Add ESP32 ADC framework

This commit is contained in:
Theo Arends 2020-08-03 18:21:34 +02:00
parent 1d990ad091
commit a3445e5b5f
10 changed files with 561 additions and 36 deletions

View File

@ -691,8 +691,10 @@ typedef union {
} StateBitfield;
// See issue https://github.com/esp8266/Arduino/issues/2913
#ifdef ESP8266
#ifdef USE_ADC_VCC
ADC_MODE(ADC_VCC); // Set ADC input for Power Supply Voltage usage
#endif
#endif
#endif // _SETTINGS_H_

View File

@ -90,12 +90,14 @@ void ButtonInit(void)
Button.present++;
pinMode(Pin(GPIO_KEY1, i), bitRead(Button.no_pullup_mask, i) ? INPUT : ((16 == Pin(GPIO_KEY1, i)) ? INPUT_PULLDOWN_16 : INPUT_PULLUP));
}
#ifdef ESP8266
#ifndef USE_ADC_VCC
else if ((99 == Button.adc) && ((ADC0_BUTTON == my_adc0) || (ADC0_BUTTON_INV == my_adc0))) {
Button.present++;
Button.adc = i;
}
#endif // USE_ADC_VCC
#endif // ESP8266
}
}
@ -162,7 +164,18 @@ void ButtonHandler(void)
button = (digitalRead(Pin(GPIO_KEY1, button_index)) != bitRead(Button.inverted_mask, button_index));
}
}
#else
#ifndef USE_ADC_VCC
if (Button.adc == button_index) {
button_present = 1;
if (ADC0_BUTTON_INV == my_adc0) {
button = (AdcRead(1) < 128);
}
else if (ADC0_BUTTON == my_adc0) {
button = (AdcRead(1) > 128);
}
}
#endif // USE_ADC_VCC
#else // ESP32
if (PinUsed(GPIO_KEY1, button_index)) {
button_present = 1;
if (bitRead(Button.touch_mask, button_index)) { // Touch
@ -188,18 +201,7 @@ void ButtonHandler(void)
button = (digitalRead(Pin(GPIO_KEY1, button_index)) != bitRead(Button.inverted_mask, button_index));
}
}
#endif // ESP8266
#ifndef USE_ADC_VCC
if (Button.adc == button_index) {
button_present = 1;
if (ADC0_BUTTON_INV == my_adc0) {
button = (AdcRead(1) < 128);
}
else if (ADC0_BUTTON == my_adc0) {
button = (AdcRead(1) > 128);
}
}
#endif // USE_ADC_VCC
#endif // ESP8266 or ESP32
if (button_present) {
XdrvMailbox.index = button_index;
XdrvMailbox.payload = button;
@ -333,7 +335,7 @@ void ButtonHandler(void)
}
} else { // 6 press start wificonfig 2
if (!Settings.flag.button_restrict) {
if (!Settings.flag.button_restrict) { // SetOption1 - Control button multipress
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_WIFICONFIG " 2"));
ExecuteCommand(scmnd, SRC_BUTTON);
}

View File

@ -230,7 +230,7 @@ void GetFeatures(void)
#ifdef USE_COUNTER
feature_sns1 |= 0x00000001; // xsns_01_counter.ino
#endif
#ifdef USE_ADC_VCC
#if defined(USE_ADC_VCC) || defined(USE_ADC)
feature_sns1 |= 0x00000002; // xsns_02_analog.ino
#endif
#ifdef USE_ENERGY_SENSOR

View File

@ -651,10 +651,12 @@ void MqttShowState(void)
ResponseAppendTime();
ResponseAppend_P(PSTR(",\"" D_JSON_UPTIME "\":\"%s\",\"UptimeSec\":%u"), GetUptime().c_str(), UpTime());
#ifdef ESP8266
#ifdef USE_ADC_VCC
dtostrfd((double)ESP.getVcc()/1000, 3, stemp1);
ResponseAppend_P(PSTR(",\"" D_JSON_VCC "\":%s"), stemp1);
#endif
#endif // USE_ADC_VCC
#endif // ESP8266
ResponseAppend_P(PSTR(",\"" D_JSON_HEAPSIZE "\":%d,\"SleepMode\":\"%s\",\"Sleep\":%u,\"LoadAvg\":%u,\"MqttCount\":%u"),
ESP_getFreeHeap()/1024, GetTextIndexed(stemp1, sizeof(stemp1), Settings.flag3.sleep_normal, kSleepMode), // SetOption60 - Enable normal sleep instead of dynamic sleep

View File

@ -85,6 +85,7 @@ const uint8_t MAX_DEV_GROUP_NAMES = 4; // Max number of Device Group names
const uint8_t MAX_HUE_DEVICES = 15; // Max number of Philips Hue device per emulation
const uint8_t MAX_ROTARIES = 2; // Max number of Rotary Encoders
const uint8_t MAX_ADCS = 18; // Max number of ESP32 ADC pins
const char MQTT_TOKEN_PREFIX[] PROGMEM = "%prefix%"; // To be substituted by mqtt_prefix[x]
const char MQTT_TOKEN_TOPIC[] PROGMEM = "%topic%"; // To be substituted by mqtt_topic, mqtt_grptopic, mqtt_buttontopic, mqtt_switchtopic

View File

@ -36,7 +36,6 @@
// Not ported (yet)
#undef USE_DISCOVERY
#undef USE_ADC_VCC // Needs to be ported
#undef USE_DEEPSLEEP
#undef USE_MY92X1
#undef USE_TUYA_MCU
@ -115,12 +114,12 @@ enum UserSelectablePins {
GPIO_HRXL_RX, // Data from MaxBotix HRXL sonar range sensor
GPIO_ELECTRIQ_MOODL_TX, // ElectriQ iQ-wifiMOODL Serial TX
GPIO_AS3935,
ADC0_INPUT, // Analog input
ADC0_TEMP, // Analog Thermistor
ADC0_LIGHT, // Analog Light sensor
ADC0_BUTTON, ADC0_BUTTON_INV, // Analog Button
ADC0_RANGE, // Analog Range
ADC0_CT_POWER, // ANalog Current
GPIO_ADC_INPUT, // Analog input
GPIO_ADC_TEMP, // Analog Thermistor
GPIO_ADC_LIGHT, // Analog Light sensor
GPIO_ADC_BUTTON, GPIO_ADC_BUTTON_INV, // Analog Button
GPIO_ADC_RANGE, // Analog Range
GPIO_ADC_CT_POWER, // ANalog Current
GPIO_WEBCAM_PWDN, GPIO_WEBCAM_RESET, GPIO_WEBCAM_XCLK, // Webcam
GPIO_WEBCAM_SIOD, GPIO_WEBCAM_SIOC, // Webcam I2C
GPIO_WEBCAM_DATA,
@ -557,17 +556,15 @@ const uint16_t kGpioNiceList[] PROGMEM = {
AGPIO(GPIO_TELEINFO_RX),
AGPIO(GPIO_TELEINFO_ENABLE),
#endif
/*
#ifndef USE_ADC_VCC
AGPIO(ADC0_INPUT), // Analog input
AGPIO(ADC0_TEMP), // Thermistor
AGPIO(ADC0_LIGHT), // Light sensor
AGPIO(ADC0_BUTTON), // Button
AGPIO(ADC0_BUTTON_INV),
AGPIO(ADC0_RANGE), // Range
AGPIO(ADC0_CT_POWER), // Current
#ifdef USE_ADC
AGPIO(GPIO_ADC_INPUT) + MAX_ADCS, // Analog inputs
AGPIO(GPIO_ADC_TEMP) + MAX_ADCS, // Thermistor
AGPIO(GPIO_ADC_LIGHT) + MAX_ADCS, // Light sensor
AGPIO(GPIO_ADC_BUTTON) + MAX_ADCS, // Button
AGPIO(GPIO_ADC_BUTTON_INV) + MAX_ADCS,
AGPIO(GPIO_ADC_RANGE) + MAX_ADCS, // Range
AGPIO(GPIO_ADC_CT_POWER) + MAX_ADCS, // Current
#endif
*/
#ifdef USE_WEBCAM
AGPIO(GPIO_WEBCAM_PWDN),
AGPIO(GPIO_WEBCAM_RESET),
@ -591,6 +588,21 @@ const uint16_t kGpioNiceList[] PROGMEM = {
//********************************************************************************************
// User selectable ADC functionality
enum UserSelectableAdc {
ADC_NONE, // Not used
ADC_INPUT, // Analog input
ADC_TEMP, // Thermistor
ADC_LIGHT, // Light sensor
ADC_BUTTON, // Button
ADC_BUTTON_INV,
ADC_RANGE, // Range
ADC_CT_POWER, // Current
// ADC_SWITCH, // Switch
// ADC_SWITCH_INV,
ADC_END };
#define MAX_GPIO_PIN 40 // Number of supported GPIO
#define MIN_FLASH_PINS 4 // Number of flash chip pins unusable for configuration (GPIO6, 7, 8 and 11)
#define MAX_USER_PINS 36 // MAX_GPIO_PIN - MIN_FLASH_PINS

View File

@ -1921,7 +1921,7 @@ void HandleModuleConfiguration(void)
}
WSContentSend_P(PSTR("\";sk(%d," STR(ADC0_PIN) ");"), Settings.my_adc0);
#endif // USE_ADC_VCC
#endif // ESP8266 - ESP32
#endif // ESP8266
WSContentSend_P(PSTR("}wl(sl);"));

View File

@ -66,6 +66,7 @@ int DomoticzBatteryQuality(void) {
int quality = 100; // Voltage range from 2,6V > 0% to 3,6V > 100%
#ifdef ESP8266
#ifdef USE_ADC_VCC
uint16_t voltage = ESP.getVcc();
if (voltage <= 2600) {
@ -75,7 +76,8 @@ int DomoticzBatteryQuality(void) {
} else {
quality = (voltage - 2600) / 10;
}
#endif
#endif // USE_ADC_VCC
#endif // ESP8266
return quality;
}

View File

@ -17,6 +17,7 @@
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef ESP8266
#ifndef USE_ADC_VCC
/*********************************************************************************************\
* ADC support
@ -455,4 +456,5 @@ bool Xsns02(uint8_t function)
return result;
}
#endif // USE_ADC_VCC
#endif // USE_ADC_VCC
#endif // ESP8266

View File

@ -0,0 +1,502 @@
/*
xsns_02_analog_esp32.ino - ESP32 ADC support for Tasmota
Copyright (C) 2020 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef ESP32
#ifdef USE_ADC
/*********************************************************************************************\
* ADC support
\*********************************************************************************************/
#define XSNS_02 2
#define TO_CELSIUS(x) ((x) - 273.15)
#define TO_KELVIN(x) ((x) + 273.15)
// Parameters for equation
#define ANALOG_V33 3.3 // ESP8266 Analog voltage
#define ANALOG_T0 TO_KELVIN(25.0) // 25 degrees Celcius in Kelvin (= 298.15)
// Shelly 2.5 NTC Thermistor
// 3V3 --- ANALOG_NTC_BRIDGE_RESISTANCE ---v--- NTC --- Gnd
// |
// ADC0
#define ANALOG_NTC_BRIDGE_RESISTANCE 32000 // NTC Voltage bridge resistor
#define ANALOG_NTC_RESISTANCE 10000 // NTC Resistance
#define ANALOG_NTC_B_COEFFICIENT 3350 // NTC Beta Coefficient
// LDR parameters
// 3V3 --- LDR ---v--- ANALOG_LDR_BRIDGE_RESISTANCE --- Gnd
// |
// ADC0
#define ANALOG_LDR_BRIDGE_RESISTANCE 10000 // LDR Voltage bridge resistor
#define ANALOG_LDR_LUX_CALC_SCALAR 12518931 // Experimental
#define ANALOG_LDR_LUX_CALC_EXPONENT -1.4050 // Experimental
// CT Based Apparrent Power Measurement Parameters
// 3V3 --- R1 ----v--- R1 --- Gnd
// |
// CT+ CT-
// |
// ADC0
// Default settings for a 20A/1V Current Transformer.
// Analog peak to peak range is measured and converted to RMS current using ANALOG_CT_MULTIPLIER
#define ANALOG_CT_FLAGS 0 // (uint32_t) reserved for possible future use
#define ANALOG_CT_MULTIPLIER 2146 // (uint32_t) Multiplier*100000 to convert raw ADC peak to peak range 0..1023 to RMS current in Amps. Value of 100000 corresponds to 1
#define ANALOG_CT_VOLTAGE 2300 // (int) Convert current in Amps to apparrent power in Watts using voltage in Volts*10. Value of 2200 corresponds to 220V
#define CT_FLAG_ENERGY_RESET (1 << 0) // Reset energy total
uint8_t adc_present = 0;
struct {
float temperature = 0;
float current = 0;
float energy = 0;
uint32_t previous_millis = 0;
uint16_t last_value = 0;
uint8_t type = 0;
uint8_t pin = 0;
} Adc[MAX_ADCS];
void AdcInitParams(void) {
my_adc0 = Adc[0].type;
if ((Settings.adc_param_type != my_adc0) || (Settings.adc_param1 > 1000000)) {
if (ADC_TEMP == my_adc0) {
// Default Shelly 2.5 and 1PM parameters
Settings.adc_param_type = ADC_TEMP;
Settings.adc_param1 = ANALOG_NTC_BRIDGE_RESISTANCE;
Settings.adc_param2 = ANALOG_NTC_RESISTANCE;
Settings.adc_param3 = ANALOG_NTC_B_COEFFICIENT * 10000;
}
else if (ADC_LIGHT == my_adc0) {
Settings.adc_param_type = ADC_LIGHT;
Settings.adc_param1 = ANALOG_LDR_BRIDGE_RESISTANCE;
Settings.adc_param2 = ANALOG_LDR_LUX_CALC_SCALAR;
Settings.adc_param3 = ANALOG_LDR_LUX_CALC_EXPONENT * 10000;
}
else if (ADC_RANGE == my_adc0) {
Settings.adc_param_type = ADC_RANGE;
Settings.adc_param1 = 0;
Settings.adc_param2 = 1023;
Settings.adc_param3 = 0;
Settings.adc_param4 = 100;
}
else if (ADC_CT_POWER == my_adc0) {
Settings.adc_param_type = ADC_CT_POWER;
Settings.adc_param1 = ANALOG_CT_FLAGS; //(uint32_t) 0
Settings.adc_param2 = ANALOG_CT_MULTIPLIER; //(uint32_t) 100000
Settings.adc_param3 = ANALOG_CT_VOLTAGE; //(int) 10
}
}
}
void AdcInit(void) {
adc_present = 0;
for (uint32_t i = 0; i < MAX_ADCS; i++) {
if (PinUsed(GPIO_ADC_INPUT, i)) {
Adc[adc_present].pin = Pin(GPIO_ADC_INPUT, i);
if (adcAttachPin(Adc[adc_present].pin)) {
Adc[adc_present].type = ADC_INPUT;
// analogSetPinAttenuation(Adc[adc_present].pin, ADC_11db); // Default
adc_present++;
}
}
if (PinUsed(GPIO_ADC_TEMP, i)) {
Adc[adc_present].pin = Pin(GPIO_ADC_TEMP, i);
if (adcAttachPin(Adc[adc_present].pin)) {
Adc[adc_present].type = ADC_TEMP;
// analogSetPinAttenuation(Adc[adc_present].pin, ADC_11db); // Default
adc_present++;
}
}
if (PinUsed(GPIO_ADC_LIGHT, i)) {
Adc[adc_present].pin = Pin(GPIO_ADC_LIGHT, i);
if (adcAttachPin(Adc[adc_present].pin)) {
Adc[adc_present].type = ADC_LIGHT;
// analogSetPinAttenuation(Adc[adc_present].pin, ADC_11db); // Default
adc_present++;
}
}
if (PinUsed(GPIO_ADC_BUTTON, i)) {
Adc[adc_present].pin = Pin(GPIO_ADC_BUTTON, i);
if (adcAttachPin(Adc[adc_present].pin)) {
Adc[adc_present].type = ADC_BUTTON;
// analogSetPinAttenuation(Adc[adc_present].pin, ADC_11db); // Default
adc_present++;
}
}
if (PinUsed(ADC_BUTTON_INV, i)) {
Adc[adc_present].pin = Pin(ADC_BUTTON_INV, i);
if (adcAttachPin(Adc[adc_present].pin)) {
Adc[adc_present].type = ADC_BUTTON_INV;
// analogSetPinAttenuation(Adc[adc_present].pin, ADC_11db); // Default
adc_present++;
}
}
if (PinUsed(GPIO_ADC_RANGE, i)) {
Adc[adc_present].pin = Pin(GPIO_ADC_RANGE, i);
if (adcAttachPin(Adc[adc_present].pin)) {
Adc[adc_present].type = ADC_RANGE;
// analogSetPinAttenuation(Adc[adc_present].pin, ADC_11db); // Default
adc_present++;
}
}
if (PinUsed(GPIO_ADC_CT_POWER, i)) {
Adc[adc_present].pin = Pin(GPIO_ADC_CT_POWER, i);
if (adcAttachPin(Adc[adc_present].pin)) {
Adc[adc_present].type = ADC_CT_POWER;
// analogSetPinAttenuation(Adc[adc_present].pin, ADC_11db); // Default
adc_present++;
}
}
}
if (adc_present) {
analogSetClockDiv(1); // Default 1
analogSetWidth(12); // Default 12 bits (0 - 4095)
analogSetAttenuation(ADC_11db); // Default 11db
}
AdcInitParams();
}
uint16_t AdcRead(uint8_t pin, uint8_t factor) {
// factor 1 = 2 samples
// factor 2 = 4 samples
// factor 3 = 8 samples
// factor 4 = 16 samples
// factor 5 = 32 samples
uint8_t samples = 1 << factor;
uint16_t analog = 0;
for (uint32_t i = 0; i < samples; i++) {
analog += analogRead(pin);
delay(1);
}
analog >>= factor;
return analog;
}
#ifdef USE_RULES
void AdcEvery250ms(void) {
for (uint32_t idx = 0; idx < adc_present; idx++) {
if (ADC_INPUT == Adc[idx].type) {
uint16_t new_value = AdcRead(Adc[idx].pin, 5);
if ((new_value < Adc[idx].last_value -10) || (new_value > Adc[idx].last_value +10)) {
Adc[idx].last_value = new_value;
uint16_t value = Adc[idx].last_value / 10;
Response_P(PSTR("{\"ANALOG\":{\"A%ddiv10\":%d}}"), idx, (value > 99) ? 100 : value);
XdrvRulesProcess();
}
}
}
}
#endif // USE_RULES
uint16_t AdcGetLux(uint8_t pin) {
int adc = AdcRead(pin, 2);
// Source: https://www.allaboutcircuits.com/projects/design-a-luxmeter-using-a-light-dependent-resistor/
double resistorVoltage = ((double)adc / 1023) * ANALOG_V33;
double ldrVoltage = ANALOG_V33 - resistorVoltage;
double ldrResistance = ldrVoltage / resistorVoltage * (double)Settings.adc_param1;
double ldrLux = (double)Settings.adc_param2 * FastPrecisePow(ldrResistance, (double)Settings.adc_param3 / 10000);
return (uint16_t)ldrLux;
}
uint16_t AdcGetRange(uint8_t pin) {
// formula for calibration: value, fromLow, fromHigh, toLow, toHigh
// Example: 514, 632, 236, 0, 100
// int( ((<param2> - <analog-value>) / (<param2> - <param1>) ) * (<param3> - <param4>) ) + <param4> )
int adc = AdcRead(pin, 2);
double adcrange = ( ((double)Settings.adc_param2 - (double)adc) / ( ((double)Settings.adc_param2 - (double)Settings.adc_param1)) * ((double)Settings.adc_param3 - (double)Settings.adc_param4) + (double)Settings.adc_param4 );
return (uint16_t)adcrange;
}
void AdcGetCurrentPower(uint8_t idx, uint8_t factor) {
// factor 1 = 2 samples
// factor 2 = 4 samples
// factor 3 = 8 samples
// factor 4 = 16 samples
// factor 5 = 32 samples
uint8_t samples = 1 << factor;
uint16_t analog = 0;
uint16_t analog_min = 1023;
uint16_t analog_max = 0;
if (0 == Settings.adc_param1) {
for (uint32_t i = 0; i < samples; i++) {
analog = analogRead(Adc[idx].pin);
if (analog < analog_min) {
analog_min = analog;
}
if (analog > analog_max) {
analog_max = analog;
}
delay(1);
}
Adc[idx].current = (float)(analog_max-analog_min) * ((float)(Settings.adc_param2) / 100000);
}
else {
analog = AdcRead(Adc[idx].pin, 5);
if (analog > Settings.adc_param1) {
Adc[idx].current = ((float)(analog) - (float)Settings.adc_param1) * ((float)(Settings.adc_param2) / 100000);
}
else {
Adc[idx].current = 0;
}
}
float power = Adc[idx].current * (float)(Settings.adc_param3) / 10;
uint32_t current_millis = millis();
Adc[idx].energy = Adc[idx].energy + ((power * (current_millis - Adc[idx].previous_millis)) / 3600000000);
Adc[idx].previous_millis = current_millis;
}
void AdcEverySecond(void) {
for (uint32_t idx = 0; idx < adc_present; idx++) {
if (ADC_TEMP == Adc[idx].type) {
int adc = AdcRead(Adc[idx].pin, 2);
// Steinhart-Hart equation for thermistor as temperature sensor
double Rt = (adc * Settings.adc_param1) / (1024.0 * ANALOG_V33 - (double)adc);
double BC = (double)Settings.adc_param3 / 10000;
double T = BC / (BC / ANALOG_T0 + TaylorLog(Rt / (double)Settings.adc_param2));
Adc[idx].temperature = ConvertTemp(TO_CELSIUS(T));
}
else if (ADC_CT_POWER == Adc[idx].type) {
AdcGetCurrentPower(idx, 5);
}
}
}
void AdcShow(bool json) {
bool domo_flag[ADC_END] = { false };
char adc_name[10]; // ANALOG12
for (uint32_t idx = 0; idx < adc_present; idx++) {
snprintf_P(adc_name, sizeof(adc_name), PSTR("ANALOG%d"), idx);
switch (Adc[idx].type) {
case ADC_INPUT: {
uint16_t analog = AdcRead(Adc[idx].pin, 5);
if (json) {
ResponseAppend_P(PSTR(",\"%s\":{\"A0\":%d}"), adc_name, analog);
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_ANALOG, "", idx, analog);
#endif // USE_WEBSERVER
}
break;
}
case ADC_TEMP: {
char temperature[33];
dtostrfd(Adc[idx].temperature, Settings.flag2.temperature_resolution, temperature);
if (json) {
ResponseAppend_P(JSON_SNS_TEMP, adc_name, temperature);
if ((0 == tele_period) && (!domo_flag[ADC_TEMP])) {
#ifdef USE_DOMOTICZ
DomoticzSensor(DZ_TEMP, temperature);
domo_flag[ADC_TEMP] = true;
#endif // USE_DOMOTICZ
#ifdef USE_KNX
KnxSensor(KNX_TEMPERATURE, Adc[idx].temperature);
#endif // USE_KNX
}
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_TEMP, adc_name, temperature, TempUnit());
#endif // USE_WEBSERVER
}
break;
}
case ADC_LIGHT: {
uint16_t adc_light = AdcGetLux(Adc[idx].pin);
if (json) {
ResponseAppend_P(JSON_SNS_ILLUMINANCE, adc_name, adc_light);
#ifdef USE_DOMOTICZ
if ((0 == tele_period) && (!domo_flag[ADC_LIGHT])) {
DomoticzSensor(DZ_ILLUMINANCE, adc_light);
domo_flag[ADC_LIGHT] = true;
}
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_ILLUMINANCE, adc_name, adc_light);
#endif // USE_WEBSERVER
}
break;
}
case ADC_RANGE: {
uint16_t adc_range = AdcGetRange(Adc[idx].pin);
if (json) {
ResponseAppend_P(JSON_SNS_RANGE, adc_name, adc_range);
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_RANGE, adc_name, adc_range);
#endif // USE_WEBSERVER
}
break;
}
case ADC_CT_POWER: {
AdcGetCurrentPower(idx, 5);
float voltage = (float)(Settings.adc_param3) / 10;
char voltage_chr[FLOATSZ];
dtostrfd(voltage, Settings.flag2.voltage_resolution, voltage_chr);
char current_chr[FLOATSZ];
dtostrfd(Adc[idx].current, Settings.flag2.current_resolution, current_chr);
char power_chr[FLOATSZ];
dtostrfd(voltage * Adc[idx].current, Settings.flag2.wattage_resolution, power_chr);
char energy_chr[FLOATSZ];
dtostrfd(Adc[idx].energy, Settings.flag2.energy_resolution, energy_chr);
if (json) {
ResponseAppend_P(PSTR(",\"%s\":{\"" D_JSON_ENERGY "\":%s,\"" D_JSON_POWERUSAGE "\":%s,\"" D_JSON_VOLTAGE "\":%s,\"" D_JSON_CURRENT "\":%s}"),
adc_name, energy_chr, power_chr, voltage_chr, current_chr);
#ifdef USE_DOMOTICZ
if ((0 == tele_period) && (!domo_flag[ADC_CT_POWER])) {
DomoticzSensor(DZ_POWER_ENERGY, power_chr);
DomoticzSensor(DZ_VOLTAGE, voltage_chr);
DomoticzSensor(DZ_CURRENT, current_chr);
domo_flag[ADC_CT_POWER] = true;
}
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_VOLTAGE, voltage_chr);
WSContentSend_PD(HTTP_SNS_CURRENT, current_chr);
WSContentSend_PD(HTTP_SNS_POWER, power_chr);
WSContentSend_PD(HTTP_SNS_ENERGY_TOTAL, energy_chr);
#endif // USE_WEBSERVER
}
break;
}
}
}
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
const char kAdcCommands[] PROGMEM = "|" // No prefix
D_CMND_ADCPARAM;
void (* const AdcCommand[])(void) PROGMEM = {
&CmndAdcParam };
void CmndAdcParam(void) {
if (XdrvMailbox.data_len) {
if ((ADC_TEMP == XdrvMailbox.payload) ||
(ADC_LIGHT == XdrvMailbox.payload) ||
(ADC_RANGE == XdrvMailbox.payload) ||
(ADC_CT_POWER == XdrvMailbox.payload)) {
if (strstr(XdrvMailbox.data, ",") != nullptr) { // Process parameter entry
char sub_string[XdrvMailbox.data_len +1];
// AdcParam 2, 32000, 10000, 3350
// AdcParam 3, 10000, 12518931, -1.405
// AdcParam 6, 0, 1023, 0, 100
Settings.adc_param_type = XdrvMailbox.payload;
Settings.adc_param1 = strtol(subStr(sub_string, XdrvMailbox.data, ",", 2), nullptr, 10);
Settings.adc_param2 = strtol(subStr(sub_string, XdrvMailbox.data, ",", 3), nullptr, 10);
if (ADC_RANGE == XdrvMailbox.payload) {
Settings.adc_param3 = abs(strtol(subStr(sub_string, XdrvMailbox.data, ",", 4), nullptr, 10));
Settings.adc_param4 = abs(strtol(subStr(sub_string, XdrvMailbox.data, ",", 5), nullptr, 10));
} else {
Settings.adc_param3 = (int)(CharToFloat(subStr(sub_string, XdrvMailbox.data, ",", 4)) * 10000);
}
if (ADC_CT_POWER == XdrvMailbox.payload) {
if (((1 == Settings.adc_param1) & CT_FLAG_ENERGY_RESET) > 0) {
for (uint32_t idx = 0; idx < MAX_ADCS; idx++) {
Adc[idx].energy = 0;
}
Settings.adc_param1 ^= CT_FLAG_ENERGY_RESET; // Cancel energy reset flag
}
}
} else { // Set default values based on current adc type
// AdcParam 2
// AdcParam 3
// AdcParam 6
// AdcParam 7
Settings.adc_param_type = 0;
AdcInitParams();
}
}
}
// AdcParam
Response_P(PSTR("{\"" D_CMND_ADCPARAM "\":[%d,%d,%d"), Settings.adc_param_type, Settings.adc_param1, Settings.adc_param2);
if (ADC_RANGE == my_adc0) {
ResponseAppend_P(PSTR(",%d,%d"), Settings.adc_param3, Settings.adc_param4);
} else {
int value = Settings.adc_param3;
uint8_t precision;
for (precision = 4; precision > 0; precision--) {
if (value % 10) { break; }
value /= 10;
}
char param3[33];
dtostrfd(((double)Settings.adc_param3)/10000, precision, param3);
ResponseAppend_P(PSTR(",%s"), param3);
}
ResponseAppend_P(PSTR("]}"));
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns02(uint8_t function) {
bool result = false;
switch (function) {
case FUNC_COMMAND:
result = DecodeCommand(kAdcCommands, AdcCommand);
break;
case FUNC_INIT:
AdcInit();
break;
default:
if (adc_present) {
switch (function) {
#ifdef USE_RULES
case FUNC_EVERY_250_MSECOND:
AdcEvery250ms();
break;
#endif // USE_RULES
case FUNC_EVERY_SECOND:
AdcEverySecond();
break;
case FUNC_JSON_APPEND:
AdcShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
AdcShow(0);
break;
#endif // USE_WEBSERVER
}
}
}
return result;
}
#endif // USE_ADC
#endif // ESP32