain = Ade7953Read(ADE7953_BVAGAIN);
uint32_t avargain = Ade7953Read(ADE7953_AVARGAIN);
uint32_t bvargain = Ade7953Read(ADE7953_BVARGAIN);
int32_t phcala = Ade7953Read(ADE7943_PHCALA);
int32_t phcalb = Ade7953Read(ADE7943_PHCALB);
AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: Regs V %06X, AI %06X, BI %06X, AW %06X, BW %06X, AVA %06X, BVA %06X, AVAr %06X, BVAr %06X, PA %06X, PB %06X"),
avgain, aigain, bigain, awgain, bwgain, avagain, bvagain, avargain, bvargain, phcala, phcalb);
#endif // ADE7953_DEBUG
Ade7953Write(ADE7953_AVGAIN, Ade7953.calib_vgain);
Ade7953Write(ADE7953_AIGAIN, Ade7953.calib_igain[0]);
Ade7953Write(ADE7953_BIGAIN, Ade7953.calib_igain[1]);
Ade7953Write(ADE7953_AWGAIN, Ade7953.calib_wgain[0]);
Ade7953Write(ADE7953_BWGAIN, Ade7953.calib_wgain[1]);
Ade7953Write(ADE7953_AVAGAIN, Ade7953.calib_vagain[0]);
Ade7953Write(ADE7953_BVAGAIN, Ade7953.calib_vagain[1]);
Ade7953Write(ADE7953_AVARGAIN, Ade7953.calib_vargain[0]);
Ade7953Write(ADE7953_BVARGAIN, Ade7953.calib_vargain[1]);
Ade7953Write(ADE7943_PHCALA, Ade7953.calib_phcal[0]);
Ade7953Write(ADE7943_PHCALB, Ade7953.calib_phcal[1]);
#ifdef ADE7953_DEBUG
aigain = Ade7953Read(ADE7953_AIGAIN);
avgain = Ade7953Read(ADE7953_AVGAIN);
bigain = Ade7953Read(ADE7953_BIGAIN);
awgain = Ade7953Read(ADE7953_AWGAIN);
bwgain = Ade7953Read(ADE7953_BWGAIN);
avagain = Ade7953Read(ADE7953_AVAGAIN);
bvagain = Ade7953Read(ADE7953_BVAGAIN);
avargain = Ade7953Read(ADE7953_AVARGAIN);
bvargain = Ade7953Read(ADE7953_BVARGAIN);
phcala = Ade7953Read(ADE7943_PHCALA);
phcalb = Ade7953Read(ADE7943_PHCALB);
AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: Regs V %06X, AI %06X, BI %06X, AW %06X, BW %06X, AVA %06X, BVA %06X, AVAr %06X, BVAr %06X, PA %06X, PB %06X"),
avgain, aigain, bigain, awgain, bwgain, avagain, bvagain, avargain, bvargain, phcala, phcalb);
#endif // ADE7953_DEBUG
} }
void Ade7953GetData(void) void Ade7953GetData(void) {
{
uint32_t acc_mode; uint32_t acc_mode;
int32_t reg[2][4]; int32_t reg[2][4];
for (uint32_t i = 0; i < sizeof(Ade7953Registers)/sizeof(uint16_t); i++) { for (uint32_t i = 0; i < sizeof(Ade7953Registers)/sizeof(uint16_t); i++) {
@ -148,7 +293,7 @@ void Ade7953GetData(void)
} else if (10 == i) { } else if (10 == i) {
acc_mode = value; // Accumulation mode acc_mode = value; // Accumulation mode
/* /*
if (0 == Ade7953.model) { // Shelly 2.5 - Swap channel B values due to hardware connection if (ADE7953_SHELLY_25 == Ade7953.model) { // Shelly 2.5 - Swap channel B values due to hardware connection
// if (acc_mode & APSIGN[0]) { acc_mode &= ~APSIGN[0]; } else { acc_mode |= APSIGN[0]; } // if (acc_mode & APSIGN[0]) { acc_mode &= ~APSIGN[0]; } else { acc_mode |= APSIGN[0]; }
// if (acc_mode & VARSIGN[0]) { acc_mode &= ~VARSIGN[0]; } else { acc_mode |= VARSIGN[0]; } // if (acc_mode & VARSIGN[0]) { acc_mode &= ~VARSIGN[0]; } else { acc_mode |= VARSIGN[0]; }
acc_mode ^= (APSIGN[0] | VARSIGN[0]); acc_mode ^= (APSIGN[0] | VARSIGN[0]);
@ -187,14 +332,17 @@ void Ade7953GetData(void)
Ade7953.active_power[0], Ade7953.active_power[1]); Ade7953.active_power[0], Ade7953.active_power[1]);
if (Energy.power_on) { // Powered on if (Energy.power_on) { // Powered on
Energy.voltage[0] = (float)Ade7953.voltage_rms / Settings->energy_voltage_calibration; Energy.voltage[0] = (Ade7953.calib_vgain != ADE7953_AVGAIN_INIT) ? (float)Ade7953.voltage_rms / 10000
: (float)Ade7953.voltage_rms / Settings->energy_voltage_calibration;
Energy.frequency[0] = 223750.0f / ((float)Ade7953.period + 1); Energy.frequency[0] = 223750.0f / ((float)Ade7953.period + 1);
for (uint32_t channel = 0; channel < 2; channel++) { for (uint32_t channel = 0; channel < 2; channel++) {
Energy.data_valid[channel] = 0; Energy.data_valid[channel] = 0;
Energy.active_power[channel] = (float)Ade7953.active_power[channel] / (Settings->energy_power_calibration / 10); Energy.active_power[channel] = (Ade7953.calib_wgain[channel] != ADE7953_AWGAIN_INIT) ? (float)Ade7953.active_power[channel] / 100
Energy.reactive_power[channel] = (float)reactive_power[channel] / (Settings->energy_power_calibration / 10); : (float)Ade7953.active_power[channel] / (Settings->energy_power_calibration / 10);
if (1 == Ade7953.model) { // Shelly EM Energy.reactive_power[channel] = (Ade7953.calib_vargain[channel] != ADE7953_AVARGAIN_INIT) ? (float)reactive_power[channel] / 100
: (float)reactive_power[channel] / (Settings->energy_power_calibration / 10);
if (ADE7953_SHELLY_EM == Ade7953.model) {
if ((acc_mode & APSIGN[channel]) != 0) { if ((acc_mode & APSIGN[channel]) != 0) {
Energy.active_power[channel] = Energy.active_power[channel] * -1; Energy.active_power[channel] = Energy.active_power[channel] * -1;
} }
@ -202,11 +350,13 @@ void Ade7953GetData(void)
Energy.reactive_power[channel] = Energy.reactive_power[channel] * -1; Energy.reactive_power[channel] = Energy.reactive_power[channel] * -1;
} }
} }
Energy.apparent_power[channel] = (float)apparent_power[channel] / (Settings->energy_power_calibration / 10); Energy.apparent_power[channel] = (Ade7953.calib_vagain[channel] != ADE7953_AVAGAIN_INIT) ? (float)apparent_power[channel] / 100
: (float)apparent_power[channel] / (Settings->energy_power_calibration / 10);
if (0 == Energy.active_power[channel]) { if (0 == Energy.active_power[channel]) {
Energy.current[channel] = 0; Energy.current[channel] = 0;
} else { } else {
Energy.current[channel] = (float)Ade7953.current_rms[channel] / (Settings->energy_current_calibration * 10); Energy.current[channel] = (Ade7953.calib_igain[channel] != ADE7953_AIGAIN_INIT) ? (float)Ade7953.current_rms[channel] / 100000
: (float)Ade7953.current_rms[channel] / (Settings->energy_current_calibration * 10);
Energy.kWhtoday_delta[channel] += Energy.active_power[channel] * 1000 / 36; Energy.kWhtoday_delta[channel] += Energy.active_power[channel] * 1000 / 36;
} }
} }
@ -219,8 +369,7 @@ void Ade7953GetData(void)
} }
} }
void Ade7953EnergyEverySecond(void) void Ade7953EnergyEverySecond(void) {
{
if (Ade7953.init_step) { if (Ade7953.init_step) {
if (1 == Ade7953.init_step) { if (1 == Ade7953.init_step) {
Ade7953Init(); Ade7953Init();
@ -231,14 +380,98 @@ void Ade7953EnergyEverySecond(void)
} }
} }
void Ade7953DrvInit(void) /*********************************************************************************************/
{
bool Ade7953SetDefaults(const char* json) {
// {"angles":{"angle0":180,"angle1":176}}
// {"rms":{"current_a":3166385,"current_b":3125691,"voltage":767262},"angles":{"angle0":180,"angle1":176},"powers":{"totactive":{"a":1345820,"b":1347328},"apparent":{"a":1345820,"b":1347328},"reactive":{"a":1345820,"b":1347328}}}
uint32_t len = strlen(json) +1;
if (len < 7) { return false; } // Too short
char json_buffer[len];
memcpy(json_buffer, json, len); // Keep original safe
JsonParser parser(json_buffer);
JsonParserObject root = parser.getRootObject();
if (!root) {
AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: Invalid JSON"));
return false;
}
// All parameters are optional allowing for partial changes
JsonParserToken val;
JsonParserObject rms = root[PSTR("rms")].getObject();
if (rms) {
val = rms[PSTR("voltage")];
if (val) { Ade7953.calib_vgain = val.getInt(); }
val = rms[PSTR("current_a")];
if (val) { Ade7953.calib_igain[0] = val.getInt(); }
val = rms[PSTR("current_b")];
if (val) { Ade7953.calib_igain[1] = val.getInt(); }
}
JsonParserObject angles = root[PSTR("angles")].getObject();
if (angles) {
val = angles[PSTR("angle0")];
if (val) { Ade7953.calib_phcal[0] = val.getUInt(); }
val = angles[PSTR("angle1")];
if (val) { Ade7953.calib_phcal[1] = val.getUInt(); }
}
JsonParserObject powers = root[PSTR("powers")].getObject();
if (powers) {
JsonParserObject totactive = powers[PSTR("totactive")].getObject();
if (totactive) {
val = totactive[PSTR("a")];
if (val) { Ade7953.calib_wgain[0] = val.getInt(); }
val = totactive[PSTR("b")];
if (val) { Ade7953.calib_wgain[1] = val.getInt(); }
}
JsonParserObject apparent = powers[PSTR("apparent")].getObject();
if (apparent) {
val = totactive[PSTR("a")];
if (val) { Ade7953.calib_vagain[0] = val.getInt(); }
val = totactive[PSTR("b")];
if (val) { Ade7953.calib_vagain[1] = val.getInt(); }
}
JsonParserObject reactive = powers[PSTR("reactive")].getObject();
if (reactive) {
val = totactive[PSTR("a")];
if (val) { Ade7953.calib_vargain[0] = val.getInt(); }
val = totactive[PSTR("b")];
if (val) { Ade7953.calib_vargain[1] = val.getInt(); }
}
}
return true;
}
void Ade7953Defaults(void) {
Ade7953.calib_vgain = ADE7953_AVGAIN_INIT;
Ade7953.calib_igain[0] = ADE7953_AIGAIN_INIT;
Ade7953.calib_igain[1] = ADE7953_BIGAIN_INIT;
Ade7953.calib_wgain[0] = ADE7953_AWGAIN_INIT;
Ade7953.calib_wgain[1] = ADE7953_BWGAIN_INIT;
Ade7953.calib_vagain[0] = ADE7953_AVAGAIN_INIT;
Ade7953.calib_vagain[1] = ADE7953_BVAGAIN_INIT;
Ade7953.calib_vargain[0] = ADE7953_AVARGAIN_INIT;
Ade7953.calib_vargain[1] = ADE7953_BVARGAIN_INIT;
Ade7953.calib_phcal[0] = ADE7943_PHCALA_INIT;
Ade7953.calib_phcal[1] = ADE7943_PHCALB_INIT;
#ifdef USE_RULES
// rule3 on file#calib.dat do {"angles":{"angle0":180,"angle1":176}} endon
String calib = RuleLoadFile("CALIB.DAT");
if (calib.length()) {
// AddLog(LOG_LEVEL_DEBUG, PSTR("ADE: File '%s'"), calib.c_str());
Ade7953SetDefaults(calib.c_str());
}
#endif // USE_RULES
}
void Ade7953DrvInit(void) {
if (PinUsed(GPIO_ADE7953_IRQ, GPIO_ANY)) { // Irq on GPIO16 is not supported... if (PinUsed(GPIO_ADE7953_IRQ, GPIO_ANY)) { // Irq on GPIO16 is not supported...
uint32_t pin_irq = Pin(GPIO_ADE7953_IRQ, GPIO_ANY); uint32_t pin_irq = Pin(GPIO_ADE7953_IRQ, GPIO_ANY);
pinMode(pin_irq, INPUT); // Related to resetPins() - Must be set to input pinMode(pin_irq, INPUT); // Related to resetPins() - Must be set to input
Ade7953.model = GetPin(pin_irq) - AGPIO(GPIO_ADE7953_IRQ); // 0 (Shelly 2.5), 1 (Shelly EM) Ade7953.model = GetPin(pin_irq) - AGPIO(GPIO_ADE7953_IRQ); // 0 (Shelly 2.5), 1 (Shelly EM)
if (1 == Ade7953.model) { // Shelly EM if (ADE7953_SHELLY_EM == Ade7953.model) {
pinMode(16, OUTPUT); // Reset pin ADE7953 pinMode(16, OUTPUT); // Reset pin ADE7953
digitalWrite(16, 0); digitalWrite(16, 0);
delay(1); delay(1);
@ -254,6 +487,9 @@ void Ade7953DrvInit(void)
Settings->energy_current_calibration = ADE7953_IREF; Settings->energy_current_calibration = ADE7953_IREF;
} }
I2cSetActiveFound(ADE7953_ADDR, "ADE7953"); I2cSetActiveFound(ADE7953_ADDR, "ADE7953");
Ade7953Defaults();
Ade7953.init_step = 2; Ade7953.init_step = 2;
Energy.phase_count = 2; // Handle two channels as two phases Energy.phase_count = 2; // Handle two channels as two phases
Energy.voltage_common = true; // Use common voltage Energy.voltage_common = true; // Use common voltage
@ -264,8 +500,7 @@ void Ade7953DrvInit(void)
} }
} }
bool Ade7953Command(void) bool Ade7953Command(void) {
{
bool serviced = true; bool serviced = true;
uint32_t channel = (2 == XdrvMailbox.index) ? 1 : 0; uint32_t channel = (2 == XdrvMailbox.index) ? 1 : 0;
@ -313,8 +548,7 @@ bool Ade7953Command(void)
* Interface * Interface
\*********************************************************************************************/ \*********************************************************************************************/
bool Xnrg07(uint8_t function) bool Xnrg07(uint8_t function) {
{
if (!I2cEnabled(XI2C_07)) { return false; } if (!I2cEnabled(XI2C_07)) { return false; }
bool result = false; bool result = false;